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Nomenclature and Conventions

e Data is arranged in matrices where

* rows correspond to samples or observations, and
columns correspond to variables
* Notation:
- m = number of samples or observations
- n =number of variables
-k = number of Principal Components (PCs) or factors
- T =scores matrix, t, t,, ..., t, score vectors

- P =loadings matrix, p,, p,, ..., P, loadings vectors
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Variables and Samples

e Examples of variables: :
variables

 absorbance at each A 1,2,3, ... n

e jon current at each m/e 1

® pressure, temperature, flow

H w

Data

e chromatographic peak area i
Matrix

samples

* Examples of samples:

e samples taken to lab

* data samples at time points m

data from specific batches
* etc....
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Data Transformation

* PCA assumes that relationships between
variables are linear

 [f possible, non-linear data should be converted
to a linear form
e Examples:
e reaction rates o e’V'T, transform with log
* pipe flow oo AP*7 (turbulent flow)
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Mean Centering

* PCA is scale dependent, numerically larger
variables appear more important

¢ Often we are most interested in how the data
varies around the mean

* not centering can be considered a force fit through 0

* Mean centering is done by subtracting the mean
off each column, thus forming a matrix where
each column has mean of zero

* mMncn
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Variance Scaling

PCA is scale dependent, variance is associated with importance
This may or may not be true

In spectra, variance o importance (probably)

If variables have different units, variance ~o importance

Autoscaling - divide each (mean centered) variable by its
standard deviation, result is variables with unit variance
e autoscaling implies both mean centering and scaling to unit variance
« auto
Other scaling - may want to use a priori information, such as
noise level in variables
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Centering & Scaling Example
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Block Scaling

* With blocks of different variables, may want each
block to have the same variance

* Example: data set with NIR spectra and GC data and a
collection of engineering variables, T, pH, P, Q, etc.

» gscale

e Variables within blocks may be autoscaled or just

mean centered

e Determine factor to multiply each block by so that
total sum of squares (variance) is the same for

each block
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Principal of Projections

K-space has K dimensions where each variable, or measurement on an
object, is a coordinate axis

A sample (object) is a point in K-space

Variable 3

anad® |
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Projection in K-Space

The projection of an object onto the K-space yields the coordinates of
the object in that space

* e.g.1in 3-space this is (X;, X,, X3)
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Projection onto a Vector

* Projection lines are perpendicular to the vector

Variable 3
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Projection onto a Plane

* Projection lines are perpendicular to the plane

Variable 3

N aiad® 3
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Variable 2

Variable 3

Var
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PCA

* Geometry for 2 variables
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PCA Math 1 of 3

For a data matrix X with m samples and n variables (generally
assumed to be mean centered and properly scaled), the PCA
decomposition is:

X=tp +tp, +..+tp’+ .. +tpr’

Where q < min(m,n), and the t,p,™ pairs are ordered by the
amount of variance captured.

Generally, the model is truncated, leaving some small amount
of variance in a residual matrix:
X=tp +tp,+..+tp " +E=T P +E
E;EE EIGENVECTOR
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PCA Math 2 of 3

variables

[ ] [ ] 1
p1 p2 Px
X 4 bt 4.+ 4+ E

samples

The p; are eigenvectors of the covariance matrix of X
X"X

cov(X) =

cov(X)p; =Ap;
and A, are eigenvalues.

Amount of variance captured by tp,T proportional to A,.

i EIGENVECTOR
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PCA Math 3 of 3

* What is PCA doing mathematically?

* For a data set X, propose that t = Xp
- 1.e. X projected onto factor p yields t
- X is usually centered and scaled
- max{tTt | pTp=1} = max {p"™X"Xp | pTp=1}
- L(p) = p™X"Xp - MpTp-1) : take d/dp and set to 0
- X™Xp=2Ap
* Shows that the solution is an
eigenvalue/eigenvector problem
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Properties of PCA

* t, p; ordered by amount of variance captured

* t, or scores form an orthogonal set T, which
describe relationship between samples

* p, or loadings form an orthonormal set P, which
describe relationship between variables

 scores and loadings plots are interpreted in pairs
* e.g.plot t, vs sample number and p, vs variable number

* itis useful to plot t. , vs. t, and p,,, vs. p;
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Variable Loadings, p;

%, PC 1
. o
1 Unit I
lo) e
—
o fo) &
on
o £
(6) 3
X, . 9
o © ° loading for x,
O O
o o p, = [3 2]°/sqrt(3? + 22)
o - [0.8321 0.5547]°
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Sample Scores, t

X, PC 1
) (o]
1 Unit
(o]
(o]
(o]
(o]
X, . %QO@
N
o o (0] \/%%((\Q
o) (o]
o o t, = [2.25 1]* [0.8321 0.55477]°
(o] = 2.4368
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Minimization Criterion
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Some Mathematical
Relationships

*P orthonormal, so PPT =1, PT=P-! Jand P,"P, =1,

*Projection of X onto P, gives the scores: T, = XP,

*Projection of X into PCA model, 5(, is equal to the scores times
the loadings: X =T P =(-T, )(- PkT) A

*Residual E is the difference between X and X, thus:
E=X-X=X-T.P/ =X-XP,P =X(-P,P])

*PCA: X=TP' =T, P +E

*SVD: X=USV"
T =US
P=V

*S; = (m - 1)&
PNEIGENVECTOR
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Example: Wine Data

* Examine the relationship between (variables)
* annual consumption of wine, beer, and liquor (gal/yr),
* life expectancy (years), and
* heart disease rate (cases/100,000)

* For 10 different countries (samples)

* France, Italy, Switzerland, Australia, Britain, USA,
Russia, Czech Republic, Japan, and Mexico

* Data from: Time Magazine, Jan. 1996

PNEIGENVECTOR
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Analysis of Wine Data

1 Type pca at the command
prompt » to start the PCA

program. 1
800 Analysis - PLS

File Edit Preprocess Analysis Tools Help FigBrowser

~ [K 8¢ R

MVB idation

Tabie

(No Model)

View: || ssa IPLS Varablo Solection
Numbor LV

2 Click File:Load Data:
Calibration: X-Block menu

{

[ XeYe Analysi
[{[0 Edit Preprocess Analysis Tools Help FigBrowser
Load Data

PLS (No Model)

> ™ Calibration »
Import Data »
New Data

Load Model
Import Model
Load Prediction
Load Options

X-Block

Save

26

27

Analysis Help amodel is
imported and/or a model can be loaded using the File menu.

S ———————

Analysis.

ata nor a model v
imporied andlor a model can be loaded using the File men.

——

@Y EIGENVECTOR
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Load wine.mat
1 Click From File button to load from disk

(button will change to From Workspace)

®oco 0 tad 00000000
Select XBLOCK Data
b

LookIn: | jappiications/MATLAB74/100lbox/PLS_Toolbox_S/dems

Variables

2 Browse to
desired folder

Highlight
wine.mat
and wine

V\:

W ine.mat ‘ine
From Workspace Open I Load

Variable:

Tip: type in file name!

4

—

click load

@Y EIGENVECTOR
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Data: loaded but not analyzed

2 Plot your Data: Select

1 status window after l(id/ Edit:Calibration:Plot X-Block
o)) Mg—:lsmnhd&ddz—!ge

| File Edit Preprocess Analysis Tools Help FigBrowser

[ B8 SRR

M—)I Validation
= =

Mouse over X to see
status of loaded data

Data has boon loaded but oplions (trom the
o o Eoals manse A Eahbrai s mode) Banirers b, The data
Viewed and ediled with the Edit ment.

IGENVECTOR
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Plot Your Data

The Plot control generates plots

1 Plot control default
comrot detat in MATLAB figure windows

can look at summary stats

’ 2 under view menu 3 under plot menu
check labels check columns

| ® O O Plot Controls

File Edit View Plot FigBrowse
| -Fig 1: X-data |+{
x| Varables [ ] ! Da ———
y: Dala Lahels Ctrl+L »  Variable FESET—
i1dDav y: Data Classes  Ctrl+Z Nurrbar bissing
k‘mﬁ‘ﬂﬁ;‘&g e | Excluded Data  Ctrl+E
Numbe:
Declutter Labels Ctrl+K »
Label Angle Ctrl+A 3
Axis Lines 4
Diagonal 1:1 line
i .
Log Scales » £l I+
¥ autoupsate
| . | AutoY-Scale Ctrl+F »
2z [ ] | | Salect Tool
™ auto-updata Pai Subplots »
Duplicate Figure Ctrl+D
| Salect H Taol .

% Spawn Static View r m
Setinger & EIGENVECTOR
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Plot Your Data

samples ordered by
wine consumption

Country
140 T
® O ) Plot Controls | 1201
File Edit View Plot FigBrowse
[ -Fig 1: X-data ™ 100
.| sample 14+
T 80
’ 2
LH)& E'- g
HearD g B0 F
40+
20
z:{ nane 'ﬂ 0 IMexico
¥ auovpdate 10
[ Salect J[ Toot ]
use shift key to select multiple columns
30
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Plot Your Data

scale is ~1-2 orders of
magnitude smaller than

Country
4 T T T
+Russia
1\
for Beer and Wlne 35t A
\
\
"® 0 O Plot Controls |
File Edit View Plot FigBrowse 3r ‘\‘
|
. \
| Fig 1: Xdala 3] S5 France “‘
.| Sample |+‘ § g \
v-‘ 3 U S.A \ Japan
* Wine 2r A2 |
Beer . ) \
LiteEx +Swnz y |
EEL L \
15F ) Bt \
\ ‘ “yAustra ““
1k Vo YCzech :
Haly [Mexico
05 . . . . | | | |
1 2 3 4 5 B 7 8 9 10
z! none |+{ Sample
7 autsupdate
‘ Salact ” Taol |
31
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Plot Your Data

. . ICounlryI ,'.Ja -

7g|France ltaly  Switz | Austra
771 4 Brit
sl LUSA

Country sr

+Russ|a % 74 } \
/ 73l +‘Czech {Mexico
72r
+Czech
\ 71
70+
Brit VL
+5 / | Russi
e 59 L \Russia
Austra fU.SA 1 2 3 ) 5 B 7 8 CIEL]
Sample
Jaly- _Bwitz
|France
JJapal exico
1 2 3 4 5 B 7 g 9 10
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Plot Your Data Summary

* Wine consumption

* Life Expectancy

* France, Italy, Switz high

* Rus, Czech, Jap, Mex 1
* Beer consumption
* Czech high
e Italy, Russia low
e Liquor consumption
* Russia high
e Italy, Czech, Mex low

ow

* Japan high

¢ Russia low

¢ Heart Disease Rate

* Russia high
* Japan, Mexico low

e Some trends are apparent

PNEIGENVECTOR
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How should we scale the data?

* Variables are in different units (apples and

oranges): suggests autoscaling

e Variable’s standard deviations are of different
magnitudes: suggests autoscaling

800 Analysis - PLS (No Model) - Wine
File Edit I3 JeXl Analysis Tools Help FigBrowser
ESERE X-block [V
T > | Mean Center
_ Load Preprocessing > MEAICHEIT
Save Preprocessing  » | Customn...
Plot Preprocessed Data » | Set Current As Default 2|
' S — |
LIS
Data has be i i
Pr d d calibrate a model
viewed and eciled wit the Edit ment

34

— = | autoscaling is the default

P 47
2 click Calculate o
Model to perform the
PCA decomposition
w7 EIGENVECTOR
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Do the PCA Decomposition

1 After the calc button:

* variance captured table: eigenvalues and % variance explained for

each PC.
O®O00  Analysis-PCA - Wine

File Edit Preprocess Analysis Tools Help FigBrowser

>~ 8 v

P
ode
_J Calibration Validation

View: SSQ T

A model has been calibrated from the data. Review the model using the toolbar button(s), save
the model (File menu), or load test (validation) data (File menu). The number of components,
preprocessing options, and other settings can also be modified to adjust the model. The data
can be viewed and edited from the Edit menu.

2 Click Plot Eigenvalues
button to plot the eigenvalues

for autoscaled data:

. PCs w/ Eigenvalues > 1

capture more variance
than any single variable



Eigenvalue Plot

Plot the eigenvalues vs. PC.

From this and other considerations

Eigenvalues for Wine

25 you may choose the number of PCs
that are significant.
i Since we’re doing exploratory data
ol S analysis it doesn’t really matter.
— _Perhaps 2 (or 4)?
os} *~;+ Leave one out CV suggests 1.
U1 1 .I5 2I 2.‘5 é 3.‘5 4‘1 4.‘5 5 FoEE
Principal Component Number AL EIGE NVECTO R
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Choose Number of PCs
1 Highlight the 2 Click the Apply 3 Click the scores button
‘ second lineto  Model button to to make scores plots,
select 2 PCs construct a 2 PC loads button to for

model oadings plots

000 Analysis - PCA 2 PCs - Wine
File Edit Preprocess Analysis Tools Help FigBrowser

‘The modeling setiings have changed and the model must be recalculated (Calibrate buton). ‘Amodel has been calibraled from the data. Review the model using the loolbar butlon(s), save
the o load lest (File menu). The

The data

can be viewed and edited from the Edit menu.

E?EEEIGENVECTOR
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Scores Plot of Wine

7,—‘}"3|y T
Scores and = _,
[ +Japan 1
Loa ds <3 al st Bt / / TMexicn
] =l /
g o +U S.A
on PC 1 | |
5 {Czech
06 Lc:adings F‘Ilot forWir:e +LifeEx . v
+Wine ‘_‘I_‘Rusma
04F ' ) ) ) ) ) ) )
3 4 5 B 7 g 9 10
= 02f Sample Scale
LE?’ 0F Beer
o ¥
2 0
2»0.2 H 46 /o
£ ht_iqunr
& 04| :
HeartD
06+ T
08 15 2 25 3 35 3 5 5 EEEE EIGENVECTOR
Variables L@\NZJ RESEARCH INCORPORATED
* Heart Disease Rate and Liquor Consumption are
correlated
* Wine and Life Expectancy are correlated
* Heart Disease Rate and Liquor Consumption are
anti-correlated with Wine and Life Expectancy
* Russiais Low on PC 1
e Butlet’slookatPC2vs 1 ...
r\um
s EIGENVECTOR
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Loadings Plot for Wine
08 T

—
Scores and |
Loads
§ 02t .
On PC 2 Vs. 1 e HeartD LifeEx
§ o
Scores Plot of Wine o
25 . . - N - . . . . . OWme
oL oCzech quum 1
151 1 03 92 01 0 01 02 03 04 05
= 1} it fustra | Loadings on PC 1 (46.03%)
é 05t oU.5.AMexico
§ oF Japan 7
S 05| ° otz | 78 %
E Al i ltaly
15+ oFrane
-2 ﬁussia 4
25355 2 a5 4 05 0o 05 1 1% :1:. EIGENVECTOR
Scores on PC 1 (46.03%) L@\ RESEARCH INCORPORATED
PC 2vs. 1
e HeartD and Beer: Orthogonal
* Russia is the most unusual, why?
* tends to be high in Liquor and HeartD and low in
Beer and LifeEx
e Trend from France to Czech, why?
* France relatively high in wine and low in Beer, and
HeartD
* (Czech relatively high in Beer and HeartD, and low
in Wine
s EIGENVECTOR
41

L@\ RESEARCH INCORPORATED



42

43

How many PC’s
to model this data?

0.5

NS

-0.5

o
ENISECENES

w
Ao

FAMRYE.

-1.5

0.5
-0.5

w
0
R 11 12
-2
W

N Ao

-0.5

-0.5

-1.5

0
-0.2
-0.4
-0.6

16

o~ N W

Abonvro

NN
M NI

=~ EIGENVECTOR

L@\ RESEARCH INCORPORATED

Variance Captured

Percent Variance Captured by PCA Model

Principal Eigenvalue % Variance % Variance
Component of Captured Captured
Number Cov (X) This PC Total
1 8.79e+00 54.96 54.96
2 5.29e+00 33.05 88.01
3 2.49%e-01 1.56 89.57
4 2.17e-01 1.35 90.92
5 1.80e-01 1.12 92.05
6 1.66e-01 1.04 93.08
7 1.51e-01 0.94 94.03
8 1.41e-01 0.88 94.91
9 1.33e-01 0.83 95.74
10 1.22e-01 0.76 96.51
11 1.19%e-01 0.74 97.25
12 1.09e-01 0.68 97.93
13 1.03e-01 0.65 98.58
14 8.52e-02 0.53 99.11
15 7.36e-02 0.46 99.57

Which trend does PC 1 capture?
Which trend does PC 2 capture?

EIGENVECTOR
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PC 1: Scores and Loadings
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PC 2: Scores and Loadings
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4
n

PC 2 vs.

S
=
T

15
T

o
T

S

& Loadings fer PGH# 2o

i
T

e Data Matrix X is 75 by 10
e J.oad data from arch.mat

6
s
Sl
PC 1 H)
U °
! & @
= o @
1} (I;:l (e} o
or o 4 [
5 o
5 0 %0 ’ &
=] 5 @ o
NS o] oo
o @ °® o
o s
. 2F o &, %
Loadings for PC# 1 versus PC# 2 % o oo olaw g
: . : —31 Yo . o =)
- o
24+15
4 . . .
s 3 2 - 0 1 23 4 5
Score on First PC
* Tot o
9
16 )
11
]44# 4
L L L 3 L L L
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Loadings for PC# 1
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Example: ARCH

e 10 Variables: metal concentration (ppm via XRF)
e 75 Samples:

* 63 obsidian samples from 4 quarries (known origin)

* 12 artifacts (unknown origin)

e c:\MATLAB704\toolbox\PLS_Toolbox\dems\arch.mat

PNEIGENVECTOR
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Raw Data from ARCH

View:Labels
' checked

©

File Edit View Plot FigBrowse 8
| -Fig 1: X-data 5
x:| Variables )-;-‘
¥: I_

i2an

StdDev

Mean+StdDev

Number Missing

2 i+ Variables

o e EIGENVECTOR
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Variance Captured by
PCA Model

File Edit Preprocess Analysis Tools Help FigBrowser

» (A8 vease

Model /] I
_J Calibration _j Validation
View: $SQ Table
Number PCs:| 4 TG
Percent Captured by PCA Model
Principal Eigenvalue variance % Variance
Component of Cov(X) This PC Cumulative
5.25e+00
.08e+00
8e+00

4 PCs
automatically
selected :

A model has been calibrated from the data. Review the model using the toolbar button(s), save
the model (File menu), or load test (validation) data (File menu). The number of components,
preprocessing options, and other settings can also be modified to adjust the model. The data
can be viewed and edited from the Edit menu.

Suggested

1
2
3
8
9
Q

L47e-02 0.35

IGENVECTOR
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PC 1

G ™ O Plot Controls
File Edit View Plot FigBrowse

|
|

| -Fig 2: Samples/Scores - PCA 4 P... |8

x:| sample [

¥i Seores an
Scores on PC 3 (10.8.
Scores on PC 4 )
Residuals [7.50%)
Holaling T°2 (92.50%)

| ® O O Plot Controls

File Edit View Plot FigBrowse

| -Fig 3: VariablesiLoadings - PCA 4... |4 1
x:| Varable ]
z:| none b
- ¥: ?
Plat Laadings on PG 2 (20.78%)
Loadings on PC 3 (10.82%)
Loadings on PC 4 (8.38%)
| Q Residuals (7.50%)
Hatelling T*2 (92.50%)
| Q cor
| datal
] Show ¢
M cont.L
2| none [E3 |
¥ autoupdata
[ Select [ e ]
| varcap ‘ data ‘
| info

Loadings on PC 1 (52.52%)

Scores on PC 1 (52.52%)

01k
02
0.3

Scores Plot of arch

RN
Al

&2 B

e3
gy

05

30 40
Samnle Scale

Loadings Plot for arch

oafe
03t

02

Tl Ba

——4Ca

Wariables

Scores on PC 2vs 1

i ® O O Plot Controls

Scores Plot of arch

File Edit View Plot FigBrowse 4 T T T T T T T
{ -Fig 2: Samples/Seares - PCA 4 P... | :{ BLT7
x:| Scores on PG 1 (52.52%) | :‘ 3 VAR _
2 W-AB
v Scorss on PG 1 (52.52%) BL-6 WIAWKLDE
ool wan' o |
atalling T* %) 4
o e & -BLBbR3 Fa
g B =
SRIET ]
& |.BLavz
s of’
z:| nons -+ 2
- o
W auto-update @ at
| Selact || Taal
‘ Qcon | Teon
2k 4
‘ data | infa
w Cal Data with Test _ -3 ) ) ) ) ) )
() Cont. Limits: 3 2 -1 0 1 2
Scores on PC 1 (52.52%)
[ A~ [ ] E
IGENVECTOR
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Biplot:

"® O O Plot Controls
File Edit View Plot FigBrowse
e
x:{ PC 1 (52.52%) s I
y: PG 1(52.52%)
W

PC 4 (8.38%)

-Fig 4: Biplot - PCA 4 PCs - arch

Z:
E aulg-update

‘ Selact H

nane

E True Biplot

52

PC 2 (20.78%)

05

PC2vs 1

Biplot of arch

0.4r
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02r

K
v

:§2 1

©43 v J

it
(Ba <Fg

ANA E

0.2

.
0.1 02 03 0.4
PC 1 (52.52%)
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0.5

Variance Captured by
Variables

] ® O O Plot Controls

File Edit View Plot FigBrowse

| -Fig 3: Variables/Loadings - PCA 4... |& l

x:“ Variable [ l

P
Loadings an P
Loadings on P

asiduale
Hataling T*2

2:| none |&

M auto-update

[ Selact I

Taol |
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Percent Variance Captured

20

Yariance Captured for a 4 PC Model of arch .
P

Click varcap

T T
@A
o -

o
]

& I [1] 8 T T I&l
'S = c
X =

Variable
[ A~ [ ]
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Geometry of Q and T?

8 Sample With large Q -

First PC
Unusual variation outside the model '
- |
64
on / : -~
2 . 90 /“sample with large T2
:':3 ) . Unusual variation inside the model
g ~
> 2 Second PC
0
6 >
%6
e )
N e
r\um
e EIGENVECTOR
54 L
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Control Limits for PCA Statistics

¢ Control limits can be set for

* lack of fit statistics: for arow of E, e;, and a row of X, x;
¢ Q contributions
e, =x(I-PP/)
¢ Q residual (sum of squares)
O=eel =x,(I-PP )x/
* Hotelling’s T%: for a row of T,, t;, and kxk diagonal matrix A
¢ T2 contributions
'Ti?con = til_IPkT = XiPkﬂ“_IPkT
o« T2
T =tA't] =x,PA'P/x]
e also for:

* scores, tij

* residuals e;;
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Q Residuals for ARCH data

"® O O Plot Controls
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] ™ O O Plot Controls

File Edit View Plot FigBrowse
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T? for ARCH

Scores Plot of arch

o
T
L
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Q Residuals (21.86%)

o

05

a

Contributions

e Contributions to Q show how samples are

different from the PCA model

e Contributions to Q are a row of E
e, = x,(I-P,P))

o Contributions to T? show how the original
variables deviate from the mean within the model

=t AP/ =xP AP/

1 con

Scores Plot of Wine
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2 Select Sample/y,

-~ Russia,

Mexico
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Sample Scale

) ) O Plot Controls.

File Edit View Plot FigBrowsel

| -Fig 1: Samples/Scores - PCA 2 PC.. |:4|
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Q Residual Contributi

=~ EIGENVECTOR

L@\ RESEARCH INCORPORATED

Q Residuals for Wine:
Q Contributions for

Mexico

Sample 10 Mexico Q Residual = 3.717

1 Click Q con

3
Variable
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Outliers
* QOutlier samples can have a large influence
on a PCA model
* However, they are usually easily found!

e To check for outliers, look for:
* stray samples on scores plots
» samples with very high Q, T2, or both
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Selecting Samples: ARCH Data

a00 Figure 1: Samples/Scores - PCA 4 PCs - arch
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Graphically Editing

™ O O Plot Controls

File I!E! View Plot FigBrowse|
Copy Figure

Copy Plotted Data

mFl

Select All

Deselect All

Select Class

Select Excluded
Selection Mode 4

X ox
opeyml

X

M
ok

Include All

Exclude Selection
Include Selection
Include Only Selection
Info on Selection

Set Class of Selection
Make Selection Missing

Exclude Plotted Data
Include Plotted Data
Include Only Plotted

b CERN N

Choose all (Y) in class...

® O O Plot Contrals

File Edit@EW Plot FigBrowsel

Table Cul+T
Numbers  Ctrl+U

Labels Ctrl+L 4
Classes  Ctrl+Z 4
Excluded Data

Declutter Labels Ctrl+K »
Label Angle Ctrl+A 4

Axis Lines 4
Diagonal 1:1 line
Log Scales 3

Auto Y-Scale Ctrl+F »

Subplots »
Duplicate Figure Ctrl+D
Spawn Static View

Dock Controls

Settings...
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How Many Principal
Components?

As more PCs are kept in the model, the fit improves,

but ....

The validity of the model, when applied to new

data, eventually declines

Number of PCs

Model Fit

Validity of Each PC

Validity of Model
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Determining the Number of
Principal Components

e Determination of the right number of PCs to
retain in a model not always simple

* Many methods available:
* Plot eigenvalues, look for “knee”

Ratios of successive eigenvalues

* For autoscaled data, retain PCs with A > ~1-2
Retain PCs with %variance > noise level
Omit PCs that don’t make sense!

e Use cross-validation

i EIGENVECTOR
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Knees and Ratios

Data Set A Data Set B
10 Eigenvalue vs. PC Number 14 Eigenvalue Ratio vs. PC Number
o |o
22
8 g
g &
S fin]
8 58
R =z !
i} o
4 o0
@4
2
2
0 10 15 20 % 10 20 30
PC Number PC Number
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Cross-Validation

* Divide data set into j subsets
* Build PCA model on j-1 subsets

e Calculate PRESS (Predictive Residual Sum
of Squares) for the subset left out

* (PCA method uses estimates of “missing”)

* Repeat j times (until all subsets have been
left out once)

¢ Look for minimum or knee in PRESS curve

PNEIGENVECTOR
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PCA Cross-validation

Use all but
one set to
build PCA Loop over
model e number of PCs
e left out variables
e left out test set
Use loadings Calculate estimation
Break data and all but one error as function of
into 7 sets - .
variable to number of PCs used
(here n =3) .
estimate
remaining
variable

PNEIGENVECTOR
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Cross-Validation Examples

PRESS Plot for NIR Data

<
*

S,
T

5 10
Number of Principal Components

70

1 Tools menu

«10¢ PRESS Plot for SFCM Data

Cumulative PRESS

0.5

0 2 46 8 10
Number of Principal Components

@ EIGENVECTOR

LlL‘ﬂ RESEARCH INCORPORATED

Cross-Validation

2 Select Cross-validation method

highlight Cross-Val

File Edit Preprocess Analy
@ B2 B Ee

4 Calibration

Component  of Cov (X)

venetian blinds B

=

00 Help FigBrowser

0
Show Model Details

Test Model Robustness »

Correlation Map
Estimate Factor SNR

View Cache
View: SSQ Table
Number PCs: 4 e oTe Seled
Percent Variance Captured by PCA Model
principal  Elge alue % variance

»
H—J
» dation

52.52
20.78

.35 100.00

can be viewed and edited from the Edit menu.

A model has been calibrated from the data. Review the model using the toolbar button(s), save
the model (File menu), or load test (validation) data (File menu). The number of components,
preprocessing options, and other settings can also be modified to adjust the model. The data

3 Click calc button to
perform decomposition
and Cross-Validation

4 Click Plot Eigenvalues
button to plot Eigenvalues
and RMSECV
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PCA Application to New Data

ecenter new data to the mean of the calibration data
Xc =X- 1Xmean
escale the centered data using standard deviations of cal data
X, =X, ./1xy,
eproject centered and scaled data onto loadings to get new scores

Tnew = Xst
ecalculate new residuals
E., =X -T./P!=Xd-PP7")

ecalculate new Q residuals
Ql’lCW = dlag(El’lCWEl’lCWT)
ecalculate new T? values
TZnew = Tnewx’_lTnewT = Xsty\’_IPkTXST
scompare T ..., E, ..., Q.. and T? ., to previously determined limits

i EIGENVECTOR
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new?

PCA Based MSPC

X2 with 95% Confidence Limts
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Dirty T-Shirt Analogy

PCA attempts to partition the data into
deterministic and non-deterministic portions
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