Getting to Multiway: A Roadmap for Batch Process Data

Barry M. Wise, Jeremy M. Shaver and Neal B. Gallagher Eigenvector Research, Inc.
Wenatchee, WA, USA

©Copyright 2012
Eigenvector Research, Inc.
No part of this material may be photocopied or reproduced in any form without prior written consent from Eigenvector Research, Inc.

Outline

- General principles of SPC and fault detection
- Batch Chemical Processes
- Roadblocks
- Models
- The Roadmap
- Example: Comparison on Dupont Data
- Conclusions

General Principles of Fault Detection

- Process monitoring / Fault Detection / Statistical Process Control / Multivariate SPC / Batch SPC...
- Methods rely on a model that describes normal and/or desirable* operation
 - New data compared with model of "normal" data
 - Often much is learned from this model and the process of creating it!
 - Data considered normal to the process is likely not the same data useful for constructing regression models.

- * Quality isn't JUST what you like, it IS what you like.
 - -Robert M. Pirsig, "Zen and the Art of Motorcycle Maintenance," William Morrow & Co. 1974

Different Modeling Approaches

Theoretical

- Mathematical models, constructed from first principles
- Applicable to information-sparse systems
 - good given satisfactory models and sufficient sensors
 - often time consuming to develop models
 - difficult to apply to large scale systems

• Empirical

- Derived directly from process data
- Applicable to data-rich systems
 - requires some redundancy in the data (fewer states than measurements)
 - highly dependent upon the quantity, quality and reliability of process instruments

General Principles of Fault Detection

- Operating data is compared to the process model to determine if the process condition is nominal
 - do the new measurements look like the old ones or are they significantly different?
 - is the process in control?
- If different, it is useful to have diagnostic information about how it may be different
 - why is the process out of control?
 - some models are very good at providing diagnostics

Batch Chemical (and Manufacturing) Processes

- Many things made in batch (as opposed to continuous) processes:
 - Pharmaceuticals, enzymes
 - Food (cheese, yogurt), beverages (beer, wine)
 - Semiconductors
 - Polymers
 - etc....
- Batch data nominally 3-way
 - Process measurements (sensors, spectroscopy)
 - Batch running time
 - Batch number

Batch Data

Different sample rates

- How to handle?
 - Zero order hold
 - Interpolate
 - Treat as missing?
- Doesn't matter in MPCA as long as it is consistent!

Batch Process Monitoring Data Problems

- The objective is to monitor batch-to-batch, but
 - data can be messy
 - typically includes start-up and shut-down phases that are not of interest
 - might be interesting if monitoring controller performance
 - periods of "steady-state" where not much is changing
 - variable record lengths
 - lots of data!
- Reduce to a set of more compact descriptors?
 - show an example...

Process Data Alignment and Dilation

- Batches "mature" at different rates
- Leads to files of different length
- Important transitions occur at different times

- Misalignment adds rank irrelevant to process monitoring.
 - model must account for time shifts in the process data.
 - Irrelevant variance often results in a reduction of model sensitivity.

Aligned Process Data

- Many ways to align and/or warp
 - Align and truncate
 - Correlation Optimized Warping (COW)
 - Dynamic Time Warping (DTW)

Alternative: Summarize data over process steps

Data Summary Approach

- Convert data into alternate set of descriptors
- If process has multiple steps, calculate parameters that describe each step
 - mean
 - standard deviation
 - slope
 - length (time) of the step
 - etc....

Summary Variables

Summary Variables

• Pros

- Conceptually simple
- Some time information retained
- Noise reduction
- Reduces number of variables (vs. MPCA)

• Cons

- Further from original data
- May not have step numbers to work with

Creation of Pseudo-steps

- Several ways to do this
 - Manual assignment followed by warping
 - Break reference process variable into "sensible" segments (manually)
 - Assign step numbers
 - Warp new data onto reference
 - "Reverse warp" reference step numbers into new data
 - Automated peak picking
 - take first or second derivative of reference process variable
 - use peak peaking algorithm to find transitions

Example of Step Creation

Batch Maturity Models

- Build PLS (or other) model that predicts extent of reaction or "batch time" for each time point
- Use model to predict where points should be on the time axis
 - can use as basis for warping, then can use PARAFAC, or MPCA model
 - use conventional PCA model (unfold down), make limits on scores, residuals etc. be a function of batch time

Which Model?

- Many to choose from!
 - MPCA (aka Tucker-1)
 - Summary PCA (MPCA on summary variables)
 - PARAFAC
 - Summary PARAFAC
 - PARAFAC-2
 - Tucker-3
 - Summary Tucker-3
 - Batch Maturity PCA
 - Tucker-2?

Batch Processor Tool

Dupont Batch Data

- 10 process variables (sanitized)
 - 100 time intervals each
 - TempR 1, TempR 2, TempR 3, Press 1, Flow 1, TempC 1, TempC 2, Press 2, Press 3, Flow 2
- Calibration: 1 to 36 (normal batches)
- Test: 37 to 55 (one normal and seven faults)
 - Batches 40, 41, 42, 50, 51, 53, 54 and 55 had the final quality measurement well outside the acceptable limit
 - Batches 38, 45, 46, 49 and 52 were above or very close to that limit.
 - Batches 38, 40, 41 and 42 cannot be identified as abnormal batches.*
 - Additional batches 37, 39, 43, 44, 47, 47 and 48 were identified as somewhat unusual and were not included in the calibration set.*
- Described in
 - *Nomikos, P. and J.F. MacGregor, "Multivariate SPC charts for monitoring batch processes," Technometrics, **37**(1), 1995.

Methods

- Multi-Way PCA (MPCA, Tucker1)
 - block/group scaling on raw data
 - after COW
- Summary PCA (SPCA)
- Summary PARAFAC
- PARAFAC
- Batch Maturity PCA

SPCA

- PCA for summary variables
 - used steps 2-7
 - summarized by mean and step length
 - total variables = 10 * 6 + 6 = 66

Variable 5 is a feed flow and can be used to identify steps

Steps for two example batches

SPCA Variance Captured

X-block: Summary of Dupont Polymerization 36 by 64

Included: [1-36] [1-53 55-64 66]

Preprocessing: Autoscale

Num. PCs: 4

Percent Variance Captured by PCA Model				
Principal	Eigenvalue	% Variance	% Variance	
Component	of	Captured	Captured	
Number	Cov(X)	This PC	Total	
1	15.2	23.81	23.81	
2	11.4	17.78	41.59	
3	8.71	13.61	55.20	
4	6.19	9.67	64.87	

SPCA Scores

Out on both: 49, 50-55

Out on Q only: 37, 39, 43-48

Total coefficients: 4x66 = 264

Varcap, Q Contributions

Loadings

Variables/Loadings Plot for Summary of Dupont Polymerization

MPCA on Original Data

- MPCA with block scaling
- 100 time steps x 10 variables = 1000
- scale each block of the 100 new variables corresponding to individual original variables to unit variance and zero mean

MPCA Variance Captured

X-block: 47 by 1000

Preprocessing: Groupscale

Num. PCs: 3

Percent Variance Captured by PCA Model

Principal	Eigenvalue	<pre>% Variance</pre>	% Variance
Component	of	Captured	Captured
Number	Cov(X)	This PC	Total
1	4.88e+00	48.83	48.83
2	1.40e+00	13.95	62.78
3	8.19e-01	8.19	70.97

Out on both: 50-55

Out on Q only: 37, 39, 43-49

Total coefficients: 3x1000 = 3000!

Summary PARAFAC

Sample/Scores Plot of PARAFAC Summary of Dupont Polymerization

Out on both: 49-55

Out on Q only: no additional

Total coefficients:

$$3x11 + 3*6 = 51$$

Not as sensitive as SPCA and MPCA, but far fewer parameters

PARAFAC on Original Data

Out on both: 46, 50-55 Out on Q only:37, 39, 43-45, 47-49

Total coefficients: 3x10 + 3*100 = 330

Virtually same results as SPCA and MPCA

Issues?

- Plenty!
- MPCA models easy to overfit, PARAFAC models sometimes not flexible enough
- Have not addressed run time application of models to partial batches
 - not so tough IF warping or step creation isn't an issue...
 - but hard to warp partial batches
 - some models can't be fit to partial data records (PARAFAC2)

Conclusions

- Too many options!
- Hard to know what method is best for particular application
- Challenging to implement in software that mere mortals can use
- If multi-way methods are to be adopted for batch processes, needs to be streamlined

