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* Motivation/Definitions

* Classes of classification methods

* Linear Discriminant Analysis (LDA)

* K-means and K nearest neighbors (KNN)
+ UNEQ

« SIMCA

* PLS Discriminant Analysis (PLS-DA)
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Motivation

+ Often we want to know what “class” a particular
sample belongs to:
* Does this patient have liver disease?
* Where did this oil come from?
* [s this mushroom an amanita pantheria?

* What chemical am I sensing?

* Many methods have been developed for
classifying samples based on a multivariate
response
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Definitions

Clustering: Identification of natural groupings

(a.k.a. “classes™) of samples without knowledge
of their identity.

Classification: Using samples of known classes (or
a model thereof) to identify the appropriate class
of an unknown. “Supervised Classification”
because we use known classes.
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Classification of Techniques

Parametric
Use information regarding the
parent distribution:
LDA, QDA, SIMCA,
UNEQ, PLS-DA

Discriminating
Samples belong to one and
only one class:

LDA, QDA, KNN, K-Means,
ALLOC, PLS-DA

Probabilistic
Estimate degree of certainty
of classification:

LDA, QDA, ALLOC, SIMCA,
UNEQ, PLS-DA

Non-Parametric

No use of information regarding
parent distribution:

KNN, K-Means, ALLOC, PRIMA

Modeling
Samples belong to one, none
or several classes:

SIMCA, UNEQ, PRIMA

Deterministic
Do not estimate degree of certainty:
KNN, K-Means, PRIMA
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Parametric vs. Nonparametric

To perfectly classify members, have data on all

members of a class!

Short of that, take representative sample

Make assumptions about the distribution of the
population to help make decisions

Works well if assumptions are correct!

If information is available about population
distribution, it should be used
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Discrimination vs. Modeling

+ Discrimination techniques emphasize differences between
classes and try to set boundaries

* Modeling techniques emphasize similarities within classes

*
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Discrimination Modeling
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Probabilistic vs. Deterministic

* Probabilistic: classes have grey boundaries
* Deterministic: classes have sharp boundaries
» Probabilistic classifications often based on Bayes
theorem: P(X. |0 )P(O)
P, | X)) =G
IZ,P(X « 1 OIPQ)

The expression P(Q,|X)) is read: the probability of
class O, given the data X
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Bayes Theorm Example

*  Suppose 90% of our population of people are well (H,), 10% have a
special disease ()

* Thus the prior probability of a person being well is: P(H,) = 0.90

* LetT,,, = anegative test for illness, 7, = a positive test for illness

* Probability of a negative test if they are well is P(7,,,|H;) = 0.95, thus
P(T,,|H,) = 0.05 (false positive or Type 2 error)

* Probability of a positive test if they are ill is P(7,,

0S8

P(T,,|H) = 0.50 (false negative or Type 1 error)
* So the probability they are well if test is negative is

0S ‘

\H,) = 0.50, thus

(H,|T,)= = 0.945
© P, | H)P(H)+P(T,, | Hy)P(H,)
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Linear Discriminant Analysis

* LDA is parametric, probabilistic and
discriminating

» Example: two classes of vapors (polar and
nonpolar) on SAWs coated with two polymers

+ Want to determine axis to project data on that
discriminates between classes
* choose axis so individual distributions are narrow

* choose axis so centers of distributions are far apart
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X2

X2

Linear Discriminant Analysis

LDA seeks axis (in n-D space) which maximizes
ratio of between class to within class variance

Projection onto axis
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LDA Example
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LDA Assumptions

Boundaries between groups are midpoints

between centroids of adjacent groups

Often not the case

Equivalent to assuming distributions identical

In Quadratic Discriminant Analysis (QDA)

distributions not assumed equal, but model is

much more complex

%= EIGENVECTOR

L@\ RESEARCH INCORPORATED

Non-Linear Donut Problem

* Question: How does LDA handle a problem in which one
class is “inside” the other?

* Non-linear problem!

Discrimination vector

points from center of

donut, outward — but you
can’t draw a [straight]
tangent line which closes

off the inside!

(more on this problem later)

Variable X2

Variable X1
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Problems with LDA

* Discriminating axis is calculated to maximize ratio of
between to within group variance by maximizing the
probability P(k|x)

max(P(k | x))=max[-0.5(x—X,)" C,'(x~X,)—0.5In|C,|+In7,]

« (x—-X%,) C.'(x—X,) is the squared Mahalanobis distance

* Problem is calculating the covariance matrix inverse C,!
which may not exist if data is collinear.
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The Collinearity Problem

* Collinearity is a problem in many applications in
analytical chemistry, particularly spectroscopy

* Solution: choose subset of variables that form an
independent set

* Problems:

* How to choose? Often very many combinations, e.g.
83,218,600,080 ways to choose 5 from 400

* Lose multivariate advantage: signal averaging, outlier
detection

» Compare to regression methods: MLR vs. PCR
@8 EIGENVECTOR
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Cluster Analysis

» Implies unsupervised learning
* Object groupings are NOT known a priori
* Objects are grouped based only on their data

+ Agglomerative Clustering: Start with each object as
it’s own cluster, then combine these into larger
clusters
* Ex. Nearest-Neighbor (“KNN”)

 Partitional Clustering: Start with all objects in one
cluster, then separate them into smaller clusters
* Ex. K-means
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Cluster Analysis Methods

Hierarchial Cluster Analysis

y y
Agglomerative Partitional
Clustering Clustering
= " Pa L - 3
eares air- 3 ¥ 4 :
Neighbor l\lj:irt:f)ztr group Centroid '\V/Y;':OZ K- QT Fuzzy
(“KNN”) 9 average Means C-means

Un- K
weighted pieighicd
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k-Nearest Neighbor

* KNN is non-parametric, discriminating,
deterministic and very simple

» The distance between samples is calculated and
the nearest samples are found

» Used as both a clustering and classification
method
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KNN Clustering

* Closest samples are linked together to form groups, then
groups are linked

* Results are often displayed as a dendrogram
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KNN Dendrogram

Dendrogram Using Unscaled Data
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Distances in KNN

Distance can be defined several ways

» Simplest is Euclidean distance

dj = [(x; - xj)T(xi - xj)]1/2

* (Can also use distance on PC scores

d; = [(t; - £)T(t; - )]
* Or Mahalanobis distance

d; = [(x; - x;)TC(x; - x,)]""2
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Mahalanobis Distance

* Mabhalanobis distance measure accounts for fact
that changes in some directions are less likely
(and therefore more significant) than changes in
other directions

Constant Constant
EllClidezm\\ Mahalanobis
distance from distance from
centroid centroid
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Classification in KNN

 Classification of unknowns can be done using a voting
method.

» Locate an odd number of closest samples to an unknown.
The group assignment that is most represented is assumed
to be correct for unknown.

-
- ‘1- unknown (@) is near to 2 #
L - \' X x samples and 1 x so is
~% X g presumed to be a#
X x x
w8 EIGENVECTOR
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Agglomerative Clustering Methods

Distance Between
Method Existing Clusters Linkage Rule
Nearest Minimum of pair—wige dis.tances
Neighbor between any two objects in each .
cluster join 2 nearest clusters
Furthest Maximum of pair-wi§e digtances
Neighbor between any two objects in each .
cluster join 2 nearest clusters
Pair-Group Average distance between all
Average pairs of objects in each cluster join 2 nearest clusters
Centroid Distance between centroid or
or Mean mean of each cluster join 2 nearest clusters
Join clusters such that the resulting
Ward's Method N/A within-cluster variance (with respect to
centroids) is minimized

w8 EIGENVECTOR
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25
k-Means Agglomerative Clustering
 Samples are paired with another ’
sample or a cluster one-at-a 4 2
-time
.. . 3 !
* Position of each cluster is mean °
of all samples in cluster. 45
* Recalculation of distance can “»
take a long time with lots of 6
samples
EIGENVECTOR
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KNN vs. K-Means

Two clusters are grouped together when...

KNN K-Means
...two of their members are the ...the cluster means are the closest
closest of all dissimilar samples of all cluster means
a”® m "
________ ] -
. At [ ] . v , ] - :
/ / !
' v : ' i
v v Y : .
v v \
v \* * v N *X
~ * *-)k—',’ ‘ * *-)k-

X = cluster mean

Note: these rules apply even when one of the
“groups” is a single sample in a group of its own. —
&% EIGENVECTOR
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k-Means Partitional Clustering

* Choose k samples as cluster “targets”

» random selection of samples
* “pure samples”: choose samples on outside of data

(furthest from all other samples)
* Classify all samples into one of those k clusters.
 Calculate mean of each cluster’s samples

» Repeat classification and cluster means until no
samples are re-classed after mean recalculation.

* Much faster, but dependent on initial guess of
samples

EIGENVECTOR
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TOF-SIMS of Time Released
Drug Delivery System

Multilayer drug beads serve as controlled-release
delivery system

TOF-SIMS taken of cross-section of bead

Evaluate integrity of layers, distribution of
ingredients

Thanks to Physical Electronics and Anna Belu for
the data

Reference: A.M. Belu, M.C. Davies, J.M. Newton and N. Patel, “TOF-SIMS Characterization and
Imaging of Controlled-Release Drug Delivery Systems, Anal. Chem., 72(22), pps 5625-5638, 2000
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Imaging Mass Spec

» Image is 256x256x90

* The mass spectrum
was 41945 mass
channels selected and '
binned into 93
channels

150

* Image of total ion 200

count

 false color 250

50 100 150 200 250
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Avicel Pure-Sample k-Means Clustering

False-color MCR Results Pure Pixel Clusters

(3 clusters)
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k-Means Classification

* Done as single-nearest-neighbor classification
(k=1) using cluster means from clustering on
calibration data as samples.

00

~—~a unknown (@) is closest to,
3° \»(73 and therefore presumed to
be in the 1/2/3 cluster

0
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Agglomerative Clustering
Variations

* Distance between groups can be defined as
distance between centroid (K-Means) or furthest
points

* KNN Classification can be done using number of
closest samples but also distance to each of those

samples
« KNN Distance can be used to estimate certainty of
assignment
w8 EIGENVECTOR
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Example: Ward’s Clustering
Method

Group sample into cluster or two clusters together when
that association causes the minimum change in sum
squared deviation from the cluster mean.

Sl \ -
076 ... 0w mi |
o A vo=111v
v
v P (vm =153
Ny v ol
- * N ‘\fk:__./) =1.69
* x
r\um
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Example: Density Based Scan
(DBSCAN)

+ Agglomerative clustering: Connect samples which are
within a specified distance.

» Works well for unusual shaped clusters.

In cluster
/ Not in
° ° o ° ) ° @. cluster

o e o
° oo ° b ’
L]
®e @
() (]
L) e o
o © ee oe o
See: dbscan.m (help dbscan) e
¥ EIGENVECTOR
35 L@\ RESEARCH INCORPORATED

Partitional Clustering Variations

« K-means (Mean of each cluster)
 User selects number of clusters

* Membership based on distance from cluster center

* QT (Quality Threshold)

» User selects maximum cluster diameter

* Membership based on distance from cluster center
* Fuzzy C-means

 User selects number of clusters

* Every object has some “degree of membership” to each
cluster

@8 EIGENVECTOR

36 @\ RESEARCH INCORPORATED

18



Advantages and Problems with
KNN and k-Means

 Although easy to update, KNN and k-means
classification “models” are highly sensitive to the
calibration data supplied.

* Can classify with non-linear behavior if sufficient
sampling is achieved.

* Does NOT explicitly take “density” of samples
into account (Except Ward’s method)

[N 1
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Non-Linear Donut Problem

* Question: How does KNN handle a problem in which one
class is “inside” the other?

* Non-linear problem but
KNN does just fine!

* k-Means, however, does
not do so well (mean of
the outer circle is same as
inner circle)

Variable X2

(yet more on this later)

1
Variable X1
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UNEQ

* A parametric, probabilistic, modeling technique for UNEQually
dispersed classes

* Each class is modeled by its centroid and its covariance.
* A generalized distance is calculated from the class centroid to each

sample: 1
. —p-2)]2
d(k,Mq): cﬂw

n,—(p/n,)

@’ is the Mahalanobis distance, p is the number of variables, n o 18 the
number of objects

d’ = (xk ~X )T C;I (xk _xq)

%= EIGENVECTOR
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Classification with UNEQ

95% confidence limit on class boundaries

-y

EIGENVECTOR
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Problems with UNEQ

* Limited by number of variables that can be used
due to collinearity problem

* Consider: PCA produces new orthogonal variables
— could use UNEQ approach on PCA scores!

» Leads to Soft Independent Modeling of Class
Analogy (SIMCA)

w7 e EIGENVECTOR
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SIMCA

SIMCA i1s a parametric, probabilistic, modeling
technique

Each class is described by an independent PCA
model

New samples are compared with the existing PCA
models to determine if they belong to each class

Samples can belong to one, none or several classes

e 8 EIGENVECTOR
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A SIMCA Model

Axe

Class |
3 PCs
Class 2
1 PC
x4 .
X X Class 3 X1
2 PCs

X3 -
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SIMCA Class Assignment

)
Belongs to Neither Class ¢
P e

Belongs to Class I Only

e 8 EIGENVECTOR
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SIMCA Summary

A SIMCA model is a collection of PCA models, one for
each class
Each PCA model consists of

 avector describing the class mean

» avector describing the variance scaling, if any

* some number of principal component vectors

* the statistical limits on Q
« the statistical limits on Hotelling’s T?

* When a SIMCA model is applied, new samples are
compared with all the class models

« Samples belong to one, none or several classes, based on
distance on Q and T? and confidence limits

%= EIGENVECTOR
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More on SIMCA Class Assignment

 For a given class model, Q and Hotelling’s T? can
have statistical limits put onto them. Falling
inside both limits implies the sample is a member
of the class.

* (Can also determine class assignment based on just
one or the other statistic (Q is often most sensitive
of the two)

* The confidence levels for the observed value of Q
and T? can also be calculated to determine
probability for the given class.
EEEEEIGENVECTOR
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SIMCA Example: SAW Sensors

» Data consists of responses of 13 SAW sensors
with different coatings exposed to 19 analytes

* Goal: develop SIMCA model that discriminated
polar vapors from non-polar

» Preprocessing: normalize responses to vectors of
unit length (attempt to make response
independent of concentration)

* Develop model on 3/4 of the data, test on
remaining 1/4

[N 1
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Individual PCA Models on
Training Data

Q vs. T*2 for all Data Projected

Q vs. T*2 for all Data Projected
on Model of Non-Polars

on Model of Polars
Class 1 = non-polars
Class 1 = non-polars Class 2 = polars
Class 2 = polars £ 0
10° g g 10° %
2
] 2 2 _O_ P2
K 2 21| £
Q4 A
3o % 2° 2 F e
> > %2 '% 22
+ 2 2

" 2 2 £

-
102 P ﬂﬂy 102 2 2-2

A Fl{a

N H

10 10°
10 10° 10 10" N 10° 102
Value of T2 Value of T2
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Individual PCA Models on
Test Data

Q vs. T”2 for Test Data Projected Q vs. T”2 for Test Data Projected
) on Model of Non-Polars on Model of Polars

P H20 *%EN‘_ Non-polars
CN *

PDCM
10! Polars ————

10°
fiFE BME e Polars ——pw 4120
Non-polars HME

10° \ 10"

BME
noeBik, MEK
E

MIK

Reduced Q

BTHPR NMEre

Reduced Q

£TC

- C CM
101‘0'2 j“ ) 410" 10' 10702 !
10
Reduced T"2

10° 10°
Reduced T2
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SIMCA Example: FTIR of
Edible Oils

Use FT-IR spectra and pattern recognition to distinguish
authentic olive oil from counterfeit or adulterated olive
oil.

Calibration Data consists of corn oil, olive oil, safflower
oil, and corn margarine

Test data consists of new samples of all calibration oils
plus corn oil in olive oil (5, 10, 20, 30 & 40%), almond
oil, peanut oil, and sesame oil.

Used Multiplicative Scatter Correction (MSC) to correct
for baseline and scaling variations and mean-centering to
each individual class.

!E EIGENVECTOR
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All Calibration Samples Projected
onto Olive Oil Model

Value of Q

All Olive Oils

modeled within
boundaries

51

All other oils

modeled —
outside
boundaries

Value of T2

2
10

EEE'EIGENVECTOR
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Test Set Projected onto
Olive Oil Model

Reduced Q

30 & 40%
corn in
olive

52

350 Reduced T2 o™
300} o o Safflower oil -
(@)
250 ® o i
200+ Corn oil -
o o ©
150 @0 ® |
op © 7other oils Corn margarine
50 o False Negative 1
?ﬁgo‘ . —Olive Oil#12
1 2 3 4 5 6 \7
Reduced T? Reduced Q,, =1
(AT
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Test Set Projected onto
Olive Oil Model

16}
14 20% Corn
12} ®
(@4
= 10}
S
_g 81 15% Even low adulterations
qu) 6| @ detected (barely)
4] ‘// ]
0 Reduced =1
of 10%, S 5% __—~Reduce Quax
0 @@ L &0 Oq Qo ! 10 ! !
0 0.1 0.2 0.3 04 05 0.6 0.7

Reduced T2
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Problems with SIMCA

« SIMCA is forced to account for all variance in a class, whether or not
it is unique to that class (as with PCR vs PLS)

o Ifthe between-class variation is smaller than the within-class variation
(or if too many PCs are used) the model false positive rate will

increase as classes “merge”. lass I
¢ Anew class, not seen before A

will usually show up as a %

“negative” on all class models )

(high Q) Therefore, must have

PCA models for each class or

unexpected class is not
alarmed.

As classes merge,
SIMCA fails

Without Class IT model, new class
simply looks like “not Class 1

EEIGENVECTOR
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Non-Linear Donut Problem (again)

Question: How does SIMCA handle a problem in which
one class is “inside” the other?

» Inside class works fine
(=PCA with T? limit)

* Outside class NOT
modelable (except when
including inside class)

Variable X2

* Do by “exclusion” — to be
outside class, it must be
in the combined class but Variable X
not in inside class.

[N 1
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Partial Least Squares Discriminate
Analysis (PLS-DA)

PLS-DA is parametric, probabilistic and modeling

Exactly as with LDA, we want to determine axis

to project data on that discriminates between
classes

* choose axis so individual distributions are narrow

* choose axis so centers of distributions are far apart
Determine axes from factor-based model of data
therefore more stable with high collinearity.

Will automatically attempt to identify directions of
interest!

@8 EIGENVECTOR
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Partial Least Squares Discriminate
Analysis (PLS-DA)

» Use logicals (0,1) in Y-block to indicate if sample
belongs to a class or not.

* Develop PLS model to predict class block

* Thresholds must be set between 0 and 1 to indicate
if new samples are a member of y
each class...

Can use Bayes theorem to set
threshold and include prior probability
of each class

Regression

N
Threshold

s EIGENVECTOR
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Thresholds in PLS-DA

Observed distribution of predictions can be handled in
a straight-forward Bayesian way

Class 1 Class 11

Number of
Samples at Value

-0.5 0.0 0.5 1.0 1.5
Predicted y for Class Il

Probability
Class 1

Probability
Class II

Increasing
Probability

T T -I T
05 00 0.5 1.0 1.5

Predicted y for Class Il
see plsdthres and

discrimprob EEEEElGENVECTOR
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Why PLSDA?

* PCA-based models (like SIMCA) capture variance
within the data set, whether or not that variance is
useful for separating classes.

* PLS-DA tends to capture variance which is useful
in separating classes and ignoring variance within
a class. (goal: maximize between-group variance
while minimizing within-group variance)

* The result is a model which is generally superior
at separating classes (but requires knowledge of
classes being separated)

%= EIGENVECTOR
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Example: Identify Pinot Noir Wine
According to its Region of Origin

We have the following bottles of wine:

Pacific Northwest 17
California 9
France 12

How shall we distinguish the wines?
Wine is mostly water and alcohol.

Need to look at trace differences to distinguish
between wines of different types and/or origins.

@ EIGENVECTOR
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Wine Data X-Block

17 Trace metals concentrations as determined by

Atomic Emission Spectroscopy (ppm):
Cd Mo Mn Ni Cu Al

Ca P K

Preprocessed with autoscaling

7\

Ba
Cr Sr Pb B Mg  Si Na

EﬁiEIGENVECTOR
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PCA Scores Plot for X-Block

of All 38 Samples

NOt Very .gOOd Scores Plot
resolution!
ONW

SIMCA does not

work well either. 4 onw
— ONW
o\o 2 ONW
© onw © onNw
— 1 !E, oFr Wx‘a oCa
© OFr oca 8
~ a
o ONW. Py w_®Ca
I A
e r r ONW

-1 ONW ®Ca
oFr onfNW oca
OFr
OFr ONw/
OFr 1
oCa
T s 4 s

0
PC 1 (24.58%)

I\

6

This suggests that
the major sources
of variance in the
data set are not
due to differences
in the region.

VERY COMMON
PROBLEM!

EiiﬁEIGENVECTOR
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Try PLS-1 with the Y-Block
Representing the Origin of the Wine

We could represent the region of origin using numbers:

Pacific Northwest 1
California 2
France 3

Then do a PLS-1

EEFEEIGENVECTOR
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A Bad Idea!

* Such a system implies that California wine is
somehow in between Pacific Northwest and
French wines

* We need to ask the questions:
 Is it a Pacific Northwest wine? Yes or No?
 Is it a California wine? Yes or No?
* Isita French wine? Yes or No?

@ EIGENVECTOR
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A Better Way of Expressing
the Y-Block:

Sample NWACa/FI‘ NW wine
1 0 0«— Not French wine
\

1

Not Calif. wine
2 0 1
3 0 0 1

EIGENVECTOR
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Scores Plot LV2 vs LV1

Much Better Separation

Scores Plot
oCa
s eca California
oCa
7 ®Ca France
X ®Ca
3 i o€ Ofgr, OFr -
~
= OFr orr "
o oreF; oFr
i o
4t Northwest %
WJ ONW
ONW
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Estimation of Learning Set
Northwest Wlnes Using 4 LVs
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Estimation of Learning Set
California Wines Using 4 LVs

Predicted Y(:,2)
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Estimation of Learning Set
French Wmes Usmg 4 LVs
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What’s the Problem?

Cross-validation showed that the Northwest Wines

needed 6 LVs to achieve best separation and our
PLS-2 model used only 4 LVs.

the Learning Set?

Were all types of Northwest Wines represented in

Were there enough samples of all types in the

Learning Set to really define the groups?

Were all the samples labeled correctly?
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Prediction of Test Set
Northwest Wines Using 6 LVs

Scores Plot

1.

\\

NW

6'L\/s Helped,
but still not good
enough

P

Predicted Y(:;,1)

0.2r

4

5

6 7 8 9 10

Sample Number

36



74

73

Prediction of Test Set
California Wmes Using 4 LVs
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Prediction of Test Set French

Wines Using 4 LVs
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This is a Nice Preliminary Study

It demonstrates a great deal of
promise for this approach

Because of the heterogeneous nature of Pinot Noir
wines within a geographic origin, I want a lot more
samples for both the Learning and Test Sets.
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Multiple-Class PLSDA models

Attempting to discriminate one group from several other groups
with a single regression vector may not provide best separation.

0 .

OK... by luck!

= Regression vector
~~" Threshold
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Multiple-Class PLSDA models

Even B versus A and C may
be a problem because
PLSDA will attempt to
make A and C both zero

—> Regression vector
Also not OK! %\ =~ Threshold

N |
P Y
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Multiple-Class PLSDA models

Splitting into multiple PLSDA
/ models (one class vs one class)
provides better results.

Regression vectors can be
optimized for two-group
separation and separate loadings

can be selected for each class
paring.

Use in a multi-block PLS-DA:
Use prediction results from one

! BvsC
AvsC/

-on-one models in a master PLS
-DA model.

= Regression vector
=~ Threshold
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Problems with PLS-DA

* Regression method: Temptation to overfit is
always there (cross-validation should be used).
Sufficient sampling of all classes is necessary.

» Assumes linear (or approximate) plane can be
drawn to separate classes (as does LDA).

* When you want to add new classes, they must be
re-modeled against all other classes.
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Classification Preprocessing:
Questions to consider...

* Does intensity matter? Do you care about aboslute signal
level or just whether a particular covariance is there?
Normalization is common in classification (particularly
with quantitative analytical methods!)

» Are there extraneous sources of variation within your
groups that might make them look more similar than they
are? Consider “pre-whitening” such as with GLSW or
OSC.

 Are there sources of variation between the groups which is
not related to the group (systematic error)? Use baseline
correction or calibration transfer to remove variations, or
adjust your experimental design.
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Classification Summary

» KNN and the like are simple and unassuming but provide
no warning when sample doesn’t fit (i.e. unmodeled class
gives false positive!). Works with non-linear systems but
only with sufficient sampling. New classes added easily.

* SIMCA works well for identifying one class among many
others without requiring models of other classes. If PCA
works well for observing clusters, SIMCA will work well
(and may even when PCA is cluttered). Unmodeled
classes usually show up as true false, but no indicator that
it is otherwise unusual. Easy to add new classes (just
create new class model, add to others).
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Classification Summary (cont...)

* PLS-DA works well when all expected classes are known
and can be superior when within-class differences are
significant relative to between-class differences.
Unmodeled classes detected by unusually high Q or T2.
New classes added by recalculating all models.

* Preprocessing: Consider the physics/chemistry — what do
you expect to be different between the classes and how
should that manifest itself? What other effects might be
present — how can you remove those?

» Sample ID errors will cause problems with all methods!
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