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Scalar

e Scalar
e Zero order tensor

 Single number or variable
* Has a magnitude
e 1x1
* Denoted by lower case, e.g. a
* Temperature, pH, density at single location

¥ EIGENVECTOR

L@\ RESEARCH INCORPORATED

Start MATLAB

* We will use MATLAB to demonstrate concepts in
linear algebra

e Start MATLAB

* Find Command window (with >> prompt)

MATLAB

aaaaaaaaaaaaaa

R2007a

806 X| MATLAB
7.4.0,2
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Scalars in MATLAB

» a = 5;
» a=2>5
a =
5
s EIGENVECTOR
LILJ RESEARCH INCORPORATED
Vector
e Vector

¢ First order tensor

e Row or column of numbers or variables
¢ Has magnitude and direction
¢ mXx 1 (column) or 1 X n (row)
¢ Denoted by bold lower case, e.g. a
¢ Single spectrum, sensor array response

— T —
a=|a, ,a =[a,aa,.. a]
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Vectors in MATLAB

» b =[4

3

5]

b=
4
3
5

» b = [4; 3; 5];
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Vector Graphical
Representation
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Assign vector to another

variable
» C=Db'
C =
4 3 5
»
s EIGENVECTOR
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Matrix
e Matrix

e Second order tensor

e Table or array of numbers or variables
e m X n, mrows and n columns
¢ Denoted by bold upper case, e.g. A
e Sprectra of multiple samples, single GC-MS sample

=~ EIGENVECTOR
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Matrix (cont.)

1 By Byg e 8y (a2 b ¢
A= d e f
8y g 8y . 8y, L
85 85 855 - 8y, a d
. . _ A= |b e
: P : c 1
,am1 am2 amS amn B

e Matrix and vector transpose

¢ Denoted by superscript T or apostrophe *

¢ Columns of A become rows of AT

11

» A =
» AC2

ans

12

8 EIGENVECTOR
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Matrices in MATLAB

2 5 3 6
A=(7 3 2 1
5 2 0 3
[2536; 7321;520 3];
4)
. FBEIGENVECTOR



Matrix Transpose

2 7 5
AT = 5 32
3 2 0
» A’ 6 1 3
ans =
2 7 5
5 3 2
3 2 0
o 1 3
¥ EIGENVECTOR
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Vector and Matrix Addition

* Must be same size
¢ Addition is element by element

a, + D1
a,+ b2

—+ =
ath a,+ b3

a+b
L N nJ

y ¥ EIGENVECTOR
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Matrix Addition

1 4 3 2 4 1 3 8 4
+ =
5 40 2 6 3 7 10 3

»x=[143;540]; y=[241; 26 3];

» X + Yy
ans =
3 8 4
7 10 3
w7 8 EIGENVECTOR
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Dimensions must be the same!

2 4

1 4
+(1 2=
5 4 0
6 3

» x=[143;540]; y=1[24;12; 6 3],
» X + Yy

??7? Error using ==> +

Matrix dimensions must agree.

=~ EIGENVECTOR
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Vector and Matrix Addition

¢ Commutative

e Associative

a+b-=
+(b+c)=

17

b+a
(@a+b)+c

=~ EIGENVECTOR
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Multiplication by a Scalar

Multiply each element by the scalar

Similar for matrices and vectors

= [ka, ka, ka, ... ka ]

Commutative

Associative

ka = ak
(k+e)a = ka + ea

18
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Scalar Multiplication

4 10 6 12
c=2,—>cA=|14 6 4 2
10 4 0 6
» C = ’
» C*A
ans =
4 10 6 12
14 6 4 2
10 4 0 6
¥ EIGENVECTOR
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Vector Multiplication: Inner

Product

* Rectors must have same length

Result is a scalar

.
ab=|[a aaa]

a'b=[ab +ab +tab +.t+ab]

[~ [

&% EIGENVECTOR
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Inner Product Example

a'b=[2 5 1]{3}:[2*4+5*3+1*5]=28

Also known as “dot product”

¥ EIGENVECTOR
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Inner Product in MATLAB

» a=[2; 5; 1]; b = [4; 3; 5];
» a'*b

ans =

28

¥ EIGENVECTOR
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Length or “norm” of a Vector

e Square root of the sum of squared elements
* Can be calculated with inner product

[a = va'a

» sqrt(a'*a)

ans =
5.4772
» norm(a)
ans =
5.4772
. PNIEIGENVECTOR

Vector Outer Product

* Vectors can have different length
* Result is a matrix

b, _ _
b b.a ba, . ba
2
T _ r _|b,a, ba, .. ba
ba = b |[a, a,a, .. a] ba = .2 1 .2 2 22y
b b,a, b, ba,
L m_

¥ EIGENVECTOR
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Outer Product Example

q

2 2%4 2%3 2%5 2%7 2%9
asz%}®L4 357 ﬂ={5*4 5%3 5%5 5%7 5*9]
1 1%4  1%3 1%5 1%7 1%9
8 6 10 14 18
ab7=[ﬂ)15 25 35 45]

4 3 5 7 9

O 3 W w b

=~ EIGENVECTOR
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Outer Product in MATLAB

»a=[251]"; b=[43579]";
» a*b'

ans =
8 6 10 14 18

20 15 25 35 45
4 3 5 / 9

=~ EIGENVECTOR
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Matrix Multiplication

* Size must be compatible
* Order must be maintained

Amxn ank = AB

mxk
a11 a'12 b b a11b11+a12b21 a11b12+a12b22
11 12 b b b b
a21 a22 b = a'21 11+a22 21 a21 12+a22 22
21 22 |oyo
a31 a32 3x2 a31b11+a32b21 a31b12+a32b22 3x2
[~ [ ]
s EIGENVECTOR
27
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Matrix Multiplication Example

4 3 5 7
2 51

A= B=9 5 3 4
4 5 3

5 3 6 7

Apo|2FAFSEOHIES 2IBLSHSLIXT 25 H5ILIN6 2FT45HAA 1T
T 4%445%943%5 4%345%543%3 45545434356 4%T45%443%7

58 34 31 41
|76 46 53 69

2 ¥ EIGENVECTOR
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Multiplication in MATLAB

» A =

» B =
» A*B

ans =

58
76

[251; 45 3];

[4357; 9534; 53606 7];

34
46

31
53

41
69

=~ EIGENVECTOR
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Matrix Algebra Identities

Matrix multiplication is distributive and associative, but not commutative.

(AB)’

=B'A’

(A+B)C = AC + BC = CA + CB
(AB)C = A(BC)

(A +B)'
(A)' =A
Al =I1A =A

T T
=A +B

=~ EIGENVECTOR

LILJ RESEARCH INCORPORATED



31

Orthogonal and Orthonormal
Vectors

Vectors orthogonal if inner product is zero

Orthonormal if orthogonal and unit length, i.e.
inner product with themselves is 1

For orthonormal setv,, withi=1,2,...n
0 foriz i
viv, = {20t
7\ fori=j

In three dimensions, most common orthonormal
basisis [100]T,[0 1 0], and [0 0 1]T

P¥EIGENVECTOR
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Special Matrices

* Vector is a special matrix (1 row or column)
* Diagonal (non-zero elements on diagonal)

¢ Identity (square with ones on diagonal)

a, 0 0 0 100 0]
0 a0 O 010..0
A=10 0a, O I=l001..0
0 0 0 .a, 0001

32




Example Special Matrices

1 0 0 O
4 0 0 O
01 0 O
D=0 3 0 O I,.,=
0 0 1 0
0O 0 7 0
0 0 0 1
» 1d = eye(3) » dm = diag([3 6 9])
1 0 0 3 0 0
0 1 0 0 6 0
0 0 1 0 0 9
s EIGENVECTOR
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Special Matrix Useful
Properties

* Any matrix multiplied by identity matrix is
unchanged

* Size must be compatible!

* AmxnInxn = ImxmAmxn = AIl’le’l

e (AT)1= (AT

¢ For symmetric matrix B, B = BT

e Symmetric matrices must be square

=~ EIGENVECTOR
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Solving Systems of Equations

Suppose you have the following system of three

equations in three unknowns:

2b; + bz + b3
4b; + b2
-2b; + 2bz + b3

This could also be written:

.

NN

Or in matrix notation:

Xb =

35

1 1
1 0
2 1

bi
b2
b3

wnn
1
N

¥ EIGENVECTOR
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Gaussian Elimination

Want to find values of b1, ba and bz which make

the system hold. Subtract multiples of equations
from each other to eliminate variables:

pivot

pivot

b2 1 1
0 -1 -2
3 2
_ L 1
-1 -2

0 0 -4

by ]
b2

by
b2

= |-4

-4

. Ea2-2*Eq1
<4 Eq3+Eql

< Eq3+3*Eq2

From this we see that b3 = 1, and we can use
back-substitution to get b =2 and by =-1

36

¥ EIGENVECTOR
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Gaussian Elimination in
MATLAB

» X=[211; 410, -2 2 1];
»y =[1; -2; 7]1;
» b = X\y
b =
-1
2
1
= EIGENVECTOR
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Inconsistent Systems

Now suppose you have this system:

b1 1

1 3 2
2 6 9||bz2| =|-4
3 9 8| b; -4

Elementary row operations would reduce this to:

pivot\_ 1 3 2 b1 1
[ o0™0 5 b2 | =[-6
0 0 2 || n; -7

This system has no solution as Eq 2 requires that
b3z =-6/5 while Eq 3 requres bz =-7/2.

¥ EIGENVECTOR
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Underdetermined Systems

Suppose instead you started with:

1 3 2|[ba 1
0 0 5||b2| =][-10
0 0 2 || b; -4

This system has infinitely many solutions, bz = -2,
but b; + 3by = 5.

¥ EIGENVECTOR
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Singular Matrices and Rank

Suppose you took an additional step and reduced

your matrix to:

1

2 —>

3
This is the echelon form of a matrix. It is upper
triangular. The number of non-zero rows is the

rank of the matrix. This can be done on any
matrix--it need not be square. It can be shown that:

woow
WwON
oOOor
oow
ounNn

rank(X) = min(m,n)

A matrix with rank = min(m,n) is said to be of full
rank. Otherwise, the matrix is rank deficient or
singular.

¥ EIGENVECTOR
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Singular Matrices in MATLAB

» X=[132; 269; 39 8];

»y =[1;, -8; -11;
» b = X\y

Warning: Matrix 1is singular to working
precision.

b=

-Inf
Inf

_2 . A~ |
0000 ¥ EIGENVECTOR
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Finding the Rank of a Matrix in
MATLAB

e Rank of a matrix is the number of independent rows or
columns (same)

* Can think of this as the number of independent variations
in the data

» rank(X)

ans =

=~ EIGENVECTOR
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Matrix Inverse

* Matrix must be square
* Inverse might not exist!

If it does exist, matrix is said to be invertible

* Matrix must be non-singular i.e. full rank
* no row or column the same as another
* no row or column a scalar multiple of another

e no row or column all zeros

A'A=AA ' =1

¥ EIGENVECTOR
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Orthogonal Matrix

* In the special case of an orthogonal matrix the transpose is
the inverse

¥ EIGENVECTOR
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Useful Identities with Inverses

(AB)'' =B-1A-!
Can be extended to multiple matrices
(ABC)!' = C-'B!A"!

Same set of transformations that transform A to I
transform I to A-!

Known as the Gauss-Jordan method

=~ EIGENVECTOR
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Example of Gauss-Jordan

2 1 11100 2 1 1 | 1 00
4 10101 0{=0 -1 21]-2120
-2 2 11001 00 4| -5 31

—
o 0

N o

< <

N = =
Wl s=

— |l |l
Matd ]}

=~ EIGENVECTOR
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Gauss-Jordan in MATLAB

» format rational

»A=[211;410; -221];
» B = rref([A eye(3)])
B =
1 0 0 1/8 1/8 -1/8
0 1 0 -1/2 1/2 1/2
0 0 1 5/4 -3/4 -1/4
» A*B(:,4:6)
ans =
1 0 0
0 1 0
0 0 1 roEm
PMEIGENVECTOR
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Inverse Function in MATLAB

» Ainv = inv(A)

Ainv =
1/8 1/8 -1/8
-1/2 1/2 1/2
5/4 -3/4 -1/4

» inv(A") - inv(A)'

ans =

(SIS
(SIS
(SIS

¥ EIGENVECTOR
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Vector Spaces and Subspaces

Vector spaces denoted R!, RZ, R3, ... R®

Dimension of the space is n

R3 is our usual three dimensional space

R? is a planar space

A subspace is a vector space contained within another

A subspace of a vector space is a subset of the space
where:
* the sum of any two vectors in the subspace is also in the subspace

 any scalar multiple of a vector in the subspace is also in the
subspace.

IGENVECTOR

Linear Independence

Given a set of vectors v, v,, ... , v, if all non-trivial combinations of
the vectors are nonzero

CVi+ 6Vt o+ vy 0 unless ¢, =¢c,=...=¢,=0

then the vectors are linearly independent. Otherwise, at least one of the
vectors is a linear combination of the other vectors and they are
linearly dependent.

A set of vectors w,, w,, ... , W,, in R" is said to span the space if every
vector v in R” can be expressed as a linear combination of w’s, i.e.

V=W, + W, + ... + W, for some c;.

Note that for the set of w’s to span R" then k=n.

EIGENVECTOR

ESEARCH INCORPORATED
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Basis Sets

* A basis for a vector space is a set of vectors that
are linearly independent and span the space.

* The number of vectors in the basis must be equal to the
dimension of the space.

* Any vector in the space can be specified as one and
only one combination of the basis vectors.

* Any linearly independent set of vectors can be extended
to a basis by adding (linearly independent) vectors so
that the set spans the space.

* Any spanning set of vectors can be reduced to a basis
by eliminating linearly dependent vectors.

¥ EIGENVECTOR
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Row Spaces and Column
Spaces

e For matrix A, of rank r, reduced echelon form U

* Row space is the space spanned by rows of A

* Dimension of the row space, KAT), equals r

* Rows of U form basis for row space of A

* Column space is the space spanned by columns of A

* Dimension of the column space, KA), also equals r

* Columns of U (with non-zero pivots) form basis for

column space of A

¢ Row rank = column rank!

¥ EIGENVECTOR
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Null Spaces

The nullspace of A, %@JA), 1s of dimension n - r.
%&A) is the space of R" not spanned by the rows
of A.

Likewise, the nullspace of AT, %&AT), (also
known as the left nullspace of A) has dimension m
- r, and is the space of R™ not spanned by the
columns of A.

=~ EIGENVECTOR
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Orthogonality of Subspaces

Vectors, v, w, orthogonal if inner product zero

Subspaces V and W are orthogonal if every vector vin V
is orthogonal to every vector w in W

Thus, for A,
e nullspace T&A) and the row space &AT) are orthogonal subspaces
of R

¢ left nullspace T&AT) and the column space %) are orthogonal
subspaces of R™.
The orthogonal complement of a subspace V of R" is the
space of all vectors orthogonal to V and is denoted V+
(pronounced V perp).

=~ EIGENVECTOR
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Projections onto Lines

* Projections of points onto lines (also planes and subspaces)
very important in chemometrics!

* Projections involve the inner product:

:
p=2Y If lIxll = 1, then p = xTy
xTx

The projection of the vector y onto the vector x

=~ EIGENVECTOR
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Derivation of Projection

* Finding p is straightforward given that
e p must be a scalar multiple of x, i.e. p = bx

¢ the line connecting y to p must be perpendicular to x

x'y
X (y—bx)=0->x"y=bx'x >b=—
. ¢
p:bx:XTyx
x'x

* Also works to project point y on subspace X, provided that
X is of rank r = n, i.e. XTX is invertible.

=~ EIGENVECTOR
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Least Squares

Consider single variable case with more than 1
equation

* Want to minimize E = lIxb - yll, or the square

e E?=(xb-y)T(xb - y) =xTxb? - 2xTyb + yTy
Take derivative of E> wrt b and set to zero

E2 T
db =2XTxb—2xTy=O—>b=X y

X X

Same solution as projection problem!

=~ EIGENVECTOR
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Multivariate Least Squares

Consider Xb =y with X
Require Xb - y be perpendicular to column space of X

mxn’ >n
So, each vector in X must be perpendicular to Xb -y
Each vector in column space X expressible as Xc¢
Thus, for all choice of c:

e Xeo)TXb-y)=0, or c¢'[X™Xb-XTy]=0

e thus, X™Xb = XTy so b = (XTX)- !XTy
We often call b the regression vector

=~ EIGENVECTOR
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Least Squares in MATLAB

1 1 6
X 1 2 6
T2 1 Y= 7
2 2 11
» X=1[11;12; 21; 2 2]; » b = X\y
»y=1[66711]"; b =
» b = inv(X"*X)*X"*y -
3.0000
b = 2.0000
3.0000
2.0000
= EIGENVECTOR
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Projection of y onto X,
orthogonality of residuals

» p = X*b
p= » X'*d
5 ans =
7
8 1.0e-14 *
10
-0.9770
» d=y-p -0.9770
d =
1
-1
-1
1
r\um
wv EIGENVECTOR
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Least Squares Summary

* When m>n the system of equations Xb =y is
overdetermined and the method of least squares can be
used to determine b

b = (XTX) ' XTy
e XTX is square (nxn) but the inverse won’t exist if it’s not
full rank (i.e. if rank(X) < n)
e What if it’s nearly rank deficient?...

=~ EIGENVECTOR
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lll-conditioned Matrices

* Suppose that there are two systems of equations with X nearly rank
deficient and differ by only a small amount (as might be expected from
data with noise)

1 2 2 -
|2 a 4 _ | 3.71
X=13 6 Y1=60001| > P1=|086

4 8.0001 | 8 | S

[1 2 ] _3 ] - -
|2 a _ _| 029
X=13 6 ¥2=| 59099] > P2=| o8

| 2 8.0001 | 8 L

¢ Small changes in y (and/or X) can have a significant impact on the
regression results for nearly rank deficient systems

=~ EIGENVECTOR
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MATLAB on Similar Example

»X=1[12;24; 36; 48.0001]1; y=1[24628]";
» b = X\y

b =

2
0

» X =1[12;24; 36; 48.0001]; y =1[246.0001 8]"'; b = X\y
b =

3.7143
-0.8571

»X=1[12;24; 36;48.0001]; y = [245.9999 8]"; b = X\y
b =

0.2857
0.8571

¥ EIGENVECTOR
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Projection Matrices

e For problem Xb =y, projection of y onto columns
of X, p was:
p = XX'X)'XTy, p =Py
* Pis aprojection matrix, and is
o Idempotent,ie. PP =P>=P

o Symmetric, i.e. PT=P

¥ EIGENVECTOR
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Orthogonal and Orthonormal
Bases

e Orthonormal basis, v, v, ... v, has property

lfori=j
* Project y onto X with orthonormal columns, so
XTX =1
P = XXTX)IXT = XXT
e Square matrix with orthonormal columns is called
an orthogonal matrix

=~ EIGENVECTOR
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Orthogonal Matrix Properties

e For an orthogonal matrix Q (orthonormal
columns)

QQ=1
QQT=1
Q' =Q!

e Q will also have orthonormal rows!

=~ EIGENVECTOR

LILJ RESEARCH INCORPORATED



Pseudoinverses

e How to sove Xb =y if XTX singular?
* Introduce pseudoinverse, X*
e Many solutions, which to choose?
e One that minimizes length of b, lIbl|
e Require that b lie in the row space of X
* Xb equals projection of y into the column space of X

* b lies in the row space of X.

e Must find a way to calculate X*

=~ EIGENVECTOR
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Singular Value Decomposition

* Any m by n matrix X can be factored into
X =USVT
U orthogonal and m by m
V orthogonal and n by n
S diagonal and m by n

e Non-zero elements of S are singular values and
decrease from upper left to lower right

=~ EIGENVECTOR
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U=

.1935
.3184
.5119
L7740

SSRGS

19.3318

0.2825
0.5221
0.8047

» U*S*V!'

1.0000
2.0000
3.0000
4.0000

-0.

-0.

Example SVD

» X=[123;235;3528; 428 12];
» [U,S,V] = svd(X)

.1403 -0.
.6426 Q
.5022 -0.
.5614 Q
0
.5301
0 [
0
7661 [
.6277 Q
1383 -0
2.0000
3.0000
5.0000
8.0000

9670 0.0885

.0341 0.6961

0341 -0.6961

.2503 0.1519

.0000

5774
5774
5774

3.0000
5.0000
8.0000
12.0000

A~ W oo =
(o BNV, EENUS I \S]

=~ EIGENVECTOR
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Verify SVD

* Note that last singular value appears to be zero!

¥ EIGENVECTOR
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Formation of the
Pseudoinverse

Recall inverse of a product is product of inverses
in reverse order, thus

X+ =VStUT
Remember, U and V are orthogonal!
How to form S*?

Set singular values close to zero to zero in the
inverse or truncate the matrices r = rank(X)
columns

=~ EIGENVECTOR
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Reconstruction with two
Factors

» UC:,1:2)*%S(1:2,1:2)*V(:,1:2)"'

1.0000 2.0000 3.0000
2.0000 3.0000 5.0000
3.0000 5.0000 8.0000
4.0000 8.0000 12.0000

=~ EIGENVECTOR
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Pseudoinverse Calculation

» Xinv = V(:,1:2)*inv(S(1:2,1:2))*U(:,1:2)"
Xinv =

-0.2000 0.9333 0.7333 -0.8000
0.1714 -0.7524 -0.5810 0.6857
-0.0286 0.1810 0.1524 -0.1143

» pinv(X)
ans =
-0.2000 0.9333 0.7333  -0.8000

0.1714 -0.7524 -0.5810 0.6857
-0.0286 0.1810 0.1524 -0.1143

¥ EIGENVECTOR
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Return to our IllI-Conditioned

Problem
12 2
|2 4 |4
13 6 YZle
4 80001 8

¥ EIGENVECTOR
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Solution

» X=1[12;24; 36; 428.0001]; y=1[24628]";
» [U,S,V] = svd(X);
» Xinv = V(:,1D)*inv(S(1,100*UC:, 1"

Xinv =

0.0067 0.0133 0.0200 0.0267
0.0133 0.0267 0.0400 0.0533

» b = Xinv*y
b =
0.4000
0.8000
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Solution no Longer Sensitive
to Minor Changes

»y =1[245.999 8]"';
» b = Xinv*y
b =
0.4000
0.8000
»y=1[246.0001 8]"';
» b = Xinv*y
b = Inverse stabilized!
0.4000
0.8000
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Higher Order Tensors

Arrays can be extended beyond conventional
tables, e.g. to 3-D arrays

Third, fourth, fifth... order tensors

Usually denoted by bold upper case with
underline, e.g. A

Collection of samples from GC-MS, batch runs
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Algebra of Higher Order
Tensors

Not as well defined as conventional linear algebra
Addition and scalar multiplication as expected

Multiplication of tensors definitions not
universally accepted
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Summary

Basic vector and matrix operations
¢ addition and subtraction
* multiplication
* vector inner and outer products

Matrix rank
¢ number of independent rows or columns (same)
¢ rank < min{m,n} (number of rows and columns)
» found by reducing to echelon form

Matrix inverses
* exist only for square matrices
¢ do not exist for rank deficient matrices

Least squares
* used to solve inconsistent systems

* solution unstable in nearly collinear systems

Singular Value Decomposition and Pseudoinverses

K.
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