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Outline

e Definition of Chemometrics

« Favorite tools
* Principal Components Analysis (PCA)
 Partial Least Squares Regression (PLS)
e Multi-way methods

e Opportunities in PAT
« Multivariate Statistical Process Control (MSPC)
« Image analysis on tablets

 Predicting monitored or controlled variables
« Batch MSPC
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Chemometrics

Chemometrics 1s the chemical discipline

that uses mathematical and statistical

methods to

1) relate measurements made on a
chemical system to the state of the
system, and

2) design or select optimal measurement
procedures and experiments.
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Multivariate Analysis

Multivariate Statistical Analysis 1s
concerned with data that consists of
multiple measurements on a number of
individuals, objects, or data samples.

The measurement and analysis of
dependence between variables 1s
fundamental to multivariate analysis.
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Multi-way Analysis

Multi-way Analysis 1s concerned with
data that 1s measured as a function of
three or more factors.
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Multivariate Images

A data array of dimension three (or
more) where the first two dimensions
are spatial and the last dimension(s) 1s

a function of another variable.
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Why Chemometrics?

It’s a multivariate world!

* Need windows into this multivariate world
There are many things that simply can’t be done if you
don’t recognize this, including

» sample classification/pattern recognition
 calibrations for complex systems (often spectroscopy)
 transfer of calibrations between instruments

« fault and upset detection

Chemometrics focuses on the part of math and statistics
applicable to chemical problems

More expensive to do things with hardware if you can do
them with math instead
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Tools of the Trade
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Principal Components Analysis
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PCA Math
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variables

samples

The pj are the eigenvectors of the covariance matrix

T
cov(X) = X X
m-—1
cov(X)p. = A.p,

and the A;j are the eigenvalues. Amount of variance
captured by t;p; proportional to A;.

1 L% EIGENVECTOR

L&A RESEARCH INCORPORATED



/|

]

24

@)
p—

qv

-
< -
N
=
e[r
D)
—
N
V,./e
N

o
O




13

Properties of PCA

ti,pi pairs ordered by amount of variance captured
variance = information

ti or scores form an orthogonal set Tk which describe
relationship between samples

pi or loadings form an orthonormal set Pk which
describe relationship between variables

EEEEIGENVECTOR

RESEARCH INCORPORATED



Geometry of Q and T?
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PCA Statistics

Control limits can be developed for the lack of
model fit statistic Q:

Q =ee =x(I-PP)x/
and Hotelling’s T2 statistic:
T =tA 't =x P AP x;

Control limits can also be developed for the
individual scores (tjj) and the residuals (ej))
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Dirty T-shirt Analogy

PCA attempts to partition data into deterministic
and non-deterministic portions
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Applying a PCA Model to New
Data

A PCA model is a description of a data set, including its

mean, amount of variance and its direction, dimensionality,
and typical residuals

« New data can be compared with existing PCA models to
see 1f 1t 1s “similar”

» Used in Multivariate Statistical Process Control (MSPC)

17 EEEEEIGENVECTOR

RESEARCH INCORPORATED



18

X3

Ax2

SIMCA

Class 1
3 PCs
Class 2
1 PC
X >
Class 3 X1
X 2 PCs

EEEEIGENVECTOR

RESEARCH INCORPORATED



Regression

Often want to obtain a relationship between one set of
variables, X, and another, y or Y.

« Absorbances -> concentrations or other property

* Acoustic signature -> particle size distribution

Wanty=Xb+e(orY=XB+E)
Relationship may be non-causal

May have more variables than samples
Highly collinear data

Problem if using MLR!
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Estimation of b: MLR

It 1s possible to estimate b from
b=X"Yy
where X 1s psuedo-inverse of X

There are many ways to obtain a pseudo-inverse, most
obvious 1s Multiple Linear Regression (MLR), a.k.a.
Ordinary Least Squares (OLS)

In this case, X defined by:
X+ = (XTX) IXT
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Problem with MLR

Matrix inverse exists only 1f

* Rank(X) = number of variables, but rank(X) < min {mx,nx}
» X has more samples than variables (problem with spectra)
* Columns of X are not collinear

Matrix inverse may exist but be highly unstable if X 1s
nearly rank deficient

Much of multivariate calibration involves tricks for
obtaining regression models 1n spite of problems with
matrix inverses!
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Getting Around the MLR Problem

22

MLR doesn’t work when mx < nx, or when variables
are colinear

Possible solution: eliminate variables, e.g. stepwise
regression or other variable selection

* how to choose which variables to keep?

* lose multivariate advantage - signal averaging

Another solution: use PCA to reduce original variables
to some smaller number of factors

* retains multivariate advantage

* noise reduction aspects of PCA
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Principal Components Regression

* PCR 1s one way to deal with 1ll-conditioned regression
problems.

* Property of interest y is regressed on PCA scores:
X" =P(T,T,)'T'
* Problem is to determine k, the number of PCs to retain
in formation of X*
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Determining the Number of
Factors (PCs or LVs)

A central 1dea in PCR (and PLS) 1s that variance 1s
important: use factors that describe lots of variance first

Question: when do you stop?
Answer: use cross-validation

Build model on part of the data and use remaining data to
test model as a function of number of factors retained
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Model Cross-validation and
Validation

Cross-validation 1s a common step in model building

Models should also be validated on totally separate data
sets 1f possible

Why 1s this important?
It is very easy to fit data, but making predictions is hard!
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Problem with PCR

* Some PCs not relevant for prediction, only relevant for
describing X

* Result of determining PCs without regard to property to be
predicted

» Solution: find factors using some information from y (or
Y), not just X
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Solution: Partial Least Squares
Regression (PLS)

PLS is related to PCR and MLR

* PCR captures maximum variance X
* MLR achieves maximum correlation with y

* PLS tries to do both, maximizes covariance

PLS requires addition of weights W to maintain orthogonal
scores

Factors calculated sequentially by projecting y through X
Matrix inverse 1s:
X" =W, P W) (T T)-1T,'
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Cross-validation PRESS Curve

39
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PLS2 Modelling

X-Block Outer Model Y-Block Outer Model
Ist PC

Ist PC

q1

Inner Model Y1

w1 and q; are similar to

first PCsin X and Y but Ul
are rotated so that there is

better correlation between
the X scores t] (= Xw))

and Y scores uj (=Yq1)
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Multivariate Curve Resolution

MCR attempts to extract pure component spectra and
concentration profiles evolving systems like GC-MS

Given a response matrix Nm that 1s the product of

concentration profiles C and pure component spectra
S:

Nm=CS +E

Uses alternating and constrained least squares to get C
and S
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The PARAFAC Model

cl c2
D = + + ...+ E
Z 2 b1 2 b2 Z
<4
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Opportunities in Process
Analytical Technology (PAT)
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Multivariate Statistical Process

Time
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Example from Distillation

41 stage column
hexane and isopropanol

LV control of top and bottom V.,
compositions

top and bottom controlled to
99% purity

full dynamic non-linear
simulation

noise on temps 0.2 C

build PCA model on 100
normal samples

load columMSPCdat

F, z

I’ B, xg
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Q Residual

Fault #1: Temperature Sensor

¢ Ramped bias (0.2 to 2 C) 1s added to temperature
from tray 35 at sample 31

g Scores Plot g Sample 43 Q Residual = 64.9764
Vas
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Hotelling T2

Fault #2: Feed Quality

¢ Amount of feed entering as vapor goes from 0%
to 50% at time 31

Scores Plot 3 Sample 35 Q Residual = 215.1541
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TOF-SIMS of Time Release Drug
Delivery System

Multilayer drug beads serve as controlled-release delivery
system

TOF-SIMS taken of cross section of bead
Evaluate integrity of layers, distribution of ingredients

Thanks again to Physical Electronics and Anna Belu for
the data!

Reference: A.M. Belu, M.C. Davies, J.M. Newton and N. Patel, “TOF-SIMS Characterization and
Imaging of Controlled-Release Drug Delivery Systems, Anal. Chem., 72(22), pps 5625-5638, 2000
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Total lon Image of Bead
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False Color Image based on
Scores of First 3 PCs

False Color Image of First 3
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Inferential Measurements

Feedback
To Operator for Quality Control and Model Maintenance Slow & Infrequent
(_ ................................................................................................... *
Controls Lab 5
> Process - N—| Sample - N— .
Analysis
Physical
Property
/ Auxiliary Variables
>
Inferred
! l Model —> Property
Inferential Sensor Feedback
To APC Controller y Rapid & Continuous
( ...................................................................
To Operator for Quality Control (e.g. SPC or MSPC) P
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Process Data Characteristics

correlated: variables are not independent

time

time

crosscorrelated: variables correlate with other variables at different time lags
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Distillation Column

41 stage column
hexane and isopropanol
LV control of top and bottom V.,
compositions

top and bottom controlled to
99% purity

full dynamic non-linear
simulation

noise on temps 0.2 C
load DIST EX 2

I B, xg
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Goal

Develop inferential sensor to predict distillate composition
based on tray temperatures

Make model work over a range of operating conditions

Used designed experiment to generate data for
identification of model

Can use model for control and/or monitoring purposes
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Designed Experiment

Inputs to Distillation Column
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If Disturbances are Included in
Modeling Data, Model Works

Model Built on 41 Temperatures
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Batch MSPC

Multi-way methods can be used to monitor
batches

Build PARAFAC or PARAFAC2 model on
normal data, apply to new batches

Example from semiconductor etch process

Problem: batches often of unequal length!
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X1
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PARAFAC2 Model

The direct fitted PARAFAC?2 model 1s:_

Xk = FkD-kAT +E

subject to constraint that all Fi [ Fy are equal. This
is equivalent to the model

Xk = PKFDKAT + E
where the Pk are orthonormal
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PARAFACZ2 Contributions
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PARAFACZ2 Loadings in Time
Mode on New Batches

Loadings for Time Dimension Showing Normal Data Range and Fault Wafers
I I

Factor 1 Loadings

Factor 2 Loadings
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Summary

* Chemometric tools emphasize
* Interpretability
 Predictive power

* Many places to use these tools in PAT
« MSPC, BSPC

o (Calibrations, inferentials

 Analysis of products
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Number of LVs ‘-_\"“"‘Jr\:m Continumm Parameter

PLS Toolbox 3.0

Barry M. Wise
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Contact Information

Eigenvector Research, Inc.
830 Wapato Lake Road
Manson, WA 98831

Phone: (509)687-2022

Fax: (509)687-7033

Email: bmw@eigenvector.com
Web: eigenvector.com

This document may be downloaded from
http://www.eigenvector.com/Docs/Wise PAT.pdf
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