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NIR Shootout 2002

« 2002 International Diffuse Reflectance
Conference (IDRC) "Shootout" data
— NIR spectra
— 654 pharmaceutical tablets
— Calibration Set, Validation Set, Test Set
— Two spectrometers
— Goal: best model with calibration transfer

e Won by Karl Norris using "Norris Regression" —
selected peaks and peak ratios including gap-
segment derivative
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Norris' "Winning" Model
ST tems | fem2

Wavelength  Smooth  Gap Wavelength  Smooth Gap
Numerator 1142 nm 10nm 26 nm 1338 nm 0nm 22 nm

Denominator 920 nm 0nm 30 nm

Interactive manual selection of regions and smooth/gap parameters
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Results using (Approx.) Norris Regression
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Preprocessing: 2nd Derivative (gap: 18 nm, segment: 6 nm) + =;== EIGENVECTOR
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EMSC + 15t Derivative + Mean Centering

EMSC = Extended Multiplicative Scatter Correction
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Tabulated Results
—
[ 28 28 30 33|

Norris Regression

Expert-Selected

: 26 27 | 33 4.8 28 42 |
Preprocessing

Good Model... but Bad Transfer
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Norris Regression — Generically
Non-linear Regression

Yy =01(1y)

Yy = b} (IL - 9:2\ (Gap-Segment 15t Derivative)
I

Y —=ui— (Peak Normalization)

2 — b, L1 — T2 (Peak Normalization with

Y xa—aa variable- gap 1°t derivative)

Binary Encoding of Norris Equations

* Example for 5variables: [x; x, x3 x5 Xx5]

00200, 00000, ,02000, l10001“00?00“00010,

Y Y Y Y
X X x 5
|
X1 ) X3
/ / /
/ / /
v v
‘x X, Xq X X4
3 =2 -1 = 4
X2 X3 X3 X5

This much could be done by pre-computing...
but at a big memory cost
(525MB for shootout data)
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+ Allow Subtraction...

* Example for 5variables: [x; x, x;3 x4 Xx5]

* One additional group to identify "baseline"

,00100, 00000, 01000, {1000,,00000,,00010, ,01000,
Y

Pre-computation would now require
2 x10%° variables (for the shootout data)

variables = 2" (n2+n) EEEEEIGENVECTOR

+ Binning to Reduce Dimensionality

5 650 Variables = 422,500 possible ratios (many quite boring)
130 variables = 16,900 possible ratios
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+ Genetic Algorithm to Select Terms

* Try lots of combinations (Calculate variable
ratios and offsets on-the-fly)

e Choose best cross-validated results
* Breed (intermix terms) and repeat
e Will refer to this as "GA-Norris"

* Question: Can this approach approximate
what the interactive Norris approach does?
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Tabulated Results
—m

Norris Regression

Expert-Selected

RS 2.6 2.7 33 4.8 2.8 4.2
GA Norris (Cal 1 only) 2.4 2.5 3.9 5.0 2.8 3.7
GA Norris (Cal 1 & 2) 2.8 2.9 3.0 3.0 3.0 3.3
Simple GA (Cal 1 & 2) 2.6 2.7 3.7 3.8 3.3 3.5

Selecting Variables based on both
instruments (building model from ONE)
yields GA Norris preprocessing which closely
approximates what Karl Norris did.
s == EIGENVECTOR
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Q Residuals (15.90%)

Outlier Detection Achieved...

GA-Norris Model . Expert Preprocessing Model
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Where Else Would Ratios Help?

* Raman — correcting for throughput differences
and offsets

* LIBS — correcting for throughput differences
and for emphasizing the importance of
"relative abundance"
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Raman of Octene in Toluene

ll
* Raman spectra measured on 36 solutions of Octene in
Toluene (3 replicates of 12 concentrations)

* Calibration set for on-line monitoring of polymerization
| process feed line (octene is comonomer).

« Little interference or other artifacts in calibration data

* EXPECT: throughput errors and spectral shifts

* Calibrate with 24 samples, Validate with 9
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Raman Shift (cm-1)
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Y Predicted Octene (w/w fraction)

154
©

RA2 = 0.957
4 Latent Variables
RMSEC = 0.0067254
RMSECYV = 0.0076369
RMSEP = 0.063568
CV Bias = 0.00015464
Prediction Bias = -0.029876
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Prediction Error Vs. Interferences

Autoscale
Normalize

Normalize (1000 cm™)
15t Derivative

Whittaker Baseline
GA Norris

(All methods also include mean centering)

Scale variables to unit standard deviation
Divide by total intensity

Divide by intensity at 1000 cm™ peak
Savitzky-Golay 1%t Derivative (15 point)
Automatic baseline subtraction

Binning + GA Norris Variable Selection + Ratios

Autoscale

Normalize

Normalize
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15t Derivative
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Prediction Error Vs. Interferences

0.151
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H As Measured
w/ 0.1 cm™ Axis Shift
* Throughput Errors
W + Baseline Errors

Normalize
(1000 cm-1)
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Prediction Error Vs. Interferences

(0.50)

(0.89)

M As Measured
w/ 0.1 cm® Axis Shift
* Throughput Errors
M + Baseline Errors
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Outlier Detection: GA Norris
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LIBS / Raman Classification

Mystery classes (natural product, difficult to
separate classes)

Raman data — not much information
LIBS data — too much information

Anticipate Peak Ratios should help greatly in
LIBS!

Try GA Norris on LIBS
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Example GA Norris Results
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With Randomized Classes
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Non-linear model
+ variable selection
+ large domain

= large chance of over-fit
= use caution & permutation tests
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Conclusions

e GA Norris can reproduce Norris Regression
results

* Can be used to achieve similar results to
standard preprocessing (but with less sound
decisions!)

* Large chance of over-fit = use caution &
permutation tests, or standard methods!!
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