Automated Peak and Peak-Ratio Selection for Regression and Classification Models of Raman and LIBS Data

Jeremy M. Shaver Eigenvector Research, Inc.

Brian Marquardt, Tom Dearing, Sergey Mozharov, MarqMetrix

NIR Shootout 2002

- 2002 International Diffuse Reflectance Conference (IDRC) "Shootout" data
 - NIR spectra
 - 654 pharmaceutical tablets
 - Calibration Set, Validation Set, Test Set
 - Two spectrometers
 - Goal: best model with calibration transfer
- Won by Karl Norris using "Norris Regression" selected peaks and peak ratios including gapsegment derivative

Tabulated Results										
	RMSEC	RMSECV	Val 1	Val 2	Test 1	Test 2				
Norris Regression	2.7	2.7	2.8	2.8	3.0	3.3				
Expert-Selected Preprocessing	2.6	2.7	3.3	4.8	2.8	4.2				
Good Model but Bad Transfer										
₩ EIGENVECTOR										

Norris Regression – Generically Non-linear Regression

$$y=b_1\left(x_1
ight)$$
 $y=b_1\left(x_1-x_2
ight)$ (Gap-Segment 1st Derivative) $y=b_1rac{x_1}{x_3}$ (Peak Normalization) $y=b_1rac{x_1-x_2}{x_3-x_4}$ (Peak Normalization with variable- gap 1st derivative)

$$y = b_1 \frac{x_1 - x_2}{x_3 - x_4} + b_2(x_5 - x_6) + b_3 x_7 + \dots$$

Binary Encoding of Norris Equations

• Example for 5 variables: $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}$

This much could be done by pre-computing...
but at a big memory cost
(525MB for shootout data)

+ Allow Subtraction...

- Example for 5 variables: $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}$
- One additional group to identify "baseline"

Pre-computation would now require $2 \times 10^{201} \frac{variables}{variables}$ (for the shootout data) variables = $2^n (n^2 + n)$

+ Genetic Algorithm to Select Terms

- Try lots of combinations (Calculate variable ratios and offsets on-the-fly)
- Choose best cross-validated results
- · Breed (intermix terms) and repeat
- Will refer to this as "GA-Norris"
- Question: Can this approach approximate what the interactive Norris approach does?

Tabulated Results

	RMSEC	RMSECV	Val 1	Val 2	Test 1	Test 2
Norris Regression	2.7	2.7	2.8	2.8	3.0	3.3
Expert-Selected Preprocessing	2.6	2.7	3.3	4.8	2.8	4.2
GA Norris (Cal 1 only)	2.4	2.5	3.9	5.0	2.8	3.7
GA Norris (Cal 1 & 2)	2.8	2.9	3.0	3.0	3.0	3.3
Simple GA (Cal 1 & 2)	2.6	2.7	3.7	3.8	3.3	3.5

Selecting Variables based on both instruments (building model from ONE) yields GA Norris preprocessing which closely approximates what Karl Norris did.

Where Else Would Ratios Help?

- Raman correcting for throughput differences and offsets
- LIBS correcting for throughput differences and for emphasizing the importance of "relative abundance"

Prediction Error Vs. Interferences

Autoscale Scale variables to unit standard deviation

Normalize Divide by total intensity

Normalize (1000 cm⁻¹) Divide by intensity at 1000 cm⁻¹ peak 1st Derivative Savitzky-Golay 1st Derivative (15 point) Whittaker Baseline Automatic baseline subtraction

GA Norris Binning + GA Norris Variable Selection + Ratios

(All methods also include mean centering)

Normalize
Normalize
(1000 cm-1)

Whittaker
Baseline
Normalize
(A Norris

LIBS / Raman Classification

- Mystery classes (natural product, difficult to separate classes)
- Raman data not much information
- LIBS data too much information
- Anticipate Peak Ratios should help greatly in LIBS!
- Try GA Norris on LIBS

Conclusions

- GA Norris can reproduce Norris Regression results
- Can be used to achieve similar results to standard preprocessing (but with less sound decisions!)
- Large chance of over-fit = use caution & permutation tests, or standard methods!!