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Outline
• Definition of Chemometrics
• Favorite tools

• Principal Components Analysis (PCA)
• Partial Least Squares Regression (PLS)
• Multi-way methods

• Opportunities in PAT
• Multivariate Statistical Process Control (MSPC)
• Image analysis on tablets
• Predicting monitored or controlled variables
• Batch MSPC
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Chemometrics
Chemometrics is the chemical discipline 
that uses mathematical and statistical 
methods to
1) relate measurements made on a

chemical system to the state of the
system, and

2) design or select optimal measurement
procedures and experiments.
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Multivariate Analysis

Multivariate Statistical Analysis is 
concerned with data that consists of 

multiple measurements on a number of 
individuals, objects, or data samples.

The measurement and analysis of 
dependence between variables is 

fundamental to multivariate analysis.
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Multi-way Analysis

Multi-way Analysis is concerned with
data that is measured as a function of

three or more factors.
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Multivariate Images

A data array of dimension three (or
more) where the first two dimensions
are spatial and the last dimension(s) is

a function of another variable.



7

Information Hierarchy
Data

Information

Knowledge

Understanding

Chemistry 
and 

Physics



8

Why Chemometrics?
• It’s a multivariate world!

• Need windows into this multivariate world

• There are many things that simply can’t be done if you 
don’t recognize this, including

• sample classification/pattern recognition
• calibrations for complex systems (often spectroscopy)
• transfer of calibrations between instruments
• fault and upset detection

• Chemometrics focuses on the part of math and statistics 
applicable to chemical problems

• More expensive to do things with hardware if you can do 
them with math instead
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Tools of the Trade
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Principal Components Analysis

0

2
4

6

0

2

4

6
0

2

4

6

8 First PC

Second PC

i ble 1

Variable 2

V
ar

ia
bl

e 
3

Mean Vector



11

PCA Math
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The pi are the eigenvectors of the covariance matrix

and the λi are the eigenvalues. Amount of variance 
captured by tipi proportional to λi.

cov( X )   =   X T X 
m − 1 

cov( X ) p i   =   λ i p i 
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City Streets Analogy
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Properties of PCA

• ti,pi pairs ordered by amount of variance captured
• variance = information
• ti or scores form an orthogonal set Tk which describe 

relationship between samples
• pi or loadings form an orthonormal set Pk which 

describe relationship between variables
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Geometry of Q and T2
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PCA Statistics
Control limits can be developed for the lack of 
model fit statistic Q:

and Hotelling’s T2 statistic:

Control limits can also be developed for the 
individual scores (tij) and the residuals (eij)

Q i   =   e i e Ti   =  x i ( I   −   P k P Tk ) x Ti 

T 2 
i   =   t i λ − 1 t T 

i =   x i P k λ − 1 P k x Ti 
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Dirty T-shirt Analogy

Data
PCA

PCA attempts to partition data into deterministic  
and non-deterministic portions
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Applying a PCA Model to New 
Data

• A PCA model is a description of a data set, including its 
mean, amount of variance and its direction, dimensionality, 
and typical residuals

• New data can be compared with existing PCA models to 
see if it is “similar”

• Used in Multivariate Statistical Process Control (MSPC)
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SIMCA
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Regression

• Often want to obtain a relationship between one set of 
variables, X, and another, y or Y.
• Absorbances -> concentrations or other property
• Acoustic signature -> particle size distribution

• Want y = Xb + e (or Y = XB + E)
• Relationship may be non-causal
• May have more variables than samples
• Highly collinear data
• Problem if using MLR!
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Estimation of b: MLR

• It is possible to estimate b from
b = X+y

where X+ is psuedo-inverse of X
• There are many ways to obtain a pseudo-inverse, most 

obvious is Multiple Linear Regression (MLR), a.k.a. 
Ordinary Least Squares (OLS)

• In this case, X+ defined by:
X+ = (XTX)-1XT
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Problem with MLR

• Matrix inverse exists only if 
• Rank(X) = number of variables, but rank(X) ≤ min {mx,nx}
• X has more samples than variables (problem with spectra)
• Columns of X are not collinear

• Matrix inverse may exist but be highly unstable if X is 
nearly rank deficient

• Much of multivariate calibration involves tricks for 
obtaining regression models in spite of problems with 
matrix inverses!
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Getting Around the MLR Problem

• MLR doesn’t work when mx < nx, or when variables 
are colinear

• Possible solution: eliminate variables, e.g. stepwise 
regression or other variable selection

• how to choose which variables to keep?
• lose multivariate advantage - signal averaging

• Another solution: use PCA to reduce original variables 
to some smaller number of factors

• retains multivariate advantage
• noise reduction aspects of PCA
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Principal Components Regression
• PCR is one way to deal with ill-conditioned regression 

problems.
• Property of interest y is regressed on PCA scores:

X+ = Pk(TkTk
T)-1Tk

T

• Problem is to determine k, the number of PCs to retain 
in formation of X+
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Determining the Number of 
Factors (PCs or LVs)

• A central idea in PCR (and PLS) is that variance is 
important: use factors that describe lots of variance first

• Question: when do you stop?
• Answer: use cross-validation
• Build model on part of the data and use remaining data to 

test model as a function of number of factors retained
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Model Cross-validation and 
Validation

• Cross-validation is a common step in model building
• Models should also be validated on totally separate data 

sets if possible
• Why is this important?
• It is very easy to fit data, but making predictions is hard!
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Problem with PCR

• Some PCs not relevant for prediction, only relevant for 
describing X

• Result of determining PCs without regard to property to be 
predicted

• Solution: find factors using some information from y (or 
Y), not just X
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Solution: Partial Least Squares 
Regression (PLS)

• PLS is related to PCR and MLR
• PCR captures maximum variance X
• MLR achieves maximum correlation with y
• PLS tries to do both, maximizes covariance

• PLS requires addition of weights W to maintain orthogonal 
scores

• Factors calculated sequentially by projecting y through X
• Matrix inverse is:

X+ = Wk(Pk
TWk)-1(Tk

TTk)-1Tk
T
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Cross-validation PRESS Curve
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PLS2 Modelling
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Multivariate Curve Resolution

• MCR attempts to extract pure component spectra and 
concentration profiles evolving systems like GC-MS

• Given a response matrix Nm that is the product of  
concentration profiles C and pure component spectra 
S:

Nm = CS + E
• Uses alternating and constrained least squares to get C

and S
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The PARAFAC Model
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Opportunities in Process 
Analytical Technology (PAT)
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Multivariate Statistical Process 
Control
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Example from Distillation

LC
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VT

• 41 stage column 
• hexane and isopropanol 
• LV control of top and bottom 

compositions 
• top and bottom controlled to 

99% purity 
• full dynamic non-linear 

simulation 
• noise on temps 0.2 C 
• build PCA model on 100 

normal samples 
• load columMSPCdat
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Fault #1: Temperature Sensor
Ramped bias (0.2 to 2 C) is added to temperature 
from tray 35 at sample 31
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Fault #2: Feed Quality
Amount of feed entering as vapor goes from 0% 
to 50% at time 31
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TOF-SIMS of Time Release Drug 
Delivery System

• Multilayer drug beads serve as controlled-release delivery 
system

• TOF-SIMS taken of cross section of bead
• Evaluate integrity of layers, distribution of ingredients
• Thanks again to Physical Electronics and Anna Belu for 

the data!

Reference: A.M. Belu, M.C. Davies, J.M. Newton and N. Patel, “TOF-SIMS Characterization and  
Imaging of Controlled-Release Drug Delivery Systems, Anal. Chem., 72(22), pps 5625-5638, 2000
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Total Ion Image of Bead
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False Color Image based on 
Scores of First 3 PCs

False Color Image of First 3 
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Inferential Measurements
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Process Data Characteristics
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Distillation Column

LC
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• 41 stage column 
• hexane and isopropanol 
• LV control of top and bottom 

compositions 
• top and bottom controlled to 

99% purity 
• full dynamic non-linear 

simulation 
• noise on temps 0.2 C 
• load DIST_EX_2
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Goal

• Develop inferential sensor to predict distillate composition 
based on tray temperatures

• Make model work over a range of operating conditions
• Used designed experiment to generate data for 

identification of model
• Can use model for control and/or monitoring purposes



44

Designed Experiment
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If Disturbances are Included in 
Modeling Data, Model Works
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Batch MSPC

• Multi-way methods can be used to monitor 
batches

• Build PARAFAC or PARAFAC2 model on 
normal data, apply to new batches 

• Example from semiconductor etch process
• Problem: batches often of unequal length!
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PARAFAC2 Model

X1

The direct fitted PARAFAC2 model is:
 

Xk = FkDkAT + E 
 

subject to constraint that all FkTFk are equal. This
is equivalent to the model 

  
Xk = PkFDkAT + E 

 
where the Pk are orthonormal
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PARAFAC2 Contributions
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PARAFAC2 Loadings in Time 
Mode on New Batches
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Summary

• Chemometric tools emphasize 
• Interpretability
• Predictive power

• Many places to use these tools in PAT
• MSPC, BSPC
• Calibrations, inferentials
• Analysis of products
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Contact Information
Eigenvector Research, Inc.
830 Wapato Lake Road
Manson, WA  98831
Phone: (509)687-2022
Fax: (509)687-7033
Email: bmw@eigenvector.com
Web: eigenvector.com

This document may be downloaded from
http://www.eigenvector.com/Docs/Wise_PAT.pdf


