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Nomenclature and Conventions

• Data is arranged in matrices where
• rows correspond to samples or observations, and

columns correspond to variables
• Notation:

· m = number of samples or observations
· n = number of variables
· k = number of Principal Components (PCs) or factors
· T = scores matrix, t1, t2, ..., tk score vectors
· P = loadings matrix, p1, p2, ..., pk loadings vectors
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Variables and Samples

• Examples of variables:
• absorbance at each λ
• ion current at each m/e
• pressure, temperature, flow
• chromatographic peak area

• Examples of samples:
• samples taken to lab
• data samples at time points
• data from specific batches
• etc....
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Data Transformation

• PCA assumes that relationships between
variables are linear

• If possible, non-linear data should be converted
to a linear form

• Examples:
• reaction rates α e-1/T, transform with log
• pipe flow α ΔP4/7 (turbulent flow)
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Mean Centering

• PCA is scale dependent, numerically larger
variables appear more important

• Often we are most interested in how the data
varies around the mean
• not centering can be considered a force fit through 0

• Mean centering is done by subtracting the mean
off each column, thus forming a matrix where
each column has mean of zero
• mncn
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Variance Scaling
• PCA is scale dependent, variance is associated with importance
• This may or may not be true
• In spectra, variance α importance (probably)
• If variables have different units, variance ~α importance
• Autoscaling - divide each (mean centered) variable by its

standard deviation, result is variables with unit variance
• autoscaling implies both mean centering and scaling to unit variance
• auto

• Other scaling - may want to use a priori information, such as
noise level in variables
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Centering & Scaling Example
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Block Scaling

• With blocks of different variables, may want each
block to have the same variance
• Example: data set with NIR spectra and GC data and a

collection of engineering variables, T, pH, P, Q, etc.
• gscale

• Variables within blocks may be autoscaled or just
mean centered

• Determine factor to multiply each block by so that
total sum of squares (variance) is the same for
each block
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Principal of Projections
• K-space has K dimensions where each variable, or measurement on an

object, is a coordinate axis
• A sample (object) is a point in K-space
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Projection in K-Space
• The projection of an object onto the K-space yields the coordinates of

the object in that space
• e.g. in 3-space this is (x1, x2, x3)
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Projection onto a Vector
• Projection lines are perpendicular to the vector
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Projection onto a Plane
• Projection lines are perpendicular to the plane
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PCA
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PCA

• Geometry for 2 variables
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City Streets Analogy

Puget Sound

Space Needle

Chief Seattle Statue

Momma’s Mexican Kitchen

N
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Where q ≤ min(m,n), and the tipi
T pairs are ordered by the 

amount of variance captured.

Generally, the model is truncated, leaving some small amount 
of variance in a residual matrix:

For a data matrix X with m samples and n variables (generally
assumed to be mean centered and properly scaled), the PCA
decomposition is:

X = t1p1
T + t2p2

T + ... + tkpk
T + ... + tqpq

T

X = t1p1
T + t2p2

T + ... + tkpk
T + E = TkPk

T + E

PCA Math 1 of 3
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PCA Math 2 of 3

The pi are eigenvectors of the covariance matrix of X

cov( )  
-1

T

m
=
X X

X

iii   )cov( ppX !=

and λi are eigenvalues.

Amount of variance captured by tipi
T proportional to λi.
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PCA Math 3 of 3

• What is PCA doing mathematically?
• For a data set X, propose that t = Xp

· i.e. X projected onto factor p yields t
· X is usually centered and scaled
· max{tTt | pTp=1} = max {pTXTXp | pTp=1}
· L(p) = pTXTXp - λ(pTp-1) : take d/dp and set to 0
· XTXp = λp

• Shows that the solution is an
eigenvalue/eigenvector problem
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Properties of PCA
• ti,pi ordered by amount of variance captured
• ti or scores form an orthogonal set Tk which

describe relationship between samples
• pi or loadings form an orthonormal set Pk which

describe relationship between variables

• scores and loadings plots are interpreted in pairs
• e.g. plot ti vs sample number and pi vs variable number

• it is useful to plot ti+1 vs. ti and pi+1 vs. pi
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PC 1
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Sample Scores, ti
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Minimization Criterion
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Some Mathematical
Relationships

•P orthonormal, so PPT = I, PT = P-1 , and Pk
TPk = Ik

•Projection of X onto Pk gives the scores:  Tk = XPk
•Projection of X into PCA model,    , is equal to the scores times

the loadings:
•Residual E is the difference between X and    , thus:

•PCA:
•SVD:

•T = US
•P = V
•

X̂
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Example: Wine Data

• Examine the relationship between (variables)
• annual consumption of wine, beer, and liquor (gal/yr),
• life expectancy (years), and
• heart disease rate (cases/100,000)

• For 10 different countries (samples)
• France, Italy, Switzerland, Australia, Britain, USA,

Russia, Czech Republic, Japan, and Mexico
• Data from: Time Magazine, Jan. 1996
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Analysis of Wine Data
1 Type pca at the command

prompt » to start the PCA
program.

2 Click File:Load Data:
Calibration:X-Block menu
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Load wine.mat
1 Click From File button to load from disk

(button will change to From Workspace) 2 Browse to
desired folder

4 click load

3 Highlight
wine.mat
and wine

Tip: type in file name!
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Data: loaded but not analyzed

1 status window after load
2 Plot your Data: Select

Edit:Calibration:Plot X-Block

Mouse over X to see
status of loaded data
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Plot Your Data
1  Plot control default

can look at summary stats

2 under view menu
check labels

3 under plot menu
check columns

The Plot control generates plots
in MATLAB figure windows
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Plot Your Data

samples ordered by
wine consumption

use shift key to select multiple columns

Beer

Wine
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Plot Your Data

scale is ~1-2 orders of
magnitude smaller than
for Beer and Wine
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Plot Your Data
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Plot Your Data Summary

• Wine consumption
• France, Italy, Switz high
• Rus, Czech, Jap, Mex low

• Beer consumption
• Czech high
• Italy, Russia low

• Liquor consumption
• Russia high
• Italy, Czech, Mex low

• Life Expectancy
• Japan high
• Russia low

• Heart Disease Rate
• Russia high
• Japan, Mexico low

• Some trends are apparent
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How should we scale the data?
• Variables are in different units (apples and

oranges): suggests autoscaling
• Variable’s standard deviations are of different

magnitudes: suggests autoscaling

1 autoscaling is the default

2 click Calculate or
Model to perform the
PCA decomposition

Do the PCA Decomposition
1 After the calc button:

• variance captured table: eigenvalues and % variance explained for
each PC.

for autoscaled data:
PCs w/ Eigenvalues > 1
capture more variance
than any single variable

2 Click Plot Eigenvalues
button to plot the eigenvalues

}
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Eigenvalue Plot

From this and other considerations
you may choose the number of PCs
that are significant.
Since we’re doing exploratory data
analysis it doesn’t really matter.

Perhaps 2 (or 4)?
Leave one out CV suggests 1.

Plot the eigenvalues vs. PC.
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Choose Number of PCs
1 Highlight the

second line to
select 2 PCs

2 Click the Apply
Model button to
construct a 2 PC
model

3 Click the scores button
to make scores plots,
loads button to for
loadings plots
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Scores and
Loads

on PC 1

46%
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PC 1

• Heart Disease Rate and Liquor Consumption are
correlated

• Wine and Life Expectancy are correlated
• Heart Disease Rate and Liquor Consumption are

anti-correlated with Wine and Life Expectancy
• Russia is Low on PC 1

• But let’s look at PC 2 vs 1 ...
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78%
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• HeartD and Beer: Orthogonal
• Russia is the most unusual, why?

• tends to be high in Liquor and HeartD and low in
Beer and LifeEx

• Trend from France to Czech, why?
• France relatively high in wine and low in Beer, and

HeartD
• Czech relatively high in Beer and HeartD, and low

in Wine

PC 2 vs. 1
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How many PC’s
to model this data?
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        Percent Variance Captured by PCA Model
  
Principal     Eigenvalue     % Variance     % Variance
Component         of          Captured       Captured
 Number         Cov(X)        This  PC        Total
---------     ----------     ----------     ----------
     1         8.79e+00         54.96          54.96
     2         5.29e+00         33.05          88.01
     3         2.49e-01          1.56          89.57
     4         2.17e-01          1.35          90.92
     5         1.80e-01          1.12          92.05
     6         1.66e-01          1.04          93.08
     7         1.51e-01          0.94          94.03
     8         1.41e-01          0.88          94.91
     9         1.33e-01          0.83          95.74
    10         1.22e-01          0.76          96.51
    11         1.19e-01          0.74          97.25
    12         1.09e-01          0.68          97.93
    13         1.03e-01          0.65          98.58
    14         8.52e-02          0.53          99.11
    15         7.36e-02          0.46          99.57

Variance Captured

Which trend does PC 1 capture?

Which trend does PC 2 capture?
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Example: ARCH
• 10 Variables: metal concentration (ppm via XRF)
• 75 Samples:

• 63 obsidian samples from 4 quarries (known origin)
• 12 artifacts (unknown origin)

• Data Matrix X is 75 by 10
• Load data from arch.mat

• c:\MATLAB704\toolbox\PLS_Toolbox\dems\arch.mat
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Raw Data from ARCH

View:Labels
checked
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Variance Captured by
PCA Model

4 PCs
automatically
selected



PC 1
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Scores on PC 2 vs 1
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Biplot: PC 2 vs 1

BL
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Variance Captured by
Variables

1 Click varcap
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Control Limits for PCA Statistics
• Control limits can be set for

• lack of fit statistics: for a row of E, ei, and a row of X, xi
• Q contributions

• Q residual (sum of squares)

• Hotelling’s T2: for a row of Tk, ti, and kxk diagonal matrix λ
• T2 contributions

• T2

• also for:
• scores, tij

• residuals eij
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Q Residuals for ARCH data

1 Check Conf. Limits

57

T2 for ARCH
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Contributions

• Contributions to Q show how samples are
different from the PCA model
• Contributions to Q are a row of E

• Contributions to T2 show how the original
variables deviate from the mean within the model
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Q Residuals for Wine:
Q Contributions for

Mexico

1 Click Q con

2 Select Sample
Mexico
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T2 for Wine:
 T2 Contributions for

Russia

1 Click T con

2 Select Sample
Russia
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Outliers
• Outlier samples can have a large influence

on a PCA model
• However, they are usually easily found!
• To check for outliers, look for:

• stray samples on scores plots
• samples with very high Q, T2, or both



62

Selecting Samples: ARCH Data

1 Click Select

2 Drag Box to
select samples
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Deleting Samples:
ARCH Data

1 Edit menu highlight
Exclude Selection



64

Graphically Editing
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As more PCs are kept in the model, the fit improves,
but ....
The validity of the model, when applied to new
data, eventually declines

Number of PCs

Model Fit

Validity of Each PC

Validity of Model

How Many Principal
Components?
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Determining the Number of
Principal Components

• Determination of the right number of PCs to
retain in a model not always simple

• Many methods available:
• Plot eigenvalues, look for “knee”
• Ratios of successive eigenvalues
• For autoscaled data, retain PCs with λ > ~1-2
• Retain PCs with %variance > noise level
• Omit PCs that don’t make sense!
• Use cross-validation
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Cross-Validation
• Divide data set into j subsets
• Build PCA model on j-1 subsets
• Calculate PRESS (Predictive Residual Sum

of Squares) for the subset left out
• (PCA method uses estimates of “missing”)

• Repeat j times (until all subsets have been
left out once)

• Look for minimum or knee in PRESS curve
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PCA Cross-validation

Break data
into n sets

(here n = 3)

Use all but
one set to
build PCA

model

Use loadings
and all but one

variable to
estimate

remaining
variable

Loop over
• number of PCs
• left out variables
• left out test set
Calculate estimation
error as function of
number of PCs used
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Cross-Validation
1 Tools menu

highlight Cross-Val
2 Select Cross-validation method

3 Click calc button to
perform decomposition
and Cross-Validation

4 Click Plot Eigenvalues
button to plot Eigenvalues
and RMSECV
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•center new data to the mean of the calibration data
     Xc = X - 1xmean
•scale the centered data using standard deviations of cal data
     Xs = Xc . / 1xstd
•project centered and scaled data onto loadings to get new scores 
     Tnew = XsPk
•calculate new residuals
     Enew = Xs - TnewPk

T = Xs(I - PPT)
•calculate new Q residuals
     Qnew = diag(EnewEnew

T)
•calculate new T2 values
     T2

new = Tnewλ−1Tnew
T = XsPkλ−1Pk

TXs
T 

•compare Tnew, Enew, Qnew and T2
new to previously determined limits

PCA Application to New Data
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PCA scores can be
combined with
traditional statistical
process control tools:
Shewart
Range
X-bar
CUSUM, etc...
Result is Multivariate
Statistical Process
Control (MSPC)
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PC
A

Dirty T-Shirt Analogy

Data

PCA attempts to partition the data into
deterministic and non-deterministic portions


