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Regression

Y-Block X-Block
What’s desired What’s measured

Regression

   Model

Regression analysis identifies the dependency
between two blocks of data.
Regression models are often used to obtain estimates
(or predictions) for one block of data from the other.
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Outline
• Nomenclature and conventions
• Classical Least Squares (CLS)
• Inverse Least Squares (ILS) Models
• Multiple Linear Regression (MLR)
• Ridge Regression (RR)
• Principal Components Regression (PCR)
• Partial Least Squares Regression (PLS)
• Determining of the Number of Factors
• Outlier Detection and Model Diagnostics
• A Unifying Theme: Continuum Regression (CR)
• Summary
• Examples
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Conventions & Notation
• Rows correspond to samples, columns correspond to variables
• Notation:

• X = matrix of predictor variables
• Y = matrix (or vector y) of predicted variables
• m = number of samples (observations)
• nx = number of X variables, ny = number of Y variables
• T = X-block scores matrix, t1, t2, ... tk score vectors
• U = Y-block scores matrix, u1, u2, ... uk score vectors
• P = X-block loads matrix, p1, p2, ... pk loadings vectors
• Q = Y-block loads matrix, q1, q2, ... qk loadings vectors
• W = X-block weights matrix, w1, w2, ... wk loadings vectors
• Θ = ridge parameter
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Data Preprocessing

• Everything that was said about preprocessing for
PCA goes double for regression

• Data should be linearized, if possible
• Data is almost always mean centered
• Variance scaling used when variables are in

different units or greatly different magnitudes
• Outlier elimination is critical to regression models
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Classical Least Squares

• CLS can be used to develop calibration models
• most often used in spectroscopy

• The CLS model assumes the data follows:
           X = CST + E

where X (mxnx) is the measured response, S (nxxk)
is a matrix of pure component responses, C (mxk) is
a matrix of weights (i.e. concentrations), and E
(mxnx) is noise or an error matrix
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The CLS Model
• Given known pure component spectra, how much

of each does it take to make up the observed
spectrum?
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The CLS Model
• Given known pure component spectra, how much

of each does it take to make up the observed
spectrum?
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CLS (cont.)

• Once S (the spectral “basis”) is known, c, the
degree to which each component contributes to a
new sample x, can be determined from
c = xS+

where S+ is the pseudo-inverse of S, defined in
CLS as S+ = S(STS)-1

• Problem: How to get S?
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Classical Least Squares

X = CST + E
X = CST

XS = CSTS
XS(STS)-1 = C
S+ = S(STS)-1

• Note that STS is kxk (analytes by analytes)
and square
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Estimating S
• Sometimes, S can be compiled a priori, e.g. from

a data base/spectral library, or from direct
measurements of pure components
• Problem: must account for all components that can

contribute to X!
• S can also be estimated from mixtures, provided

all C are known and enough samples are
available:

ST = (CTC)-1CTX
• Problem: The concentration of every analyte that

contributes to X must be known!
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CLS Example
• NIR data of pseudo-gasoline samples

• absorbance at 401 channels
• 30 samples
• 5 analytes

(in analysisGUI..)

File/Load Data/Xblock:
nir_data, “spec1” array

Edit/Plot X-block (Data)
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Set up Calibration and
Validation Sets

>> load nir_data
>> conc_cal = conc(1:24,:);
>> conc_val = conc(25:30,:);
>> spec_cal = spec1(1:24,:);
>> spec_val = spec1(25:30,:);
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Load into Analysis Interface
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Set Preprocessing, Calculate
Model

Set preprocessing to “none” in both X and Y
Click “Model” to calculate
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Pure Component Spectra

S, estimated from mixtures,
using known concentrations
of all 5 analytes
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Estimate for Unused (Test)
Samples
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CLS Problem

• What if the concentration of 1 analyte was
unknown?

• Repeat the CLS procedure using only the first
4 (of 5) analytes

• Attempt to predict concentrations of unused
(test) samples
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Remove 5th Analyte
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CLS Solution-Missing Analyte
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Inverse Least Squares
• Inverse least squares (ILS) models assume that the

model is of the form:
Xb = y + e

where y (mx1) is a property to be predicted, X
(mxnx) is the measured response, e (mx1) is an
error vector, and b (nxx1) is a vector of
coefficients

• Unlike CLS, ILS methods associate the noise with
the predicted property, not the measured response
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Estimation of b: MLR

• It is possible to estimate b from

where     is the pseudo-inverse of X
• There are many ways to obtain a pseudo-inverse

most obvious is multiple linear regression (MLR),
a.k.a. Ordinary Least Squares (OLS)

• In this case       is estimated from

  b = X
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y
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Multiple Linear Regression

• Note that            is nxxnx and square
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Advantage of ILS Methods

• ILS methods (including MLR, PCR, PLS, CR)
don’t require the concentration of all analytes,
including interferents, be known …

• …however, interferents must vary in the
calibration data set for the the ILS regression
model to be robust against them
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Problem with MLR
• Inverse of           only exists if

• Rank(X) = nx, but rank(X) ≤ min (m,nx)
• X has more samples than variables i.e. if m≥nx

• problem with spectra
• Columns of X are not co-linear

• Inverse may exist but be highly unstable is X is
nearly rank deficient

• In these cases, small perturbations in the data
(possibly due to noise) can produce very different
results

  X
T
X
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MLR Example
• Use MLR to obtain a relationship between

temperature and level in a SFCM



27

Load and Edit Data
>> clear
>> load plsdata
>> whos
  Name          Size           Bytes  Class

  xblock1       300x20         55240  dataset object
  xblock2       200x20         38440  dataset object
  yblock1       300x1           9008  dataset object
  yblock2       200x1           7408  dataset object

>> x = xblock1.data(delsamps([1:300]',[73 167 278 279]),:);
>> y = yblock1.data(delsamps([1:300]',[73 167 278 279]),:);
>> [mx,mnx] = mncn(x);   %center the data
>> [my,mny] = mncn(y);
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…or via the Analysis GUI
1-Load x and y for both
calibration and validation
2-Select Edit/Calibration/X-block
Data

3-Select Row Labels tab

4-Deselect samples 73, 167,
278 & 279, then close
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MLR Regression and Results
>> bmlr = mx\my;
>> sx = scale(xblock2.data,mnx);
>> ymlr = rescale(sx*bmlr,mny);

>> plot(1:200,yblock2.data,'o-b',1:200,ymlr,'-r+')
>> xlabel('Sample Number (time)')
>> ylabel('Known and Estimated Level')
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MLR Results
1-Set X-block preprocessing
to Mean Center
2-Click Model

3-Select Scores
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Ridge Regression
• Ridge Regression (RR) is one way to deal with ill-

conditioned problems
• RR gets its name because a constant is added to

the “ridge” of the covariance matrix in the
formation of the pseudo-inverse:

• The addition of Θ stabilizes the inverse and
shrinks the values of the coefficients
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RR Shrinkage
[brr,theta] = ridge(mx,my,0.015,31);
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RR and MLR Regression
Vectors

>> plot([bmlr,brr],'o-','linewidth',2)
>> legend('MLR','RR')
>> hline
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Problem with MLR and RR
• RR helps stabilize the inverse but still has

problems with strong co-linearity
• Neither MLR nor RR work when m<nx
• Possible solution: eliminate variables, e.g.

stepwise regression or other variable selection
• how to choose which variables to keep?
• lose multivariate advantage - signal averaging

• Another solution: use PCA to reduce original
variables to some smaller number of factors
• retains multivariate advantage
• noise reduction aspects of PCA
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Principal Components
Regression

• Principal Components Regression (PCR) is one
way to deal with ill-conditioned problems

• Property of interest y is regressed on PCA scores:

• Problem is to determine k the number of factors to
retain in the formation of the model
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Principal Components
Regression
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Cross-Validation

• Divide data set into j sample subsets
• For each subset (j times):

• Build PCA model using all samples in the remaining
subsets

• Apply the model to the subset samples
• Calculate PRESS (Predictive Residual Sum of

Squares) for the subset samples:

• Look for minimum or “knee” in PRESS curve

  
e

2
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Cross-validation Graphically
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X y

“Venetian
blinds” - OK

when data
already in
random
order

contiguous
blocks-best

for time
series

random
selection-

usually
repeated

several times

leave-one-
out, used
when not

much data
available

Formation of Test Sets

What else?  
Custom selection, based on
prior knowledge!
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Cross-validation Considerations
• Cross Validation method selection criteria

• Number of objects in dataset
• Order of objects in dataset
• Objective of cross-validation (specific type of error?)
• Presence/absence of replicates

• “Traps” to avoid
• “Replicate sample trap”

• Different replicates in both model and test set
• “External subset selection trap”

• Test set “space” outside of model set “space”
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Cross-validation Usage Matrix-I
Venetian Blinds Contiguous Blocks Random Subsets Leave-One Out Custom

•  Easy •  Easy •  Easy

•    Easiest! (Only 

one parameter) •   Flexible

•   Relatively quick •   Relatively quick

•  Can be slow, if 

m or number of 

iterations large

•  Avoid using if 

m>20

•    Requires time 

to determine/ 

construct cross 

validation array

•    Selection of 

subsets unknown

•  Good choice….

•   ....unless 

designed/DOE 

data

•  Good choice •  OK, but….

•  Can take a while 

with large m, many 

iterations

•  Can take a while 

with large m

General Properties

Small data sets (<~20 

objects) •                      •                      

•  OK, if many 

iterations done

•  often needed to 

avoid the  external 

subset selection 

trap

randomly-distributed 

objects •    Good choice •   Good choice •                      
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Cross-validation Usage Matrix-II
Venetian Blinds Contiguous Blocks Random Subsets Leave-One Out Custom

•  Useful for assessing  

NON-temporal  model 

errors
•    Can be optimistic 

with low number of data 

splits

Batch data

•   Useful for assessing 

predictability within 

batches/parts of 

batches

•   Useful for assessing 

predictability between 

batches/parts of batches •                      •                      

•  Can manually 

select “batch-wise” 

test sets

•   Good way to avoid 

replicate sample trap
•     Beware the external 

subset selection trap !

Designed Experiment 

(DOE) data

•    Dangerous, unless 

object order is 

randomized

•    Dangerous, unless 

object order is 

randomized •                      

•    Not 

recommended 

(external subset 

selection trap )

•    often needed to 

avoid the external 

subset selection 

trap

•                      

Blocked data 

(replicates)

•     Beware  the 

replicate sample trap 

(optimistic results)!

•     Can use to 

avoid replicate 

sample trap  (high 

number of splits, 

•    overly optimistic 

results, due to 

replicate sample 

trap •                      

time-series data

•  Useful for assessing 

temporal stability of 

model •                      •                      
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PCR Cross-Validation Example
• block CV since data is time series
• mean centered, 20 PCs, split 10 times

>> s = preprocess('meancenter');
>> opts = crossval('options');
>> opts.preprocessing = {s s};
>> [press,cumpress,rmsecv,rmsec] = crossval(x,y,'pcr',{'con',10},20,opts);

irrelevant PCs

choice for k
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…or via the GUI
1-Reset Analysis to “PCR”

2-Select Tools/Crossvalidation
3-Set to “Contiguous Block”
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PCR Variance Captured
>> options = pcr('options');
>> options.preprocessing = {s s};  % s is mean centering
>> modelpcr = pcr(x,y,6,options);

       Percent Variance Captured by PCR Model   
  
           -----X-Block-----    -----Y-Block-----
   PC #    This PC    Total     This PC    Total 
   ----    -------   -------    -------   -------
     1      81.55     81.55      85.50     85.50
     2       6.19     87.74       0.20     85.70
     3       5.24     92.98       0.29     85.99
     4       2.53     95.51       0.04     86.03
     5       1.37     96.89       0.15     86.17
     6       1.01     97.90       1.13     87.31
     7       0.46     98.36       0.06     87.37
     8       0.40     98.76       0.28     87.64
     9       0.36     99.12       0.30     87.94
    10       0.24     99.37       0.01     87.95

     1      81.61     81.61      85.23     85.23
     2       6.16     87.77       0.19     85.41
     3       5.22     92.98       0.30     85.71
     4       2.54     95.53       0.02     85.74
     5       1.37     96.90       0.17     85.91
     6       1.01     97.91       1.09     86.99
     7       0.46     98.37       0.05     87.04
     8       0.39     98.76       0.27     87.31
     9       0.36     99.12       0.30     87.61
    10       0.24     99.37       0.02     87.63
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Problems with PCR

• Some PCs not relevant for prediction, but are only
relevant for describing variance in X
• leads to local minima and increase in PRESS

• This is a result of PCs determined without using
information about property to be predicted y

• A solution is to find factors using information
from y and X
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Partial Least Squares
• PLS is related to PCR and MLR

• PCR captures maximum variance in X
• MLR achieves maximum correlation between X and Y
• PLS tries to do both by maximizing covariance between

X and Y
• Requires addition of weights W to maintain

orthogonal scores
• Factors calculated sequentially by projecting Y

through X
( ) ( ) T

k

-1

k

T
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k
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kk
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PLS Cross-Validation Example
• use block CV since data is time series
• mean centered, 20 PCs, split 10 times

no irrelevant factors

choice for k

>>[press,cumpress,rmsecv,rmsec] = crossval(x,y,'sim',{'con',10},20,opts);
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…or the easy way
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>> options = pls('options');
>> options.preprocessing = {s s};  % s is mean centering
>> modelpls = pls(x,y,3,options);

PLS Variance Captured

       Percent Variance Captured by PLS Model   
  
           -----X-Block-----    -----Y-Block-----
   LV #    This LV    Total     This LV    Total 
   ----    -------   -------    -------   -------
     1      81.55     81.55      85.61     85.61
     2       5.18     86.72       1.13     86.74
     3       2.06     88.79       1.14     87.89
     4       4.81     93.59       0.19     88.08
     5       1.92     95.51       0.25     88.33
     6       1.41     96.92       0.18     88.51
     7       1.16     98.08       0.05     88.56
     8       0.39     98.47       0.07     88.62
     9       0.22     98.69       0.07     88.70
    10       0.31     99.00       0.05     88.75

     1      81.61     81.61      85.33     85.33
     2       5.15     86.76       1.12     86.45
     3       2.01     88.77       1.14     87.59
     4       4.91     93.68       0.18     87.77
     5       1.55     95.23       0.30     88.07
     6       1.66     96.89       0.15     88.22
     7       1.21     98.10       0.05     88.27
     8       0.37     98.47       0.07     88.34
     9       0.21     98.68       0.08     88.42
    10       0.31     99.00       0.05     88.48
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Regression Vectors
>> plot([bmlr modelpcr.reg modelpls.reg],'+-','linewidth',2)
>> legend('MLR','PCR','PLS'), hline
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PLS NIPALS Algorithm
Choose u1 = y or one column of Y

(1)

(2)

(3)

(4)

Check for convergence by comparing t1 to

previous t1. If Y = y skip (3) and (4) and continue

(5)
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Find the regression coefficient for the inner

relation:

(9)

After calculating scores and loadings for first

Latent Variable, the X and Y-block residuals are

calculated:

(10)

(11)

Repeat entire procedure replacing X and Y with

their residuals
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Other PLS Algorithms

• It can be shown that w1 is given by

• The SIMPLS algorithm uses an orthogonalization
of a Krylof sequence (faster than NIPLS algorithm)

• The important thing to remember is:
PLS finds factors in X which are correlated with Y
while describing large amounts of variance in X
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Y Projected onto X Plane
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PCA of X-Block
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MLR Regression Vector and
Surface
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PCR Regression Vector and
Surface

M LR

PCR
PCR

M LR
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PLS Regression Vector and
Surface

PCR

M LR PLS
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Geometric Relationship of
MLR, PCR, and PLS

PCR

M LR
PLSPLS is the vector

on the PCR ellipse
upon which MLR
has the longest
projection

Line perpindicular
to the MLR
regression vector
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PLS for Multivariate Y

• PLS can be used to relate multivariate X to
multivariate Y (a.k.a. PLS2)
• outer relationships

• inner relationship

• i.e. the scores in Y are linear combinations of the
scores in X
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PLS2

w1 and q1 are similar to PCs in X
and Y but they are rotated so that
there is better correlation between

t1 (=Xw1) and u1 (=Yq1)

X1

X2

Y1

Y2

u1

t1

Slope = b

1st PC 1st PCw1

q1

X-Block Outer Model Y-Block Outer Model

Inner Model
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Model Quality Measures
• Root Mean Square Error

(RMSE) Metrics
• RMSEC
• RMSECV
• RMSEP
• In units of the Y variable!

• Correlation Coefficient (r)
• Unit-less
• Considers the range of Y
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Root Mean Square Error (RMSE)
Metrics

• These are used to assess a model’s fit to the data
and predictive ability on new data

• Measures “average” deviation of model estimates
from the measured data

• Measure of fit - root mean squared error of
calibration (RMSEC)

  
RMSEC =  

yi  - yi( )
i=1

m

∑
2

m

^ i’s refer to all
samples used to
build the model
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Cross-Validation Error
• RMSEC measures fit to the model data. RMSECV (root

mean squared error of cross-validation) is an estimate of
predictive power on new data.

• RMSECV is a function of the number of factors k and
how the test sets were selected

  

j’s refer to different
CV subsets

i’s refer to CV subset
samples- not used to
build CV models
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Prediction Error

• Prediction error is often used to validate a model
and is a true measure of the predictive power on
new data

• Measure of prediction error - root mean squared
error prediction (RMSEP)

^

  
RMSEP =  

yi  -  yi( )
i=1

mp

∑
2

mp

i’s refer to
samples NOT
used to build the
model
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RMSE metrics, as a function of
factor (PC, LV)

RMSEC and
RMSECV can
also be used to
determine the
optimal number
of factors (LVs,
PCs) to be used
in a model
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PLS, CV = 10 contiguous blocks
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Comparison of Models
• MLR, PCR, and PLS models were constructed

using SFCM data: Calibration used (xblock1) and
test used (xblock2).

• Fit and prediction are two entirely different
aspects of a model’s performance

MLR PCR PLS

RMSEC 0.0991 0.1059 0.1034
RMSECV 0.1122 0.1108 0.1098
RMSEP 0.1496 0.1366 0.1396

68

Number of PCs or LVs
• Choice is not always simple
• A few rules of thumb

• sqrt(m) a good choice for number of splits
• useful to do repeated CVs with different data ordering
• if data is time series use block CV due to correlated noise
• be conservative, models are more often overfit than underfit
• best choice is often not the global minimum PRESS
• look for minimum of PRESS and work backwards if improvement

is not at least 2%
• RMSEC<RMSECV by more than ~20% indicates overfit
• look at variance captured in X and Y. Is it significant with respect

to what you know about the data?


