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NIR Shootout 2002

• 2002 International Diffuse Reflectance 
Conference (IDRC) "Shootout" data 

– NIR spectra 

– 654 pharmaceutical tablets

– Calibration Set, Validation Set, Test Set

– Two spectrometers

– Goal: best model with calibration transfer

• Won by Karl Norris using "Norris Regression" –
selected peaks and peak ratios including gap-
segment derivative



3/26/2015

2

Norris' "Winning" Model

Term 1 Term 2

Wavelength Smooth Gap Wavelength Smooth Gap

Numerator 1142 nm 10 nm 26 nm 1338 nm 0 nm 22 nm

Denominator 920 nm 0 nm 30 nm
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RMSEC: 2.9

RMSECV: 3.0 

RMSEP: 2.8 2.8

Results using (Approx.) Norris Regression

Preprocessing: 2nd Derivative (gap: 18 nm, segment: 6 nm) + 

Integrate + Autoscale

validation sets 

(both instruments)

calibration data

Note: Test set covers same range as calibration data



3/26/2015

3

150 160 170 180 190 200 210 220 230 240
150

160

170

180

190

200

210

220

230

240

250

Y Measured 3 assay

Y
 P

re
d
ic

te
d
 3

 a
s
s
a
y

Samples/Scores Plot of c & Test

R^2 = 0.968
3 Latent Variables
RMSEC = 2.585
RMSECV = 2.6755
RMSEP = 4.0273
Calibration Bias = 0
CV Bias = -0.018797
Prediction Bias = 1.345

EMSC + 1st Derivative + Mean Centering

RMSEC: 2.6

RMSECV: 2.7 

RMSEP: 3.3 4.8

EMSC = Extended Multiplicative Scatter Correction

Tabulated Results

RMSEC RMSECV Val 1 Val 2 Test 1 Test 2

Norris Regression 2.7 2.7 2.8 2.8 3.0 3.3

Expert-Selected 

Preprocessing
2.6 2.7 3.3 4.8 2.8 4.2

Good Model… but Bad Transfer
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Norris Regression – Generically
Non-linear Regression

(Gap-Segment 1st Derivative)

(Peak Normalization)

(Peak Normalization with 

variable- gap 1st derivative)

Binary Encoding of Norris Equations

• Example for 5 variables:   [ x1 x2 x3 x4 x5 ]

xi
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This much could be done by pre-computing… 

but at a big memory cost 

(525MB for shootout data)
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+ Allow Subtraction…

• Example for 5 variables:   [ x1 x2 x3 x4 x5 ]

• One additional group to identify "baseline"

xi
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-xi

x3 –x2
x1 –x2

x3 –x2

x5 –x2

x3 –x2

x4 –x2

x5 –x2

Pre-computation would now require 

2 x10201 variables (for the shootout data)

variables = 2n (n2+n)

1050 1100 1150 1200 1250 1300
2

3

4

5

Variables

M
e

a
n

1050 1100 1150 1200 1250 1300
2

3

4

5

Variables

M
e
a
n

+ Binning to Reduce Dimensionality

5-fold variable bin Similar effect to use of 

smoothing in derivatives

650 Variables = 422,500 possible ratios (many quite boring)

130 variables = 16,900 possible ratios
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+ Genetic Algorithm to Select Terms

• Try lots of combinations (Calculate variable 

ratios and offsets on-the-fly)

• Choose best cross-validated results

• Breed (intermix terms) and repeat

• Will refer to this as "GA-Norris"

• Question: Can this approach approximate 

what the interactive Norris approach does?

Tabulated Results

RMSEC RMSECV Val 1 Val 2 Test 1 Test 2

Norris Regression 2.7 2.7 2.8 2.8 3.0 3.3

Expert-Selected 

Preprocessing
2.6 2.7 3.3 4.8 2.8 4.2

GA Norris (Cal 1 only) 2.4 2.5 3.9 5.0 2.8 3.7

GA Norris (Cal 1 & 2) 2.8 2.9 3.0 3.0 3.0 3.3

Simple GA (Cal 1 & 2) 2.6 2.7 3.7 3.8 3.3 3.5

Selecting Variables based on both 

instruments (building model from ONE) 

yields GA Norris preprocessing which closely 

approximates what Karl Norris did.
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GA-Norris Model Expert Preprocessing Model

Outlier Detection Achieved…

Where Else Would Ratios Help?

• Raman – correcting for throughput differences 

and offsets

• LIBS – correcting for throughput differences 

and for emphasizing the importance of 

"relative abundance" 
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Raman of Octene in Toluene
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• Raman spectra measured on 36 solutions of Octene in 

Toluene (3 replicates of 12 concentrations)

• Calibration set for on-line monitoring of polymerization 

process feed line (octene is comonomer).

• Little interference or other artifacts in calibration data

• EXPECT: throughput errors and spectral shifts

• Calibrate with 24 samples, Validate with 9
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Prediction Error Vs. Interferences

Autoscale Scale variables to unit standard deviation

Normalize Divide by total intensity

Normalize (1000 cm-1) Divide by intensity at 1000 cm-1 peak

1st Derivative Savitzky-Golay 1st Derivative (15 point)

Whittaker Baseline Automatic baseline subtraction

GA Norris Binning + GA Norris Variable Selection + Ratios

(All methods also include mean centering)
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As Measured

w/ 0.1 cm-1 Axis Shift

* Throughput Errors

+ Baseline Errors

Prediction Error Vs. Interferences
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Outlier Detection: Baseline+Norm

???

Good predictions but Bad Outlier Status
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Outlier Detection: GA Norris

LIBS / Raman Classification

• Mystery classes (natural product, difficult to 

separate classes)

• Raman data – not much information

• LIBS data – too much information

• Anticipate Peak Ratios should help greatly in 

LIBS!

• Try GA Norris on LIBS
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1000 Selection Results
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Example GA Norris Results
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All = 17% 

Best = 8%

All = 9% 

Best = 2%

All = 19% 

Best = 0%

All = 8%

Best = 3%

All Classes
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With Randomized Classes (Red)

Non-linear model 

+ variable selection 

+ large domain 

= large chance of over-fit 

= use caution & permutation tests



3/26/2015

14

Conclusions

• GA Norris can reproduce Norris Regression 

results

• Can be used to achieve similar results to 

standard preprocessing (but with less sound 

decisions!)

• Large chance of over-fit = use caution & 

permutation tests, or standard methods!!


