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Outline 
•  Introduction 
•  PCA Review 
•  PLS Regression Review 
•  Advanced Preprocessing 
•  Variable Selection 
•  Summary 
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Chemometrics - Use of Mathematics, 
Chemistry, Physics and Logic to Perform: 

•  Experimental Design - How to take measurements in 
such a way as to maximize the chances of obtaining 
the desired information at the least cost. 

•  Data Analysis - How to get as much information out 
of a set of measurements as possible and relate 
measurements made on a chemical system to the state 
of the system  
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Chemometrics Tools
•  Simple exploratory analysis (e.g., PCA and PLS) 

are useful and help us understand the data.
–  The goal is to see trends and gain a better 

understanding about the measurements and system 
generating the data.

–  Can provide insight into how to preprocess the data
•  Mathematical tools allow us to extract information 

from the signal (typically multivariate) that isn't 
always easy to see.
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Some Resources 
•  Books 

–  Multivariate Calibration, H. Martens and T. Næs, John Wiley & Sons Ltd. (1989) ISBN 0-471-90979-3 
–  Techniques and Applications of Hyperspectral Image Analysis, Grahn, H. F.; Geladi, P., Eds. John Wiley & 

Sons: West Sussex, England  (2007). 
–  Smilde, A., Bro, R., and Geladi, P., “Multi–way Analysis with Applications in the Chemical Sciences”, John 

Wiley & Sons, New York, NY (2004).
–  Magnus, J.R. and Neudecker, H., “Matrix Differential Calculus with Applications in Statistics and Economics, 

Revised Edition”, John Wiley & Sons, New York, NY (1999). 
•  Journals 

–  Journal of Chemometrics; Chemometrics and Intelligent Laboratory Systems; Analytical 
Chemistry; Analytica Chemica Acta; Applied Spectroscopy; Critical Reviews in Analytical 
Chemistry; Journal of Process Control; Computers in Chemical Engineering; Technometrics 

•  Special Journal Papers 
–  Sanchez, E. and Kowalski, B.R., “Tensorial Calibration: II. Second Order Calibration”, J. Chemometrics, 2, 

247–263 (1988).
–  Martens, H., Nielsen, J. P., Engelsen, S. B., “Light Scattering and Light Absorbance Separated by Extended 

Multiplicative Signal Correction. Application to Near–Infrared Transmission Analysis of Powder Mixtures”, 
Anal. Chem., 75(3), 394–404 (2003).
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Advanced Chemometrics

•  Advanced concepts combine our understanding of 
the physics and chemistry of the system, and 
knowledge of how the mathematical tools work to 
provide better experimental designs and to …

•  maximize signal-to-noise è signal-to-clutter
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Principal Components Analysis 
Review

•  We'll come back to
"maximize signal-to-noise è signal-to-clutter"

•  First let's review PCA and follow through an 
example
–  start software, load data, perform a PCA decomposition 

and define PCA terms
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Outline 
•  Introduction 
•  PCA Review 

–  Mean-centering and autoscaling 

•  PLS Regression Review 
•  Advanced Preprocessing 
•  Variable Selection 
•  Summary 
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Data Matrix X:�
Variables and Samples

•  Examples of variables:
–  absorbance at each l
–  ion current at each m/e
–  pressure, temperature, flow
–  chromatographic peak area

•  Examples of samples:
–  samples taken to lab
–  data samples at time points
–  data from specific batches
–  etc....

Data 
Matrix 
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PCA Decomposition
•  PCA partitions a data matrix into

–  sample related information (scores) and 
–  variable related information (loadings).

•  Useful for multivariate exploratory data analysis.
•  Scores and loadings are determined by 

maximizing capture of variance 
–  information, sum-of-squares

•  show this graphically

–  Many methods in multivariate analysis are "factor 
based" – PCA factors are scores and loadings.
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Principal of Projections
•  K-space has K dimensions where each variable, or measurement on an 

object, is a coordinate axis
•  A sample (object) is a point in K-space
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Projection in K-Space
•  The projection of an object onto the K-space yields the coordinates of 

the object in that space
•  e.g., in 3-space this is (x1, x2, x3)
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Projection onto a Vector
•  Projection lines are perpendicular to the vector 
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Projection onto a Plane
•  Projection lines are perpendicular to the plane 
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PCA 

0 
2 

4 
6 

0 
2 

4 
6 0 

2 

4 

6 

8 
PC 1 

Variable 1 
Variable 2 

Va
ria

bl
e 

3 

Mean Vector 

PC 2 



9 

17

PCA
•  Geometry for 2 variables

Variable 1 
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Mean Vector 
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How Does PCA Find the PC’s? 
•  The 1st principal component (PC) passes 

through the origin and the maximum variance 
of the data. 

•  The 2nd PC is orthogonal (perpendicular or 
independant) to PC1 and passes through the 
second most variance. 

•  The process can be continued until the number 
of new PC’s = number of old variables. 
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What Does PCA Give Me? 
•  Most of the variance (information) is concentrated 

in the first few PC’s. 
–  Some may be relevant to the problem of interest 

•  Small random noise is sifted into the later PC’s  
–  and may be thrown away - data filtering. 
–  or used in a residuals analysis 

•  Important Assumption: 
–  The signal/noise is > 1 
–  i.e., most of the variance is from sources other than 

random noise 
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What Does PCA Give Me? 
•  Loadings: Compositions of the new PC axes in 

terms of the old variables.  May be able to 
interpret the loadings in chemical terms, shows 
how variables are correlated. 
–  Loadings ó Variables 

•  Scores: The position of the samples in the new 
PC coordinate system.  The closer samples are 
to each other in the first few PC space, the more 
they are alike. 
–  Scores ó Samples 
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PCA

R ≤ min(M,N) is the mathematical rank of the data.
K<<R is the pseudo- or chemical-rank of the data. 
The pi are eigenvectors of the covariance matrix of X and λi are 
eigenvalues. Amount of variance captured by each tipi

T is 
proportional to λi. 

For X with M samples and N variables, the PCA decomposition is:
X = t1p1

T + t2p2
T + ... + tKpK

T + ... + tRpR
T

X = t1p1
T + t2p2

T + ... + tKpK
T + E = TKPK

T + E
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•  ti,pi ordered by amount of variance captured ∝ λi

•  the chemical-rank K is the number of PCs that 
captures other than random noise

•  ti or scores form an orthogonal set Tk which 
describe relationship between samples

•  pi or loadings form an orthonormal set Pk which 
describe relationship between variables

•  scores and loadings plots are interpreted in pairs
•  e.g. plot ti vs sample number and pi vs variable number

•  it is useful to plot ti+1 vs. ti and pi+1 vs. pi 

Properties of PCA
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Example: Olive Oils 

•  Use FT-IR spectra and PCA for pattern recognition 
to distinguish authentic olive oil from counterfeit or 
adulterated olive oil. 

•  Shall see some special properties associated with 
Spectral Data. 
–  Dahlberg, D.B., Lee, S.M, Wegner, S.J. and Vargo, J.A., 

"Classification of Vegetable Oils by FT-IR," Appl. Spec., 
51(8), 1118-1124 (1997). 

–  FT-IR spectra (3600 - 600 cm-1) using a fixed pathlength 
NaCl cell 

24



13 

25

OliveOilData.mat

Load OliveOilData.mat

Olive Oil Samples 

Learning set: xcal Start with this data set
Corn Oil   9 samples   (#1-9) 
Olive Oil   15 samples   (#10-24) 
Safflower Oil   8 samples   (#25-32) 
Corn Margarine  4 samples    (#33-36) 
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drag 'xcal' to PCA and drop

Start Analysis for PCA

28

Data analysis and measurement system 
design is not a limited access highway, it is 

more like a worn path in the dirt.
Often what is learned at one step leads us 

back to the beginning.

Plot the data. (for this example let's include all the variables)
Use knowledge and logic during the analysis – this is not a black box.
Before modeling ask, "what will PCA give me for this data and this 
preprocessing? What is the expected rank of the data?" 
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•  Use no preprocessing
•  plot the eigenvalues

–  choose number of PCs
•  plot scores and loadings

–  interpret the results

Try PCA
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Eigenvalues for Olive Oil Calibration

Choosing Number of PCs
• It's not always easy
• In exploratory analysis it doesn't really 
matter

• Compare total % variance of model 
with error of data. 

• Eigenvalue Plot - PCs before a break. 
• PRESS plot from cross-validation - PCs 
at first minimum or near plateau. 

• Chemical intuition to choose between 
conflicting results. 

• e.g., do the PCs discriminate? 
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Scores and Loadings, PC 1
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Scores and Loadings, PC 2
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PCA Summary
•  No preprocessing

–  PC 1 captured variance that was in the general 
direction of the mean

•  although it is not strictly the mean of the data

–  PC 2 discriminated the oils
•  some variables associated with differences between the 

oils were seen on PC 2
•  discrimination wasn't great, can we do better?

–  PCA is designed to capture sum-of-squares from 
the origin

•  that's why PC 1 was in direction of the mean!
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Repeat the PCA with Mean-Centering 

variable 

Mean 

Standard 
Deviation 

Mean center 

variable 

All Variables now 
have the same Mean 

the data origin is now the mean 
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Mean-Centering

•  PCA now captures 
sum-of-squares about 
the mean of the data
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Scores and Loadings, PC 1
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PCA Summary
•  Mean-centering

–  removing the mean now focused PC 1 on variance 
about the mean and PC 1 discriminated the oils

•  we're bringing relevant variance closer to the top

–  median-centering can be used when there are expected 
to be outliers that might influence the mean

•  the outliers are easier to identify and then remove
–  additionally, we identified

•  regions with little or no signal
•  sloping baseline variability

–  can we do better, how about auto-scaling?
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Autoscaling 

Meancenter 

variable 

All Variables now 
have the same Mean 
& Standard Deviation 

variable 

Scale 

Autoscale 

Remember: autoscaling includes mean centering 
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•  PCA now captures sum-of-
squares about the mean for 
the data with variables of 
equal variance
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Scores and Loadings, PC 1
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PCA Summary
•  Autoscaling

–  PC 1 no longer discriminates
•  giving all the variables an equal weight "blew up" noisy 

variables that had small signal and subsequently added lot's of 
sum-of-squares

•  we're bringing irrelevant variance closer to the top

–  for many data sets, autoscaling is a good thing, but not 
often used in spectra

•  autoscaling ~assumes that each variable has a similar S/N
–  but clearly not the case over the entire spectral range

•  often used when variables are of different units
–  e.g., in engineering applications
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Q Statistic in PCA
•  Recall that the PCA model was truncated to keep 

only K PCs.  
•  What about E? E is the lack of fit.
•  The Q statistic is the sum-of-squares of each row 

of E and is a measure of lack of fit of each sample.
–  It is a measure of the distance from the plane of the 

PCA model.
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Hotelling's T2

•  Hotelling's T2 statistic can be calculated from the 
PCA scores.

•  T2 accounts for the different amounts of variance 
in each direction to calculate a distance from the 
origin within the plane of the PCA model.



23 

45

0

2
4

6

0

2

4

6
0

2

4

6

8 First PC

Second PC

Variable 1

Variable 2

Va
ria

bl
e 

3
Sample with large Q -
Unusual variation outside the model

Sample with large T2
Unusual variation inside the model

Geometry of Q and T2

46

Outline 
•  Introduction 
•  PCA Review 
•  PLS Regression Review 

–  cross-validation 
–  Savitsky-Golay 
–  model validation 

•  Advanced Preprocessing 
•  Variable Selection 
•  Summary 
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We Can’t Always Measure 
What We Want* 

•  Often measurements must be made on something 
else and the property of interest must be inferred 
from these measurements. 

•  This is the idea behind inferential sensing where 
variables are measured that are available in a 
timely manner to predict something that is more 
difficult (or more expensive) to obtain. 

*"You Can't Always Get What You Want," Rolling Stones, Let it Bleed (1969)
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Regression 

Y-Block X-Block 
What’s desired What’s measured 

Regression 
   Model 

PCA was used to explore the correlation structure 
within a single data block X. 
Regression analysis identifies the dependency 
between two blocks of data X and Y. 
Regression models are often used to obtain estimates 
(or predictions) for one block of data from the other. 
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Many Forms of Regression 
•  Classical Least Squares (CLS) 

•  Generalized least squares 
•  Extended least squares 

•  Multiple Linear Regression (MLR) 
•  Principal Components Regression (PCR) 
•  Partial Least Squares Regression (PLS) 

  Xb = y + e  (this is our focus) 
  XB = Y+E (PLS-2: multivariate Y) 
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PLS Description

•  PCA decomposes X into factors called PCs
•  PLS decomposes X (and Y) into latent variables
•  Selection of the number of LV's is ~more 

important in PLS than in PCA but it's also a bit 
easier
–  Cross-validation



26 

51

Cross-Validation
•  Divide data set into J sample subsets to leave out 

one at a time.
•  For each subset:

•  build a PLS model using all samples in the remaining subsets 
(i.e., build J models) and using different numbers of  LVs (1,2,…)

•  apply the model to predict the Jth subset samples
•  calculate PRESS (Predictive Residual Sum of Squares) for the 

subset samples and sum over all J subsets and LVs:

•  Look for minimum or “knee” in PRESS curve
  
e2 = y − Xb( )2
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Cross-validation Graphically
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X y

“Venetian 
blinds” - OK

when data
already in
random
order

contiguous 
blocks-best 

for time 
series

random
selection-
usually

repeated
several times

leave-one-
out, used
when not

much data
available

Formation of Test Sets

What else?  Custom selection, based on prior knowledge!
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Cross-validation Considerations

•  Cross-validation method selection criteria
–  Number of objects in dataset
–  Order of objects in dataset
–  Objective of cross-validation (specific type of error?)
–  Presence/absence of replicates

•  “Traps” to avoid
–  “Repeat sample trap”

•  Repeat measurements in both model and test set

–  “External subset selection trap”
•  Test set “space” outside of model set “space”
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•  Divide data set into ~square root of number of 
samples subsets. 

•  “Genuine Replicates” can be split between the 
Learning and Test Sets 
•  “'genuine replicates' are repetitions which are subject to 

all the sources of error that affect runs made at different 
experimental conditions”* 

•  If simple repeat measurements, keep them 
together, i.e. have all in either the Learning Set 
or Test Set. 

Cross-Validation Rules of Thumb 

*Box, Hunter, and Hunter, “Statistics for Experimenters”, Wiley (1978) 
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Example Application of PLS
•  Estimate the concentration of NaOH in aqueous 

caustic brine solutions using SW-NIR
–  measured 12 solutions of  NaCl and NaOH in water
–  peaks shift with changes in NaCl , NaOH and 

temperature, T
•  Since T will vary in the application, T variation 

must be included in the Learning Set
–  although T need not be known to calibrate for NaOH, it 

must vary in the Learning Set for the model to be robust 
to changes in T 
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Typical SW-NIR Spectrum of 
Caustic Brine Solution 
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PLS Example

•  How to preprocess?
–  just mean-center for now

•  How many latent variables?
–  cross-validation using venetian blinds
–  split the data sqrt(71)~8 times
–  examine out to 20 LVs (expect true number < 20)

60

•  Analysis: File: Clear: All
•  Browser: File: Clear Workspace
•  Browser: File: Load Workspace: causticdso.mat
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•  Analysis: File: Load X and Y
•  load xcal and ycal

•  Analysis: Analysis: PLS

62

•  Analysis: Tools: Cross-Validation
•  Cross-Validation: venetian blinds: OK
•  Analysis: Preprocess: X,Y-Block: Mean Center
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•  Analysis: right-click Y: Select Y-Columns
•  Select NaOH (wt%)2: OK
•  Analysis: Model
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•  Analysis: right-click X: Plot Data
•  Plot Controls: Y: Data

plot your data 
absorbance >2!
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•  Plot Controls: Select {choose 
values < 2}

•  Plot Controls: Edit: Include 
Only Selection

Variable selection starts by using what's known about the 
physics and chemistry of the measurement system.
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•  Plot Controls: Select {select the four odd samples}
•  Plot Control: Edit: Set Class of Selected: "1 outliers": OK
•  Plot Controls: data {select several samples}
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Wavenumber (1/cm)

zoom in
shows four odd samples 
have a different ~offset
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Baseline Problems Example 
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This has contant 
baseline offset 

This has a linearly 
sloping baseline 

three identical spectra, except: 
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Using Derivative Spectra 
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The constant 
baseline offset has 
been removed from 
the green spectrum 

Take 1st derivative of the Three Spectra 

original spectra 

1st derivative 
spectra 
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Now the linearly 
sloping baseline 
drift has been 
removed. 
All three spectra 
now identical. 

Take 2nd derivative of the Three Spectra 

Using Derivative Spectra 

original spectra 

2nd derivative 
spectra 
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•  Analysis: Preprocess: X-block: Custom…
•  Preprocessing X-block: Derivative: Add
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•  Analysis: Preprocess: Plot Preprocessed Data: X-block
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•  Analysis: Load X, and Y-block test data / validation data 
and click Model

Linear regression model using 
Partial Least Squares calculated with the SIMPLS algorithm 
Developed 11-Feb-2011 09:42:59.84 
Author: Neal@NEAL-VAIO_07 
X-block: SWIR of Caustic, Test Set  24 by 593 Included: [1-24 ]  [ 57-649 ]   
Included (in axis units): [ n/a ]  [ 7436.1-12002 ]   
Preprocessing: 2nd Derivative (order: 2, window: 15 pt), Mean Center 
Y-block: salt_cal  24 by 1  
Included: [ 1-24 ]  [ 2 ]   
Preprocessing: Mean Center 
Num. LVs: 3 
Cross validation: venetian blinds w/ 8 splits 
RMSEC: 0.0387602  
RMSECV: 0.0410341  
RMSEP: 0.0410703  
Bias:     0  
CV Bias: -0.00018375  
Pred Bias:0.00680956  
R^2 Cal: 0.999081  
R^2 CV: 0.99897  
R^2 Pred: 0.998991  
  
    Percent Variance Captured by Regression Model 
   
           -----X-Block-----    -----Y-Block----- 
   Comp     This      Total      This      Total  
   ----    -------   -------    -------   ------- 
     1      76.37     76.37      68.95     68.95 
     2      15.27     91.64      28.20     97.14 
     3       7.22     98.85       2.76     99.91   
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PLS Example Summary
•  Variable Selection

–  use what you know to remove irrelevant variables
–  plot your data

•  Preprocessing
–  mean-centering was used to remove overall offsets

•  not mean-centering is a force fit through zero

–  Savitzky-Golay smoothing and derivatives were used to 
remove offsets and slopes in the spectra

•  Fit and Prediction are not the same thing
–  model validation is very important and continues…

76

Before Applying Models to 
Real Unknowns 

Validate Them Thoroughly With a Well 
Designed Test Set!! 

Models Do Not Last Forever 
Revalidate Them Often and Rebuild 

Them If Necessary. 
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Outline 
•  Introduction 
•  PCA Review 
•  PLS Regression Review 
•  Advanced Preprocessing 

–  clutter 
–  GLS, MSC, EMSC, SNV, normalization 

•  Variable Selection 
•  Summary 
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What is Clutter?

•  Signal is defined as the measurement associated 
with the target of interest.
–  e.g., it is the part of the FTIR spectrum corresponding 

to discriminating the olive oils, or
–  the relationship between temperatures in a distillation 

column and the tray compositions
•  Clutter is everything else in the measurement

–  interferences
–  noise
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Measured Signal
•  Measured signal includes target
•  and Clutter (X-, Y-block, …)

–  Use physics to create a linear relationship
•  non-linearity w/in X-block adds factors (digs deeper into noise)
•  non-linearity between X- and Y-blocks adds error

Measured Signal 
Target Signal 

Clutter Signal 

Interference 
Signal 

Noise 

target clutter target clutterδ δ⎡ ⎤ ⎡ ⎤+ ± = + ± +⎣ ⎦ ⎣ ⎦X X X b y y y e
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Sources of Clutter

•  Instrument physics
–  offset and gain changes, drift, hardware changes, smile, 

wavelength registration, temperature, humidity, 
operator …

•  Sample / sampling
–  interferences chemical and physical

•  presence of other analytes
•  pathlength changes, particulate and size distribution changes, 

…
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Preprocessing Objective

•  Typical analysis methods of interest are based on 
maximizing capture of sum-of-squares or 
minimizing least-squares.

•  The objective of preprocessing is to minimize 
variance due to clutter so that the analysis can 
focus on signal of interest
–  Clutter: sensor noise and the confounding effects of interferences 
–  Radar Clutter Definition: (DOD, NATO) Unwanted signals, echoes, or 

images on the face of the display tube, which interfere with observation of 
desired signals.
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Advance Preprocessing
•  Introduce concepts and methodologies to maximize 

signal-to-clutter for use in PCA and PLS
–  maximize between-class distance / within-class distance
–  minimize the prediction error
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Advanced Chemometrics

•  Advanced concepts combine our understanding of 
the physics and chemistry of the system, and 
knowledge of how the mathematical tools work to 
provide better experimental designs and to …

•  maximize signal-to-noise è signal-to-clutter
•  Data analysis and preprocessing should not be 

treated as a black box

84

OliveOilData.mat

Reload OliveOilData.mat
•  Analysis: File: clear all
•  Browser: Clear Workspace
•  Analysis, PCA, mean-centering, cross-val none, and 

plot scores
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This scores plot shows better 
discrimination than our 
previous PCA with the same 
preprocessing, why?

Plot your data
Plot Controls: View: Excluded Data
Variable selection removed 
'irrelevant variables.'

… but can we do better?
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PCA Results

•  PCA shows that the four 
classes in the calibration 
data set are separate from 
each other (high between 
class variance) but …

•  have significant within 
class variance 
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Replicates
•  Ideally, replicates would lie on top of each other.
•  Variance within each class is clutter variance.

–  Is it random noise? Is the clutter correlated?
•  Center each class to 

it's own mean and do 
PCA on the result. 

CMarg 

Olive 

Corn 
Saffl 

CMarg 

Olive 

Corn Saffl 
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PCA suggests correlation 
in the clutter. 
How do we account for it? 
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How does the clutter affect the 
measurements?

•  Imagine a 2-channel spectrometer

Channel 1 

C
ha

nn
el

 2
 

Channel 
1 2

target response 

target response 

clutter response 

clutter response 

the clutter is 
correlated 
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How does the clutter affect the 
measurements?

•  characterize the signal as the length of the vector
sqrt(x1

2+x2
2)

Channel 1 

C
ha

nn
el

 2
 

target response 

clutter response 

length of target = sqrt(12+22)=2.24 

portion of target 
response that is 
unique to the target 

length of unique portion of the 
target = sqrt(0.52+1.52)=1.58 
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Why is clutter bad?

•  The signal-to-clutter is ~proportional to the length 
of the unique portion of the target's response.
–  in absence of clutter it was 2.24
–  in the presence of clutter it was 1.58

•  In regression, clutter-to-signal is related to the 
estimation error.
–  higher clutter-to-signal è higher estimation error
–  in the presence of clutter the estimation error is 

2.24/1.58 times the error when clutter is absent
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Effect of Clutter
•  The effect of clutter is to remove target signal

–  for olive oil example the target signal is the differences 
between the classes

•  Instrument related clutter can be minimized by
–  good instrument design that accounts for the 

environment (noise+interferences) in which 
measurements are to be made

–  instrument standardization
•  remove drifts in offsets and gains that adds to the clutter

•  Can't always be eliminated è what to do?
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Accounting for Clutter

•  One method used to account for clutter is a 
weighting scheme
–  similar to that used in generalized least squares (GLS)

•  Autoscaling scales each variable to unit variance
•  GLS weighting scales each clutter direction (as 

determined using PCA) to unit variance
–  directions of high clutter are deweighted
–  directions of low clutter are given more opportunity to 

allow signal through

94

Target Projected onto Clutter 
Directions

Channel 1 

C
ha

nn
el

 2
 

target response 

PCA of (correlated) clutter 
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Scale Target by Clutter

Channel 1 

C
ha

nn
el

 2
 

target response 

PCA of (correlated) clutter 
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Whitened Signal

Channel 1 

C
ha

nn
el

 2
 

target response 

PCA of (correlated) clutter 
clutter now is "white" all 
directions have similar variance

the "whitened" signal is 
shorter (lower magnitude) 
à loss of target signal



49 

97

2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

Principal Component Number

Ei
ge

nv
al

ue
s

Eigenvalues

The large eigenvalues are associated with 
directions that will be de-weighted. 
This whitening process is referred to as 
"multiplying by the sqrt of the inverse 
clutter covariance". 

Olive Oil Clutter
Eigenvalue distribution of the within class variance. 

Try PCA with whitening: GLS weighting 

Based on concepts outlined by Aitken, A., "On Least Squares and Linear Combinations of Observations", 
Proceedings of the Royal Society of Edinburgh, 1935, 55, 42-48, and used in Maximum Noise Fractions  Green AA, 
Berman M, Switzer P, Craig MD (1988) IEEE Trans Geosci Remote Sens 26:65–74
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Click Preprocessing Shortcut
GLS Weighting: Add: Details:
x-block classes
Mean Center: Add: OK
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PCA of Whitened Spectra

•  PCA shows the four classes in 
the calibration data set are 
further apart than non-whitened 
data (very high between class 
variance) and 

•  have reduced within class 
variance  

        Percent Variance Captured by PCA Model 
   
Principal     Eigenvalue     % Variance     % Variance 
Component         of          Captured       Captured 
 Number         Cov(X)        This  PC        Total 
---------     ----------     ----------     ---------- 
     1         5.63e-002         81.89          81.89 
     2         5.34e-003         16.13          98.02 

Olive Oil Samples 
Learning set: xcal Start with this data set
Corn Oil   9 samples   (#1-9) 
Olive Oil   15 samples   (#10-24) 
Safflower Oil   8 samples   (#25-32) 
Corn Margarine  4 samples    (#33-36) 
Test set: xtest NEW DATA 
Corn Oil   9 samples   (#1-9) 
Olive Oil   15 samples   (#10-24) 
Safflower Oil   8 samples   (#25-32) 
Corn Margarine  4 samples    (#33-36) 
Corn Oil in Olive Oil  5 samples   (#37-41) 
5, 10, 20, 30 & 40% 
Almond Oil   1 sample   (#42) 
Peanut Oil   1 sample   (#43)   
Sesame Oil   1 sample   (#44) 
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Click Load X Validation Shortcut 
and load  xtest

102
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Check Test Data

•  standard normal variate 
•  spectral normalization 
•  multiplicative scatter correction 
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Samples/Scores Plot of Olive Oil Calibration & Oiltest,

 

 CMarg
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T5C
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T10C
T20C
T30C
T40C

•  Test samples for olive oil and 
corn oil appear to cluster on 
top of calibration data 
(good!).

•  However, the corn margarine 
and safflower test samples 
don't, why?

•  Corn margarine suggests a 
magnitude effect. How to 
remove the effect of 
magnitude?
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Normalization
•  Normalize each row / spectrum 

•  1-norm: normalize to unit AREA (area = 1)
•  2-norm: normalize to unit LENGTH (vector length = 1)
•  inf-norm: normalize to unit MAXIMUM (max value = 1)
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3 norm 

2 norm: constrains 
rows to a spherical 
surface  

1/2 norm 
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1 norm: constrains rows to a plane 
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Standard Normal Variate
•  Mean-centers each row / spectrum and scales it by 

it's standard deviation
–  it is autoscaling of the rows instead of the columns
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•  All test samples appear to cluster 
on top of calibration data.
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Interpret Scores and Loadings

3014 cm-1  
Cis-vinyl C-H stretch 

960 cm-1  
Trans-vinyl C-H bend 

C=C Rearrangement 

Cis-vinyl: Unsaturation 

Corn 
Margarine

Olive Oil
Corn Oil

Safflower
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GLS Weighting

•  GLS Weighting of the spectral data accounted for 
some of the clutter observed in the spectra, but 
didn't account for magnitude changes.

•  SNV was used to account for magnitude changes.
•  The result was

–  clusters were further apart and tighter
–  the ratio of between-class to within-class variance was 

increased making discrimination easier
•  clusters were so tight and far apart that confidence bounds 

defining each class could be wider
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Multiplicative Effect in Spectra 

•  Two spectra are identical except one is a multiple of 
the other 
–  Changing sample pathlength, e.g. changing light 

scattering with particle size. 
–  Changing sample density, e.g. changing temperature of 

sample. 
–  Changing gain of instrument. 

•  Plotting a measured spectrum versus a reference 
spectrum (usually the mean) looks linear 
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Scattering Effects in Reflectance

Caused by variations in:
•  Particle mean &distribution
•  Sample opacity
•  Sampling packing density
•  Sample placement can manifest as baseline 

offset changes, and … 

… pathlength (peak 
amplitude) variations - 
multiplicative effect 
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MSC Multiplicative Signal (Scatter) Correction 
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Identity 
Line 

Divide each absorbance 
of Sample 22 by slope = 
1.0584  

Geladi P, MacDougall D, Martens H., Appl. Spectrosc., 39(3), 491‑500 (1985) 
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If there is also an Offset 
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What to use as a Reference Spectrum? 

•  Anything we want that looks like the spectra 
in the Learning Set. 

•  Usually choose Mean Spectrum of the 
Learning Set. 
–  The same spectra subtracted when mean centering. 
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Extended MSC (EMSC)

•  Like MSC, EMSC is used to account for offset 
and gain (multiplicative effects). Also:
–  clutter by using an extended mixture model

•  using interference spectra or PCA loadings of clutter data

–  instrument artifacts like slope and smile
–  can allow desired target spectra to  'pass the filter'

•  The extended mixture model is a classical least 
squares-like model that is used to explicitly 
account for clutter using extended least squares.
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EMSC
Provide spectra of:
•  Known target analytes S
•  Polynomial baselines P
•  Known interferences Q

–  e.g., loadings from a PCA model of clutter
–  the coefficients for each linear effect are estimated 

using least-squares (indicated by "hat")

( )
2,

2, 2 ˆ ˆ ˆ
measured ref ref S P Q

corrected P Q ref

c

c

= + + +

= − −

s s Sc Pc Qc
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P υ υ 1

Q

L
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PCA of  clutter. 
PCA of calibration data with 
classes centered to class mean. 
Keep 2 PCs to model the clutter. 
Save model to pcam 

>> z = xcal; 
>> for i1=1:4 
     z.data(find(xcal.class{1}==i1),:) = mncn(z.data(find(xcal.class{1}==i1),:)); 
   end 
>> z.description = char(z.description,'Each class center to its own mean.'); 
>> p = zeros(2,518); 
>> p(:,z.include{2}) = pcam.loads{2}'; 
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Click Preprocessing Shortcut 
EMSC (Extended Multiplicative 

Scatter Correction) 
Settings… 
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EMSC Summary
•  EMSC attempts to account for clutter explicitly

–  e.g., model clutter with basis vectors (e.g., PCA loads)
–  analyst takes control of the model

•  requires good use of measurements: clutter and target spectra
•  use what you know!

–  interpretable
•  analyst control is more daunting that simple SavGol and MSC, but
•  results are much more interpretable than 2nd derivative spectra

–  Martens H, Stark E., J. Pharm. and Biomedical Analysis, 9, 625–635 (1991).
–  Helland IS, Naes T, Isaksson T., Chemom. Intell. Lab. Syst., 29, 233–241 

(1995).
–  Martens H, Nielsen JP, Engelsen SB., Anal. Chem., 75(3), 394–404 (2003).
–  Gallagher NB, Blake TA, Gassman PL, J. Chemometr., 19(5-7), 271-281 

(2005).
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Click Preprocessing Menu 
Preprocess:Plot Preprocessed 

Data: Calibration: X-block 
Plot:Rows 
View:Classes:Oil 
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Outline 
•  Introduction 
•  PCA Review 
•  PLS Regression Review 
•  Advanced Preprocessing 
•  Variable Selection 

–  why do it? 
–  use what you know! 
–  iPLS 

•  Summary 
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Why Variable Selection?

•  Improvement of the model
–  Remove irrelevant, unreliable or noisy variables (clutter)
–  Improve predictions
–  Improve statistical properties

•  Interpretation
–  Obtain a model that is easier to understand

•  Costs
–  Use fewer measurements to replace expensive or time-consuming 

one
•  Development of fast instruments/routines for on-line 

control
–  Find wavelength ranges for a filter-based instrument
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Already performed variable selection 
based on a posteriori knowledge…
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Variable Selection Methods

•  a priori 
–  Choose measurements 

•  a posteriori 
–  Use chemical/physical insight 

•  Model based 
–  Look at loadings 

•  "Random based" 
–  Genetic algorithms 
–  Simulated annealing 

•  “Spectral” 
–  i-PLS 
–  fullsearch 

 

•  Classical 
–  Forward, backward selection 
–  Best subset selection 
–  Significance tests 
–  Significance based on Jack-

knife 
–  GOLPE 

•  Other 
–  Pure variables 
–  Principal variables 
–  Iterative weighting with 

regression vector 
–  … 

(see the Variable Selection Course at EigenU) 
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Variable Selection Methods

•  How to choose which method?!?
•  Different methods work in different situations
•  Interval-PLS is a good “example” method to 

understand the considerations of variable 
selection. Simple to implement and use.

•  Can be used on the Olive Oil data set, but first 
need to define PLS-DA
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•  Use logicals (0,1) in Y-block to indicate if sample 
belongs to a class or not.

•  Develop PLS model to predict class block
•  Thresholds must be set between 0 and 1 to indicate �

if new samples are a member of �
each class...
Can use Bayes theorem to set �
threshold and include prior probability �
of each class

Partial Least Squares-Discriminate 
Analysis (PLS-DA)

Regression 
Vector 

Threshold 
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Thresholds in PLS-DA

Class II Class I 
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Observed distribution of predictions can be handled in 
a straight-forward Bayesian way 

130

PLS-DA for Olive Oil Data

•  PLS-DA tends to capture variance which is useful 
in separating classes and ignoring variance within 
a class.
–  goal: maximize inter-class variance while minimizing 

intra-class variance
•  For Olive Oils it seems reasonable to discriminate 

Corn Margarine from all the others first.
–  Other classes can be separated in turn
–  Two classes: Corn margarine and Everything else

•  this was evident based on the previous exploratory analysis
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Click “X” >> Edit Data 
Select Column Labels tab 
Right Click Incl. >> Bulk Include 

Change 
"Select all" 
"OK" 

Re-Include all variables  

132
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Click “IPLSDA Variable 
Selection” button

Enter 25 for Interval Size
Enter 3 for max LVs
Click “Execute”

Interval Size defines how 
many variables to group 
together. 
Spectral data: use size>1 
Non-contiguous data: use 
size=1 (single variable 
intervals) 

provides access to 
other i-PLS settings 
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•  Best intervals contain 
useful signal from all 
four classes.

•  Original data shown; 
Preprocessing only 
makes this separation 
better!
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Click “Use” button
Click "OK"
Click "SSQ Table" button
Click “Model”
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Number of Intervals

•  Can choose a pre-set number of intervals to find
•  Can also use “Automatic” to continue selecting 

intervals until RMSECV/misclassification does 
not improve

•  This is not the same as exhaustive combinatorial 
search (fullsearch). It is sequential (choose one, 
“lock” it in, choose a second, “lock” it in…)

•  For very complex data, may not give actual “best” 
windows, but probably not a bad one.



72 

143

What is the Result?
•  For PLSDA, lower RMSECV should indicate 

better class separation in predicted Y values
•  Selecting additional intervals gives little 

improvement in RMSECV (on this data)
•  Use ONLY first selected interval and build new 

model…

144
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Outline 
•  Introduction 
•  PCA Review 
•  PLS Regression Review 
•  Advanced Preprocessing 
•  Variable Selection 
•  Summary 
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Summary 
•  Data analysis requires knowledge of 

–  the system, physics, chemistry and math à black box 

•  Advanced Preprocessing 
–  uses knowledge of the clutter (GLS, ELS, etc.) 

•  Variable Selection 
–  choose variables that are most predictive 
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If time …
•  Introduce

–  multivariate image analysis 
(hyperspectral image analysis)

–  multiway analysis

= + + 

148

Outline 
•  Introduction 
•  PCA Review 
•  PLS Regression Review 
•  Advanced Preprocessing 
•  Variable Selection 
•  Introduction to Multivariate Image Analysis 

and Multi-way Analysis (if time) 
•  Summary 
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Multivariate Images

A data array of dimension three 
(or more) where the first two dimensions 
are spatial and the last dimension(s) is a 

function of another variable.

150

Multivariate Images

Spatial Information 
between pixels 

Spectral Information 
between channels 
(chemical information) 

Spatial distribution of 
chemical analytes, physical 
features, and other 
properties 
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Reshaping Images for Analysis

My

Mx
N

MxMyxN

Reshape X (MxxMyxN)  to X 
(MxMyxN) matrix and subject 
to two-way analysis e.g, PCA

152

PCA for�
Multivariate Image Analysis

My

Mx
N

MxMyxK

Model X = TPT+E
Reshape T (MxMyxK) to T 
(MxxMyxK)  and examine the 
scores images

PCA is an example of MIA.
Techniques and 
Applications of 
Hyperspectral Image 
Analysis, Grahn, H. F.; 
Geladi, P., Eds. John Wiley 
& Sons: West Sussex, 
England (2007)
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Example: TOF-SIMS

•  Time-of-Flight Secondary-
Ion-Mass Spectrometry
–  common surface analysis 

technique
–  mass spectrum generated for 

each pixel

Thanks to  
Physical Electronics!
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TOF-SIMS of Time Release Drug 
Delivery System

•  Multi-layer drug beads serve as controlled release 
system

•  TOF-SIMS of cross section of bead
•  Evaluate the integrity of the layers and distribution 

of ingredients

A.M. Belu, M.C. Davies, J.M. Newton and N. Patel, “TOF-SIMS Characterization and Imaging of Controlled-
Release Drug Delivery Systems," Anal. Chem., 72(22), 5625–5638 (2000).
Gallagher, N.B., Shaver, J.M., Martin, E.B., Morris, J., Wise, B.M. and Windig, W., “Curve resolution for 
images with applications to TOF-SIMS and Raman”, Chemometr. Intell. Lab., 73(1), 105–117 (2003).
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Image of Scores on PC 1 (57.47%)
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Image of Scores on PC 1 (57.47%)
Image of Scores on PC 2 (9.18%) 
Image of Scores on PC 3 (3.87%) 
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Minimum Noise Factors (MNF)

•  MNF attempts find directions in the data that 
maximize the signal-to-clutter.

•  Result is a PCA-like eigenvector problem
•  In maximum autocorrelation factors (MAF) clutter 

is the first difference image (difference between 
near-by pixels)

0
max
i

T
i X i
T
i C i

≠

⎛ ⎞
⎜ ⎟
⎝ ⎠v

v Σ v
v Σ v the objective function 
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MAF
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MAF finds locations in the image where the ratio of gray-scale 
to first derivative is a maximum
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MAF Results
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to MAF results. Objective function ~similar, but PCA scores and 
loadings orthogonal. contrasted image
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Maximum Difference Factors 
(MDF)

•  In MDF the signal covariance corresponds to the 
first derivative across the spatial dimensions.
–  in MAF the first difference is the clutter

•  The clutter corresponds to the second derivative 
across the spatial dimensions.

•  Gives a multivariate analysis estimate of edges in 
an image.
–  analogous method available for GLS weighting w/ PCA
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MDF
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MDF finds locations in the image where the ratio of first to 
second derivative is a maximum
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MDF Results
Scaled image of MDF scores on 1
sqrt(dx^2 + dy^2)
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MAF+MDF Results
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cluster analysis
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Sample Correlation Map (4 clusters)
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MIA …

•  Much more to MIA
–  linked scores plots and density plots

•  interactive exploration of the image(s)
–  image SIMCA and PLS-DA

•  classification

–  curve resolution
•  chemical identification and mapping

–  image statistical process control (ISPC) for multivariate 
statistical process control (MSPC)

–  …
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Outline 
•  Introduction 
•  Advanced Preprocessing 

–  Clutter and characterizing clutter 
–  Generalized least squares weighting 
–  Extended multiplicative scatter correction 
–  Interval PLS (iPLS) 
–  Model Robustness 

•  Multivariate image analysis 
•  Multi-way Analysis 
•  Summary 

©Copyright  2008-2012
Eigenvector Research, Inc.
No part of this material may be photocopied or 
reproduced in any form without prior written 
consent from Eigenvector Research, Inc.
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Why is Clutter Bad? 

•  What is clutter and how does clutter effect the 
measured signal? 

•  Use FT-IR spectra and pattern recognition to 
distinguish authentic olive oil from counterfeit or 
adulterated olive oil. 



86 

171

Sources of Clutter: Scattering Effects in 
Reflectance 

•  Particle size (mean & 
distribution) 

•  Sample opacity 
•  Sampling packing density 
•  Sample placement 

Baseline offset 
changes 

Pathlength (peak 
amplitude) variations sp

ec
ul

ar
 

Sample 1 Sample 2 

di
ffu

se
 

Caused by variations in: 
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Olive Oil Samples 
Learning / Calibration Set: 

Corn Oil   9 samples   (#1-9) 
Olive Oil   15 samples   (#10-24) 
Safflower Oil   8 samples   (#25-32) 
Corn Margarine  4 samples    (#33-36) 

Took FT-IR spectra (3600 - 600 cm-1) of these oils using a 
fixed pathlength NaCl cell. 
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PCA 
Results 



88 

175

PCA Results 

•  PCA shows that the four 
classes in the calibration 
data set are separate from 
each other (high between 
class variance) but … 

•  have significant within 
class variance  
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•  Ideally, replicates would lie on top of each other. 
•  Variance within each class is clutter variance. 

–  Is it random noise? Is the clutter correlated? 

•  Center each class to 
it's own mean and do 
PCA on the result. 

CMarg 

Olive 

Corn 
Saffl 

CMarg 

Olive 
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How does the clutter affect the 
measurements? 

•  Imagine a 2-channel spectrometer 

Channel 1 

C
ha

nn
el
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Channel 
1 2

target response 

target response 

clutter response 

clutter response 

the clutter is 
correlated 
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How does the clutter affect the 
measurements? 

•  characterize the signal as the length of the vector 
sqrt(x1

2+x2
2) 

Channel 1 

C
ha

nn
el

 2
 

target response 

clutter response 

length of target = sqrt(12+22)=2.24 

portion of target 
response that is 
unique to the target 

length of unique portion of the 
target = sqrt(0.52+1.52)=1.58 
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Why is clutter bad? 

•  The signal-to-clutter is ~proportional to the length 
of the unique portion of the target's response. 
–  in absence of clutter it was 2.24 
–  in the presence of clutter it was 1.58 

•  In regression, clutter-to-signal is related to the 
estimation error. 
–  higher clutter-to-signal è higher estimation error 
–  in the presence of clutter the estimation error is 

2.24/1.58 times the error when clutter is absent 
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Effect of Clutter 
•  The effect of clutter is to remove target signal 

–  for olive oil example the target signal is the differences 
between the classes 

•  Instrument related clutter can be minimized by 
–  good instrument design that accounts for the 

environment (noise+interferences) in which 
measurements are to be made 

–  instrument standardization 
•  remove drifts in offsets and gains that adds to the clutter 

•  Can't always be eliminated è what to do? 
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Accounting for Clutter 

•  One method used to account for clutter is a 
weighting scheme 
–  similar to that used in generalized least squares (GLS) 

•  Autoscaling scales each variable to unit variance 
•  GLS weighting scales each clutter direction (as 

determined using PCA) to unit variance 
–  directions of high clutter are deweighted 
–  directions of low clutter are given more opportunity to 

allow signal through 
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Target Projected onto Clutter 

Channel 1 
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target response 

PCA of (correlated) clutter 
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Scale Target by Clutter 

scale by first clutter PC 
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Scale Target by Clutter 

scale by first clutter PC 

"whitened" target response 
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The large eigenvalues are associated with 
directions that will be de-weighted. 
This whitening process is referred to as 
"multiplying by the sqrt of the inverse 
clutter covariance". 

Olive Oil Clutter 

Eigenvalue distribution of the within class variance. 

Try PCA with whitening: GLS weighting 
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Click Load X Calibration Shortcut 
Workspace/Mat file 
OliveOilwClasses.mat 
xcal 
Click Analysis:PCA 

188

Click Preprocessing Shortcut 
Autoscale: <-- Remove 
GLS Weighting: Add --> 
x-block classes 
Mean Center: Add--> 
OK 
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PCA of Whitened Spectra 

•  PCA shows the four classes in 
the calibration data set are 
further apart than non-whitened 
data (very high between class 
variance) and 

•  have reduced within class 
variance  

        Percent Variance Captured by PCA Model 
   
Principal     Eigenvalue     % Variance     % Variance 
Component         of          Captured       Captured 
 Number         Cov(X)        This  PC        Total 
---------     ----------     ----------     ---------- 
     1         5.63e-002         89.17          89.17 
     2         5.34e-003          8.45          97.63 

190

Test Set: 

Corn Oil*   9 samples   (#1-9) 
Olive Oil*   15 samples   (#10-24) 
Safflower Oil*   8 samples   (#25-32) 
Corn Margarine*  4 samples    (#33-36) 
Corn Oil in Olive Oil  5 samples   (#37-41) 
5, 10, 20, 30 & 40% 
Almond Oil   1 sample   (#42) 
Peanut Oil   1 sample   (#43)   
Sesame Oil   1 sample   (#44) 

* New Samples not included in the calibration 
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Click Load X Validation Shortcut 
Workspace/Mat file 
OliveOilwClasses.mat 
xtest 
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Check Test Data 

•  multiplicative scatter correction 
•  standard normal variate 
•  spectral normalization 

•  test samples are filled symbols 
•  Olive Oil and Corn appear to 

cluster on top of calibration data 
•  This is less true for Safflower and 

especially Margarine, why? 
•  The Margarine samples might 

suggest a magnitude effect. How 
is the effect of magnitude 
removed? 
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Click Preprocessing Shortcut 
GLS Weighting (RHS) 
Settings… 
change alpha: 0.001 
 

194

Click Preprocessing Shortcut 
Normalize: Add --> 
2-Norm 
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        Percent Variance Captured by PCA Model 
   
Principal     Eigenvalue     % Variance     % Variance 
Component         of          Captured       Captured 
 Number         Cov(X)        This  PC        Total 
---------     ----------     ----------     ---------- 
     1         4.16e-004         88.10          88.10 
     2         5.04e-005         10.66          98.76 

With Row Normalization 

•  test samples are filled symbols 
•  test data are on top of calibration 

data 
•  clusters are tight and far apart 
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Click Preprocessing Shortcut 
Derivative SavGol: Add -->  
Derivative Order 2 
change ensure derivative is at top 

of list (use up / down) 
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Principal     Eigenvalue     % Variance     % Variance 
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 Number         Cov(X)        This  PC        Total 
---------     ----------     ----------     ---------- 
     1         4.22e-004         81.59          81.59 
     2         9.01e-005         17.42          99.01 
 

Derivative Followed by Row 
Normalization 

0.015 0.016 0.017 0.018 0.019 0.02 0.021
3

3.5

4

4.5

5

5.5

6

6.5

x 10-3

Scores on PC 1 (81.59%)

Sc
or

es
 o

n 
PC

 2
 (1

7.
42

%
)

Samples/Scores Plot of Olive Oil Calibration & Oiltest,

TOlive

TCMarg

T5C
T10C

0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019

-0.027

-0.026

-0.025

-0.024

-0.023

-0.022

-0.021

Scores on PC 1 (81.59%)

Sc
or

es
 o

n 
PC

 2
 (1

7.
42

%
)

Samples/Scores Plot of Olive Oil Calibration & Oiltest,

TCMarg

198

GLS Weighting 

•  GLS Weighting of the spectral data accounted for 
some of the clutter observed in the spectra. 

•  The result was 
–  clusters that were further apart and 
–  clusters that were tighter 
–  the ratio of between-class to within-class variance was 

increased making discrimination easier 
•  clusters were so tight and far apart that confidence bounds 

defining each class could be wider 
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Extended Multiplicative Scatter 
Correction (EMSC) 

•  EMSC attempts to account for 
–  clutter by using an extended mixture model and 
–  multiplicative effects like multiplicative scatter 

correction (MSC) 
–  The a extended mixture model is a classical least 

squares-like model that is used to explicitly account for 
clutter (a.k.a. extended least squares). 

200

EMSC 
Provide spectra of: 
•  Known target analytes S 
•  Polynomial baselines P 
•  Known interferences Q 

–  e.g., loadings from a PCA model of clutter 
–  the coefficients for each linear effect are estimated 

using least-squares (indicated by "hat") 

( )
2,

2, 2 ˆ ˆ ˆ
measured ref ref S P Q

corrected P Q ref

c

c

= + + +

= − −
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PCA of  clutter. 
PCA of calibration data with 
classes centered to class mean. 
Keep 2 PCs to model the clutter. 
Save model to pcam 

>> z = xcal; 
>> for i1=1:4 
     z.data(find(xcal.class{1}==i1),:) = mncn(z.data(find(xcal.class{1}==i1),:)); 
   end 
>> z.description = char(z.description,'Each class center to its own mean.'); 
>> p = zeros(2,518); 
>> p(:,z.include{2}) = pcam.loads{2}'; 

202

Click Preprocessing Shortcut 
EMSC (Extended Scatter 

Correction) 
Settings… 
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        Percent Variance Captured by PCA Model 
   
Principal     Eigenvalue     % Variance     % Variance 
Component         of          Captured       Captured 
 Number         Cov(X)        This  PC        Total 
---------     ----------     ----------     ---------- 
     1         2.42e-002         85.86          85.86 
     2         3.76e-003         13.34          99.20 
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EMSC Summary 

•  EMSC attempts to account for clutter in an 
explicit way 
–  e.g., model clutter with basis vectors (e.g., PCA loads) 
–  analyst takes control of the model 

•  requires good use of measurements: clutter and target spectra 
•  use what you know! 

–  interpretable 
•  analyst control is more daunting that using simple SavGol and 

MSC, but 
•  the results are much more interpretable than 2nd derivative 

spectra 

206

Click Preprocessing Menu 
Preprocess:Plot Preprocessed 

Data: Calibration: X-block 
Plot:Rows 
View:Classes:Oil 
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Section Definitions 
•  Between class variance: The sum-of-squares of the class means centered to the global 

data set mean divided by number of classes. 
•  Within class variance: The sum-of-squares of each class centered to the class mean 

divided by number of samples in the class. 
•  Multiplicative scatter correction (MSC): (a.k.a. Multiplicative Signal Correction) 

Data pretreatment that removes multiplicative effects and baseline offset based on a 
reference e.g. a reference spectrum. 

•  Savitzky-Golay Smoothing and Differentiation: Numerical method for calculating the 
derivative of a spectrum that uses windowed polynomials. 

•  Normalization: the 2-norm divides a spectrum by the square root of the sum-of-
squared signal in each frequency channel. This removes magnitude information from 
the spectrum. 

•  Extended mixture model: a classical least squares-like model that is used to explicitly 
account for clutter. 

•  Extended multiplicative scatter correction (EMSC): a model that combines MSC and 
the extended mixture model to explicitly account for clutter. 
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Outline 

©Copyright  2008-2012
Eigenvector Research, Inc.
No part of this material may be photocopied or 
reproduced in any form without prior written 
consent from Eigenvector Research, Inc.

•  Introduction 
•  Advanced Preprocessing 

–  Clutter and characterizing clutter 
–  Generalized least squares weighting 
–  Extended multiplicative scatter correction 
–  Interval PLS (iPLS) 
–  Model Robustness 

•  Multivariate image analysis 
•  Multi-way Analysis 
•  Summary 

212

Why Variable Selection? 

•  Improvement of the model 
–  Remove irrelevant, unreliable or noisy variables (clutter) 
–  Improve predictions 
–  Improve statistical properties 

•  Interpretation 
–  Obtain a model that is easier to understand 

 

•  Costs 
–  Use fewer measurements to replace expensive or time-consuming one 

 

•  Development of fast instruments/routines for on-line 
control 

–  Find wavelength ranges for a filter-based instrument 
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Already done some based  
on a posteriori knowledge… 
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Variable Selection Methods 

•  a priori 
–  Choose measurements 

•  a posteriori 
–  Use chemical/physical insight 

•  Model based 
–  Look at loadings 

•  "Random based" 
–  Genetic algorithms 
–  Simulated annealing 

•  “Spectral” 
–  i-PLS 
–  fullsearch 

 

•  Classical 
–  Forward, backward selection 
–  Best subset selection 
–  Significance tests 
–  Significance based on Jack-

knife 
–  GOLPE 

•  Other 
–  Pure variables 
–  Principal variables 
–  Iterative weighting with 

regression vector 
–  … 

(see the Variable Selection Course at EigenU) 
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Variable Selection Methods 

•  How to choose which method?!? 
•  Different methods work in different situations 
•  Interval-PLS is a good “example” method to 

understand the considerations of variable 
selection. Simple to implement and use. 

216

i-PLS Theory 

L. Nørgaard, A. Saudland, J. Wagner, J. P. Nielsen, L. Munck, S. B. 
Engelsen. Interval partial least-squares regression (iPLS). 
Appl.Spectrosc. 54 (3):413-419, 2000. 

iPLS: Interval PLS 
Build local models using “intervals” of X-block 
variables. Very intuitive and useful approach that can 
be easily combined with variable selection. 

y X 

X1    X2         .. ………… Xn 
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Fit Criteria 

•  RMSECV is used to determine “best” interval 
•  For Olive Oil data: perform discriminant analysis 

using PLSDA (use logical y-block with PLS to 
separate classes). 

•  Note: Always validate afterwards! Variable 
selection methods have a tendency to give over-
optimistic RMSE results. 

218

RMSE vs. Misclassification Rate 
in PLSDA 

•  RMSE shows deviation from predicting 0 or 1. 
•  Misclassification Rate shows prediction on 

"wrong side" of decision line. 
•  RMSE: A>B>C       Misclassification: A>B=C 
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Click “X” >> Edit Data 
Select Column Labels tab 
Right Click Incl. >> Bulk Include 

Change 
"Select all" 
"OK" 

Re-Include all variables  

220

Select Analysis >> PLSDA 
Click X Preprocessing Icon 
Select 2nd Derivative, Normalize, 

Mean Centering 

Set PLSDA and Preprocessing 
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Click Cross Validation Icon 
Select “Venetian Blinds” 
Click OK 
Click “Model” (to build model 

initial PLSDA model) 

Normally, should now 
review scores for 
outliers! 

222

Click “IPLSDA Variable 
Selection” button 

Enter 25 for Interval Size 
Enter 5 for max LVs 
Click “Execute” 

Interval Size defines how 
many variables to group 
together. 
 
Spectral data: use size>1 
Non-contiguous data: use 
size=1 (single variable 
intervals) 

provides access to 
other i-PLS settings 
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Why the Low-Frequency Intervals?  
Information Content 

•  Best intervals contain 
useful signal from all 
four classes. 

•  Original data shown; 
Preprocessing only 
makes this separation 
better! 
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prediction WORSE! 

Many are the same 
(Since separation was 
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Repeat Execution and  
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226

Number of Intervals 

•  Can choose a pre-set number of intervals to find 
•  Can also use “Automatic” to continue selecting 

intervals until RMSECV/misclassification does 
not improve 

•  This is not the same as exhaustive combinatorial 
search (fullsearch). It is sequential (choose one, 
“lock” it in, choose a second, “lock” it in…) 

•  For very complex data, may not give actual “best” 
windows, but probably not a bad one. 
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What is the Result? 
•  For PLSDA, lower RMSECV should indicate 

better class separation in predicted Y values 
•  Selecting additional intervals gives little 

improvement in RMSECV (on this data) 
•  Use ONLY first selected interval and build new 

model… 
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Reverse i-PLS 
•  Principle 

–  Make full model and select the variable contributing the least to 
the fit (exclude regions which contain more clutter) 

–  Repeat as desired/needed 
•  Good 

–  Takes interactions into account 
–  Reasonably fast  

•  Bad 
–  ”Random” removal for large data sets 
–  Often works bad for many irrelevant variables 
 
(see “All options” checkbox on i-PLS controls) 
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Cross-validated Predictions after 
Automatic Reverse i-PLS  

8 intervals retained. Class 2 and 4 
not as good as forward i-PLS! 
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What is Model Robustness? 

•  When developing calibration models focus is 
generally on improving prediction error 

•  Models often developed with small amount of data 
taken over relatively short time 

•  Prediction errors over long term often dominated 
by artifacts not represented in calibration data 
–  Changes in spectrometer / sensor 
–  Changes in sample 
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Typical Changes in the System 
•  Sample

–  New analyte(s)
–  Changes in physical properties (e.g. scattering)
–  Temperature
–  Pressure

•  Instrument (spectrometers)
–  Wavelength/Frequency registration shift
–  Stray light
–  Resolution
–  Noise

236

What Constitutes a Good Model? 

•  Acceptable prediction error (not necessarily the 
best achievable) 

•  Longevity, i.e. robustness to minor changes 

•  Once you have built a model, you should exercise 
it with expected changes 

•  Use real data or simulate typical instrumental and 
multivariate errors 
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Robustness Testing 

•  Develop model with desired preprocessing, #LVs, 
etc. 

•  “Perturb” test data set 
•  Apply calibration model to “perturbed” data 
•  Look at prediction error as function of 

perturbations 
•  Test and compare multiple models 

238

Perturbations 
•  New analyte – add Gaussian peak of variable width 

across wavelength range 
•  Wavelength registration shift – shift spectra left-right 

as well as expand and contract 
•  Baseline shift – change offset and slope 
•  Stray light – add fraction of signal before log 

transform 
•  Temperature – decrease resolution and vary path 

length 
•  Noise variation – add noise with varying bandwidth 
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VIS/NIR spectra of 61 beers 

1 

2 

3 

4 

400 nm 2300 nm 

Absorbance 

Wavelength 

Purpose: prediction of real extract 

•  Load beer.mat 
•  X is in beer and Y in extract 
•  Try to make a nice PLS model 

and determine quality 
(RMSEC, RMSECV) 
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Determination of the amount of extract from NIR spectra of beers. 
 
Dispersive visual & near-infrared data collected (at 25 C)  NIRSystems Inc. (Model 6500) 
spectrophotometer. Split detector system – silicon detector 400-1100 nm & (PbS) detector 
1100-2500 nm. 
 
VIS-NIR transmission recorded directly on undiluted degassed beer in 30 mm quartz cell. 
Spectral data collected at 2 nm intervals 400-2250 nm & converted to absorbance units. 
 
Original extract concentration is a quality parameter in the brewing industry, indicating the 
substrate potential for the yeast to ferment alcohol and serving as a taxation parameter. 
Original extract concentration determined by Carlsberg A/S in the range of 4.23-18.76% 
plato.  
 
Data sorted by extract value, and a model independent test set was constructed by 
selecting every third sample of this full data set. There are thus two data sets: one for 
calibration (40 samples) and one for independent estimation of prediction error (20 
samples). 

Exercise Data 
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Test Robustness 

Two built-in tests: 
•  Shift / Resolution Test 
•  Interference Test 
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Shift / Resolution Test 
RMSEP
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Model 
Normalization  
+ Autoscaling 
RMSEC: 0.10 
RMSECV: 0.34 

Hint: use “caxis” 
command to get color 
range and  
“caxis([min max])” 
command to set color 
range 
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RMSEP
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Model A 
 

Normalization  
+ Autoscaling 
5 Latent Variables 
RMSEC: 0.10 
RMSECV: 0.34  

Model B 
 Detrend  

+ Normalization  
+ Autoscaling 
4 Latent Variables 
RMSEC: 0.14  
RMSECV: 0.57  

Model B starts worse, but is 
less influenced by shift! 
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RMSEP

Center of Interferent (unknown units)
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Normalization  
+ Autoscaling 
5 Latent Variables 
RMSEC: 0.10 
RMSECV: 0.34  
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RMSEP
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Model A 
 

Normalization  
+ Autoscaling 
5 Latent Variables 
RMSEC: 0.10 
RMSECV: 0.34  

Model B 
 

Normalization  
+ Autoscaling 
3 Latent Variables 
RMSEC: 0.53  
RMSECV: 0.70  

Model B starts worse, but is 
less influenced by interferent 
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Outline 
•  Introduction 
•  Advanced Preprocessing 
•  Multivariate image analysis 
•  Multi-way Analysis 
•  Summary 

©Copyright  2008-2012
Eigenvector Research, Inc.
No part of this material may be photocopied or 
reproduced in any form without prior written 
consent from Eigenvector Research, Inc.
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Multivariate Images

A data array of dimension three 
(or more) where the first two dimensions 
are spatial and the last dimension(s) is a 

function of another variable.

248

Multivariate Images

Spatial Information 
between pixels 

Spectral Information 
between channels 
(chemical information) 

Spatial distribution of 
chemical analytes, physical 
features, and other 
properties 
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Reshaping Images for Analysis

My

Mx
N

MxMyxN

Reshape X (MxxMyxN)  to X 
(MxMyxN) matrix and subject 
to two-way analysis e.g, PCA

250

PCA for�
Multivariate Image Analysis

My

Mx
N

MxMyxK

Model X = TPT+E
Reshape T (MxMyxK) to T 
(MxxMyxK)  and examine the 
scores images

PCA is an example of MIA.
Techniques and 
Applications of 
Hyperspectral Image 
Analysis, Grahn, H. F.; 
Geladi, P., Eds. John Wiley 
& Sons: West Sussex, 
England (2007)
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Example: TOF-SIMS

•  Time-of-Flight Secondary-
Ion-Mass Spectrometry
–  common surface analysis 

technique
–  mass spectrum generated for 

each pixel

Thanks to  
Physical Electronics!

252

TOF-SIMS of Time Release Drug 
Delivery System

•  Multi-layer drug beads serve as controlled release 
system

•  TOF-SIMS of cross section of bead
•  Evaluate the integrity of the layers and distribution 

of ingredients

A.M. Belu, M.C. Davies, J.M. Newton and N. Patel, “TOF-SIMS Characterization and Imaging of Controlled-
Release Drug Delivery Systems," Anal. Chem., 72(22), 5625–5638 (2000).
Gallagher, N.B., Shaver, J.M., Martin, E.B., Morris, J., Wise, B.M. and Windig, W., “Curve resolution for 
images with applications to TOF-SIMS and Raman”, Chemometr. Intell. Lab., 73(1), 105–117 (2003).
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Image of Scores on PC 1 (57.47%)
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Image of Scores on PC 1 (57.47%)
Image of Scores on PC 2 (9.18%) 
Image of Scores on PC 3 (3.87%) 
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Minimum Noise Factors (MNF)

•  MNF attempts find directions in the data that 
maximize the signal-to-clutter.

•  Result is a PCA-like eigenvector problem
•  In maximum autocorrelation factors (MAF) clutter 

is the first difference image (difference between 
near-by pixels)

0
max
i

T
i X i
T
i C i

≠

⎛ ⎞
⎜ ⎟
⎝ ⎠v

v Σ v
v Σ v the objective function 
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MAF
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gray-scale image

1st derivative

-10 -8 -6 -4 -2 0 2 4 6 8 10

ratio of gray-
scale/1D

MAF finds locations in the image where the ratio of gray-scale 
to first derivative is a maximum
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MAF Results
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50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

PCA w/ GLS Weighting for ~MAF
RGB images of PCA w/ GLS weighting scores on 1, 2 and 3. Similar 
to MAF results. Objective function ~similar, but PCA scores and 
loadings orthogonal. contrasted image
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Maximum Difference Factors 
(MDF)

•  In MDF the signal covariance corresponds to the 
first derivative across the spatial dimensions.
–  in MAF the first difference is the clutter

•  The clutter corresponds to the second derivative 
across the spatial dimensions.

•  Gives a multivariate analysis estimate of edges in 
an image.
–  analogous method available for GLS weighting w/ PCA
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MDF
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gray-scale image

1st derivative

2nd derivative
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gray-scale/1D

1D/2D

MDF finds locations in the image where the ratio of first to 
second derivative is a maximum
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MDF Results
Scaled image of MDF scores on 1
sqrt(dx^2 + dy^2)

 

 

50 100 150 200 250

50

100

150

200

250
0

1

2

3

4

5

6

7

8

9

 

 

50 100 150 200 250

50

100

150

200

250
0

0.5

1

1.5

2

2.5
contrasted image



132 

263

MAF+MDF Results
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RGB image of MAF scores 1, 2 and 3 + MDF scores on 1
sqrt(dx^2 + dy^2)

contrasted image

264

cluster analysis
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Sample Correlation Map (4 clusters)
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MIA …

•  Much more to MIA
–  linked scores plots and density plots

•  interactive exploration of the image(s)
–  image SIMCA and PLS-DA

•  classification

–  curve resolution
•  chemical identification and mapping

–  image statistical process control (ISPC) for multivariate 
statistical process control (MSPC)

–  …
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Outline 
•  Introduction 
•  Advanced Preprocessing 
•  Multivariate image analysis 
•  Multi-way Analysis 
•  Summary 

©Copyright  2008-2010
Eigenvector Research, Inc.
No part of this material may be photocopied or 
reproduced in any form without prior written 
consent from Eigenvector Research, Inc.
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Definition of Order
•  The order of a device is equal to the dimension 

(number of modes) of the data it produces for each 
sample:

•  a single datum per sample à zero order
•  a vector (first order tensor) per sample à first order
•  a matrix (second order tensor) sample à second 

order
•  Multi-way analysis is concerned with data with three 

or more modes
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Zero Order Instrument

•  The most basic instruments are zero order devices
–  produce a single datum per sample

•  pH, temperature, absorbance at a single channel
–  no way to detect errors or interferences

270

First Order Instrument

•  Many analytical instruments are first order
–  produce a vector for each sample

•  spectroscopy, LC, GC, sensor arrays
–  the presence of interferents can be detected but not 

corrected
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Second Order Instrument

•  Many analytical instruments are second order
–  produce a matrix for each sample

•  separation followed by spectroscopy, GC-MS, LC-UV
–  interferents can be detected and accounted for

272

Three-way data
–  A set of ‘equivalent’ two-way matrices obtained at different occasions
–  Data measured as a function of three 'things' (three different modulations)

•  E.g. samples, variables, times

–  xij is a matrix element and xijk is a three-way element

A B

C



137 

273

Examples
§  Sensory analysis

§  Score as a function of (Food sample, Judge, Attribute)

§  Process analysis
§  Measurement as a function of (Batch, Variable, time)
§  Measurement as a function of (Variable, Lag, Location)

§  Image analysis
§  Pixelvalue as a function of (Sample, Image pixel, Variable)

§  Experimental design
§  Response as a function of (factor 1, factor2, factor3,..)

§  Spectroscopy
§  Intensity as a function of (Wavelength, Retention, Sample, Time, Location , Treatment)

§  Environmental analysis
§  Measurement as a function of (Location, Time, Variable)

§  Chromatography
§  Measurement as a function of (Sample, Retention time, Variable)

274

Multi-way Algorithms

•  Multi-way PCA (weakly multi-way)
•  Generalized Rank Annihilation (GRAM)
•  Tri-Linear Decomposition (GRAM)
•  PARallel FActor Analysis (PARAFAC)
•  Tucker



138 

275

•  PCA - bilinear model,

•  PARAFAC - trilinear model,

X E 
= + + 

c2 
b2 

a2 

c1 
b1 

a1 
E 

= + 
A 

C 

B 

=

= +∑
1

F

ij if jf ij
f

x a b e

=

= +∑
1

F

ijk if jf kf ijk
f

x a b c e

PARAFAC invented in 1970 by Harshman and independently by 
Carroll & Chang under the name CANDECOMP.  Based on a 
principle of parallel proportional profiles suggested in 1944 by Cattell 
 
• R. A. Harshman. UCLA working papers in phonetics 16:1-84, 1970. 
• J. D. Carroll and J. Chang. Psychometrika 35:283-319, 1970. 
• R. B. Cattell. Psychometrika 9:267-283, 1944. 

PARallel FACtor analysis
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Example: Excitation-Emission 
Fluorescence

•  Use EEM measurements for quantification
–  Measure pure response for target: TRP
–  Measure response of a mixture that includes target + 

interferences
•  Spectra are highly overlapped in both modes
•  Example of second order calibration

–  the goal is to detect one analyte in the presence of unknown 
varying interferents using the entire EEM response

–  use PARAFAC
–  quantification in the presence of previously unseen interferents



139 

277

Excitation Emission Fluorescence Spectroscopy

Lamp 
(uv-vis) 

Sample 

Excitation 
monochromator 

Emission 
monochromator 

Detector/ 
Intensity Excitation 

Emission 

Excitation-emission matrix 
– a chemical fingerprint 
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Who Needs Regression?
Calibration set: One sample with one analyte 
(2.67 µM Trp)
Test set: Two samples with three analytes each 
(Trp, Tyr, Phe) 
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Second Order Calibration

•  The PARAFAC model estimated
–  amount of target in the test set in the presence of 

interferences not seen in the calibration set!
•  this is not possible with PLS

–  estimates of the response in both modes
•  allows potential library searchs

•  This has enormous potential for environmental 
sensing and MSPC
–  Smilde, A., Bro, R., and Geladi, P., “Multi–way Analysis with 

Applications in the Chemical Sciences”, John Wiley & Sons, New 
York, NY (2004).

280

Multi-way Analysis …

•  Curve resolution
–  PARAFAC needs less futsing than two-way MCR

•  MSPC, images, DECRA, …
•  > 3 Modes

–  GCxGCxMS, sensor fusion, …

Smilde, A., Bro, R. and Geladi, P., “Multi–way Analysis with 
Applications in the Chemical Sciences”, John Wiley & Sons, New 
York, NY (2004).
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Summary 
•  Data analysis requires knowledge of 

–  the system, physics, chemistry and math à black box 

•  Advanced Preprocessing 
–  uses knowledge of the clutter (GLS, ELS, etc.) 

•  Multivariate image analysis 
–  spatial and spectral information 

•  Multi-way Analysis 
–  measurements a function of multiple modulations giving ≥ 

3 modes per sample à quant w/ unknown interferences 
©Copyright  2008-2011
Eigenvector Research, Inc.
No part of this material may be photocopied or 
reproduced in any form without prior written 
consent from Eigenvector Research, Inc.
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Section Definitions 1/2 
•  Multivariate image analysis (MIA): Analysis of multivariate images (for many 

variables è hyperspectral image analysis). 
•  Multivariate image (MI): A data array of dimension three  (or more) where the first 

two dimensions are spatial and the last dimension(s) is a function of another variable. 
•  Maximum/minimum noise fractions (MNF): Algorithm that maximizes capture of 

signal relative to a clutter covariance resulting in a generalized eigenvector problem. 
•  Maximum autocorrelation factors (MAF): MNF with the clutter covariance 

corresponding to the first difference of image pixels. 
•  Maximum autocorrelation factors (MAF): MNF with the clutter covariance 

corresponding to the first difference of image pixels. 
•  Maximum difference factors (MDF): MNF with the signal corresponding to the 

covariance of the first spatial derivative and clutter covariance corresponding to the 
second spatial derivative. 

•  Order: is the dimension of the data produced per sample. 
•  Dimension: number of modes. 

 



142 

283

Section Definitions 2/2 
•  Multi-way analysis: Analysis of data with three or more modes. 
•  Multivariate image (MI): A data array of dimension three  (or more) where the first
•  PARallel FACto Analysis (PARAFAC): model for multi-way analysis of  ≥ 3 mode 

data.  

 


