Monitoring and Fault Detection with Multivariate Statistical Process Control (MSPC) in Continuous and Batch Processes

Barry M. Wise, Ph.D.

Eigenvector Research, Inc.

Manson, WA

Outline

- Definition of Chemometrics
- Favorite tools
 - Principal Components Analysis (PCA)
 - Partial Least Squares Regression (PLS)
 - Multi-way methods
- Opportunities in PAT
 - Multivariate Statistical Process Control (MSPC)
 - Image analysis on tablets
 - Predicting monitored or controlled variables
 - Batch MSPC

Chemometrics

Chemometrics is the chemical discipline that uses mathematical and statistical methods to

- 1) relate *measurements* made on a *chemical* system to the *state* of the system, and
- 2) design or select optimal *measurement* procedures and experiments.

Multivariate Analysis

Multivariate Statistical Analysis is concerned with data that consists of *multiple measurements* on a number of individuals, objects, or data samples.

The measurement and analysis of dependence between variables is fundamental to multivariate analysis.

Multi-way Analysis

Multi-way Analysis is concerned with data that is measured as a function of *three or more factors*.

Multivariate Images

A data array of *dimension three* (or more) where the first two dimensions are *spatial* and the last dimension(s) is a function of another variable.

Information Hierarchy

Why Chemometrics?

- It's a multivariate world!
 - Need windows into this multivariate world
- There are many things that simply can't be done if you don't recognize this, including
 - sample classification/pattern recognition
 - calibrations for complex systems (often spectroscopy)
 - transfer of calibrations between instruments
 - fault and upset detection
- Chemometrics focuses on the part of math and statistics applicable to *chemical* problems
- More expensive to do things with hardware if you can do them with math instead

Tools of the Trade

Principal Components Analysis

PCA Math

The **p**_i are the eigenvectors of the covariance matrix

$$cov(\mathbf{X}) = \frac{\mathbf{X}^{\mathrm{T}}\mathbf{X}}{\mathbf{m} - 1}$$

$$cov(\mathbf{X})p_i = \lambda_i p_i$$

and the λ_i are the eigenvalues. Amount of variance captured by $\mathbf{t_i}\mathbf{p_i}$ proportional to λ_i .

Properties of PCA

- ti,pi pairs ordered by amount of variance captured
- *variance* = *information*
- ti or *scores* form an orthogonal set Tk which describe relationship between *samples*
- **p**i or *loadings* form an orthonormal set **P**k which describe relationship between *variables*

Geometry of Q and T²

PCA Statistics

Control limits can be developed for the lack of model fit statistic Q:

$$\mathbf{Q}_{i} = \mathbf{e}_{i} \mathbf{e}_{i}^{T} = \mathbf{x}_{i} (\mathbf{I} - \mathbf{P}_{k} \mathbf{P}_{k}^{T}) \mathbf{x}_{i}^{T}$$

and Hotelling's T² statistic:

$$T_i^2 = \mathbf{t}_i \boldsymbol{\lambda}^{-1} \mathbf{t}_i^T = \mathbf{x}_i \mathbf{P}_k \boldsymbol{\lambda}^{-1} \mathbf{P}_k \mathbf{x}_i^T$$

Control limits can also be developed for the individual scores (t_{ij}) and the residuals (e_{ij})

Dirty T-shirt Analogy

PCA attempts to partition data into deterministic and non-deterministic portions

Applying a PCA Model to New Data

- A PCA model is a description of a data set, including its mean, amount of variance and its direction, dimensionality, and typical residuals
- New data can be compared with existing PCA models to see if it is "similar"
- Used in Multivariate Statistical Process Control (MSPC)

SIMCA

Regression

- Often want to obtain a relationship between one set of variables, **X**, and another, **y** or **Y**.
 - Absorbances -> concentrations or other property
 - Acoustic signature -> particle size distribution
- Want y = Xb + e (or Y = XB + E)
- Relationship may be non-causal
- May have more variables than samples
- Highly collinear data
- Problem if using MLR!

Estimation of b: MLR

• It is possible to estimate **b** from

$$\mathbf{b} = \mathbf{X}^+ \mathbf{y}$$

where X^+ is psuedo-inverse of X

- There are many ways to obtain a pseudo-inverse, most obvious is Multiple Linear Regression (MLR), a.k.a. Ordinary Least Squares (OLS)
- In this case, **X**⁺ defined by:

$$\mathbf{X}^+ = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}$$

Problem with MLR

- Matrix inverse exists only if
 - Rank(X) = number of variables, but rank(X) \leq min $\{mx,nx\}$
 - X has more samples than variables (problem with spectra)
 - Columns of **X** are not collinear
- Matrix inverse may exist but be highly unstable if **X** is nearly rank deficient
- Much of multivariate calibration involves tricks for obtaining regression models in spite of problems with matrix inverses!

Getting Around the MLR Problem

- MLR doesn't work when mx < nx, or when variables are colinear
- Possible solution: eliminate variables, *e.g.* stepwise regression or other variable selection
 - how to choose which variables to keep?
 - lose multivariate advantage signal averaging
- Another solution: use PCA to reduce original variables to some smaller number of factors
 - retains multivariate advantage
 - noise reduction aspects of PCA

Principal Components Regression

- PCR is one way to deal with ill-conditioned regression problems.
- Property of interest y is regressed on PCA scores:

$$\mathbf{X}^{+} = \mathbf{P}_{k} (\mathbf{T}_{k} \mathbf{T}_{k}^{\mathrm{T}})^{-1} \mathbf{T}_{k}^{\mathrm{T}}$$

 Problem is to determine k, the number of PCs to retain in formation of X⁺

Determining the Number of Factors (PCs or LVs)

- A central idea in PCR (and PLS) is that variance is important: use factors that describe lots of variance first
- Question: when do you stop?
- Answer: use cross-validation
- Build model on part of the data and use remaining data to test model as a function of number of factors retained

Model Cross-validation and Validation

- Cross-validation is a common step in model building
- Models should also be validated on totally separate data sets if possible
- Why is this important?
- It is very easy to fit data, but making predictions is hard!

Problem with PCR

- Some PCs not relevant for prediction, only relevant for describing X
- Result of determining PCs without regard to property to be predicted
- Solution: find factors using some information from y (or Y), not just X

Solution: Partial Least Squares Regression (PLS)

- PLS is related to PCR and MLR
 - PCR captures maximum variance X
 - MLR achieves maximum correlation with y
 - PLS tries to do both, maximizes covariance
- PLS requires addition of weights **W** to maintain orthogonal scores
- Factors calculated sequentially by projecting y through X
- Matrix inverse is:

$$\mathbf{X}^{+} = \mathbf{W}_{k} (\mathbf{P}_{k}^{T} \mathbf{W}_{k})^{-1} (\mathbf{T}_{k}^{T} \mathbf{T}_{k})^{-1} \mathbf{T}_{k}^{T}$$

Cross-validation PRESS Curve

PLS2 Modelling

Multivariate Curve Resolution

- MCR attempts to extract pure component spectra and concentration profiles evolving systems like GC-MS
- Given a response matrix Nm that is the product of concentration profiles C and pure component spectra S:

$$N_m = CS + E$$

Uses alternating and constrained least squares to get C and S

The PARAFAC Model

Opportunities in Process Analytical Technology (PAT)

Multivariate Statistical Process Control

Example from Distillation

Fault #1: Temperature Sensor

◆ Ramped bias (0.2 to 2 C) is added to temperature from tray 35 at sample 31

Fault #2: Feed Quality

◆ Amount of feed entering as vapor goes from 0% to 50% at time 31

TOF-SIMS of Time Release Drug Delivery System

- Multilayer drug beads serve as controlled-release delivery system
- TOF-SIMS taken of cross section of bead
- Evaluate integrity of layers, distribution of ingredients
- Thanks again to Physical Electronics and Anna Belu for the data!

Reference: A.M. Belu, M.C. Davies, J.M. Newton and N. Patel, "TOF-SIMS Characterization and Imaging of Controlled-Release Drug Delivery Systems, Anal. Chem., 72(22), pps 5625-5638, 2000

Total Ion Image of Bead

False Color Image based on Scores of First 3 PCs

False Color Image of First 3

Inferential Measurements

Feedback

Slow & Infrequent To Operator for Quality Control and Model Maintenance **Controls** Lab Sample Process Analysis **Physical Property Auxiliary Variables** Inferred Model **Property** Feedback Inferential Sensor To APC Controller Rapid & Continuous

To Operator for Quality Control (e.g. SPC or MSPC) 40

Process Data Characteristics

correlated: variables are not independent

autocorrelated: variables correlate with themselves over time

crosscorrelated: variables correlate with other variables at different time lags

Distillation Column

Goal

- Develop inferential sensor to predict distillate composition based on tray temperatures
- Make model work over a range of operating conditions
- Used designed experiment to generate data for identification of model
- Can use model for control and/or monitoring purposes

Designed Experiment

If Disturbances are Included in Modeling Data, Model Works

Batch MSPC

- Multi-way methods can be used to monitor batches
- Build PARAFAC or PARAFAC2 model on normal data, apply to new batches
- Example from semiconductor etch process
- Problem: batches often of unequal length!

PARAFAC2 Model

The direct fitted PARAFAC2 model is:

$$\mathbf{X}_k = \bar{\mathbf{F}_k} \bar{\mathbf{D}_k} \mathbf{A}^T + \mathbf{E}$$

subject to constraint that all $\mathbf{F}_k^T\mathbf{F}_k$ are equal. This is equivalent to the model

$$\mathbf{X}_k = \mathbf{P}_k \mathbf{F} \mathbf{D}_k \mathbf{A}^T + \mathbf{E}$$

where the P_k are orthonormal

PARAFAC2 Contributions

PARAFAC2 Loadings in Time Mode on New Batches

Summary

- Chemometric tools emphasize
 - Interpretability
 - Predictive power
- Many places to use these tools in PAT
 - MSPC, BSPC
 - Calibrations, inferentials
 - Analysis of products

PLS_Toolbox 3.0

for use with MATLAB™

Barry M. Wise Neal B. Gallagher Rasmus Bro Jeremy M. Shaver

Contact Information

Eigenvector Research, Inc.

830 Wapato Lake Road

Manson, WA 98831

Phone: (509)687-2022

Fax: (509)687-7033

Email: bmw@eigenvector.com

Web: eigenvector.com

This document may be downloaded from http://www.eigenvector.com/Docs/Wise_PAT.pdf

