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Scalar

• Scalar
• Zero order tensor
• Single number or variable

• Has a magnitude
• 1 × 1
• Denoted by lower case, e.g. a
• Temperature, pH, density at single location

Start MATLAB

• We will use MATLAB to demonstrate concepts in
linear algebra

• Start MATLAB
• Find Command window (with >> prompt)

4
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Scalars in MATLAB

» a = 5;
» a = 5

a =

      5

6

Vector
• Vector
• First order tensor
• Row or column of numbers or variables

• Has magnitude and direction
• m × 1 (column) or 1 × n (row)
• Denoted by bold lower case, e.g. a
• Single spectrum, sensor array response
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Vectors in MATLAB
» b = [4
3
5]

b =

      4
      3
      5
» b = [4; 3; 5];

8

Vector Graphical
Representation
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Assign vector to another
variable

» c = b'

c =

  4        3        5
»
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Matrix

• Matrix
• Second order tensor
• Table or array of numbers or variables

• m × n, m rows and n columns
• Denoted by bold upper case, e.g. A
• Sprectra of multiple samples, single GC-MS sample
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Matrix (cont.)

• Matrix and vector transpose
• Denoted by superscript T or apostrophe ʻ
• Columns of A become rows of AT

A   =   

a 
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Matrices in MATLAB

» A = [2 5 3 6; 7 3 2 1; 5 2 0 3];
» A(2,4)

ans =

      1

A =

2 5 3 6

7 3 2 1

5 2 0 3

!
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#
#
#

$

%

&
&
&
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Matrix Transpose

» A'

ans =

      2            7            5
      5            3            2
      3            2            0
      6            1            3

A
T
=

2 7 5

5 3 2

3 2 0

6 1 3

!

"

#
#
#
#

$

%

&
&
&
&
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Vector and Matrix Addition
• Must be same size
• Addition is element by element
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Matrix Addition

» x = [1 4 3; 5 4 0]; y = [2 4 1; 2 6 3];
» x + y

ans =

      3            8            4
      7           10            3

1 4 3

5 4 0

!

"
#

$

%
& +

2 4 1

2 6 3

!

"
#

$

%
& =

3 8 4

7 10 3

!

"
#

$

%
&
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Dimensions must be the same!

» x = [1 4 3; 5 4 0]; y = [2 4; 1 2; 6 3];
» x + y
??? Error using ==> +
Matrix dimensions must agree.

1 4 3

5 4 0

!

"
#

$

%
& +

2 4

1 2

6 3

!

"

#
#
#

$

%

&
&
&

= ??
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Vector and Matrix Addition
• Commutative
• Associative

18

Multiplication by a Scalar
• Multiply each element by the scalar
• Similar for matrices and vectors

• Commutative
• Associative
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Scalar Multiplication

» c = 2;
» c*A

ans =

      4           10            6           12
     14            6            4            2
     10            4            0            6

c = 2,! cA =

4 10 6 12

14 6 4 2

10 4 0 6

"

#

$
$
$

%

&

'
'
'
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Vector Multiplication: Inner
Product

• Rectors must have same length
• Result is a scalar

a 
T 
b   =     [ a 

1 
 a

2 
 a

3  a 
n 
] 
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Inner Product Example

a =

2

5

1

!

"

#
#
#

$

%

&
&
&

b =

4

3

5

!

"

#
#
#

$

%

&
&
&

a
T
b = 2 5 1[ ]

4

3

5

!

"

#
#
#

$

%

&
&
&

= 2 * 4 + 5 * 3+1*5[ ] = 28

Also known as “dot product”
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Inner Product in MATLAB

» a = [2; 5; 1]; b = [4; 3; 5];
» a'*b

ans =

     28
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Length or “norm” of a Vector
• Square root of the sum of squared elements
• Can be calculated with inner product

» sqrt(a'*a)

ans =

    5.4772

» norm(a)

ans =

    5.4772

a = a
T
a

24

Vector Outer Product
• Vectors can have different length
• Result is a matrix



25

Outer Product Example

a =

2

5

1

!

"
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#
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&
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5
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&
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&
&

ab
T
=

2

5

1

!

"

#
#
#

$

%

&
&
&

' 4 3 5 7 9[ ] =
2 * 4 2 * 3 2 *5 2 * 7 2 *9

5 * 4 5 * 3 5 *5 5 * 7 5 *9

1* 4 1* 3 1*5 1* 7 1*9

!

"

#
#
#

$

%

&
&
&

ab
T
=

8 6 10 14 18

20 15 25 35 45

4 3 5 7 9

!

"

#
#
#

$

%

&
&
&
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Outer Product in MATLAB

» a = [2 5 1]'; b = [4 3 5 7 9]';
» a*b'

ans =

     8     6    10    14    18
    20    15    25    35    45
     4     3     5     7     9
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Matrix Multiplication
• Size must be compatible
• Order must be maintained

A 
mxn

B 
nxk

  =   AB
mxk

a 
11

a 
21

a 
31

a 
12

a 
22

a 
32 3 x 2 

b 
11

b 
21

b 
12

b 
22 2 x 2 

  =   

a 
11

b 
11

+ a 
12

b 
21

a 
21

b 
11

+ a 
22

b 
21

a 
31

b 
11

+ a 
32

b 
21

a 
11

b 
12

+ a 
12

b 
22

a 
21

b 
12

+ a 
22

b 
22

a 
31

b 
12

+ a 
32

b 
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Matrix Multiplication Example

A =
2 5 1

4 5 3

!

"
#

$

%
& B =

4 3 5 7

9 5 3 4

5 3 6 7

!

"

#
#
#

$

%

&
&
&

AB =
2 * 4 + 5 *9 +1*5 2 * 3+ 5 *5 +1* 3 2 *5 + 5 * 3+1*6 2 * 7 + 5 * 4 +1* 7

4 * 4 + 5 *9 + 3*5 4 * 3+ 5 *5 + 3* 3 4 *5 + 5 * 3+ 3*6 4 * 7 + 5 * 4 + 3* 7

!

"
#

$

%
&

AB =
58 34 31 41

76 46 53 69

!

"
#

$

%
&



29

Multiplication in MATLAB
» A = [2 5 1; 4 5 3];
» B = [4 3 5 7; 9 5 3 4; 5 3 6 7];
» A*B

ans =

    58    34    31    41
    76    46    53    69
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Matrix Algebra Identities

( AB) 
T 
  =   B 

T 
A 

T 

( A + B ) C   =   AC   +   BC    CA   +   CB

( AB) C   =   A ( BC) 

( A   +   B ) 
T 
  =   A 

T 
  +   B 

T 

( A 
T 
) 

T 
  =   A 

AI   =   IA   =   A 

!

Matrix multiplication is distributive and associative, but not commutative.
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Orthogonal and Orthonormal
Vectors

• Vectors orthogonal if inner product is zero
• Orthonormal if orthogonal and unit length, i.e.

inner product with themselves is 1
• For orthonormal set vi, with i = 1, 2, … n

• In three dimensions, most common orthonormal
basis is [1 0 0]T, [0 1 0]T, and [0 0 1]T

v
i

T
v
j
=

0 for i ! j

1 for i = j

"
#
$

%
&
'
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Special Matrices
• Vector is a special matrix (1 row or column)
• Diagonal (non-zero elements on diagonal)
• Identity (square with ones on diagonal)

A   =   
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Example Special Matrices

D =

4 0 0 0

0 3 0 0

0 0 7 0

!

"

#
#
#

$

%

&
&
&

I
4 x4

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

!

"

#
#
#
#

$

%

&
&
&
&

» id = eye(3)

id =

     1     0     0
     0     1     0
     0     0     1

» dm = diag([3 6 9])

dm =

     3     0     0
     0     6     0
     0     0     9
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Special Matrix Useful
Properties

• Any matrix multiplied by identity matrix is
unchanged

• Size must be compatible!
• AmxnInxn = ImxmAmxn = Amxn

• (AT)-1 = (A-1)T

• For symmetric matrix B, B = BT

• Symmetric matrices must be square
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Solving Systems of Equations

 2b1 +  b2 +  b3 =  1

 4b1 +  b2       = -2

-2b1 + 2b2 +  b3 =  7

 2  1  1
 4  1  0
-2  2  1

b1
b2
b3

=

 1
-2
 7

Xb = y

Suppose you have the following system of three
equations in three unknowns:

This could also be written:

Or in matrix notation:

36

Gaussian Elimination
Want to find values of b1, b2 and b3 which make 
the system hold. Subtract multiples of equations 
from each other to eliminate variables:

 2  1  1
 0 -1 -2
 0  3  2

b1
b2
b3

=

 1
-4
 8

 2  1  1
 0 -1 -2
 0  0 -4

b1
b2
b3

=

 1
-4
-4

Eq 2 - 2*Eq 1

Eq 3 + Eq 1

Eq 3 + 3*Eq 2

From this we see that b3 = 1, and we can use 
back-substitution to get b2 = 2 and b1 = -1

pivot

pivot
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Gaussian Elimination in
MATLAB

» X = [2 1 1; 4 1 0; -2 2 1];
» y = [1; -2; 7];
» b = X\y

b =

     -1
      2
      1

38

Inconsistent Systems
Now suppose you have this system:

 1  3  2
 2  6  9
 3  9  8

b1
b2
b3

=

 1
-4
-4

Elementary row operations would reduce this to:

 1  3  2
 0  0  5
 0  0  2

b1
b2
b3

=

 1
-6
-7

This system has no solution as Eq 2 requires that 
b3 = -6/5 while Eq 3 requres b3 = -7/2.

pivot
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Underdetermined Systems
Suppose instead you started with:

 1  3  2
 2  6  9
 3  9  8

b1
b2
b3

=

 1
-8
 1

Elementary row operations would reduce this to:

 1  3  2
 0  0  5
 0  0  2

b1
b2
b3

=

 1
-10
-4

This system has infinitely many solutions, b3 = -2, 
but b1 + 3b2 = 5.
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Singular Matrices and Rank

 1  3  2
 0  0  5
 0  0  0

 1  3  2
 2  6  9
 3  9  8

Suppose you took an additional step and reduced
your matrix to:

This is the echelon form of a matrix. It is upper 
triangular. The number of non-zero rows is the 
rank of the matrix. This can be done on any 
matrix--it need not be square. It can be shown that:

rank(X) ! min(m,n)

A matrix with rank = min(m,n) is said to be of full 
rank. Otherwise, the matrix is rank deficient or 
singular.
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Singular Matrices in MATLAB
» X = [1 3 2; 2 6 9; 3 9 8];
» y = [1; -8; -1];
» b = X\y

Warning: Matrix is singular to working
precision.

b =

   -Inf
    Inf
   -2.0000
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Finding the Rank of a Matrix in
MATLAB

• Rank of a matrix is the number of independent rows or
columns (same)

• Can think of this as the number of independent variations
in the data

» rank(X)

ans =

     2
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Matrix Inverse
• Matrix must be square
• Inverse might not exist!
• If it does exist, matrix is said to be invertible
• Matrix must be non-singular i.e. full rank

• no row or column the same as another
• no row or column a scalar multiple of another
• no row or column all zeros

44

Orthogonal Matrix
• In the special case of an orthogonal matrix the transpose is

the inverse



45

Useful Identities with Inverses

• (AB)-1 = B-1A-1

• Can be extended to multiple matrices
• (ABC)-1 = C-1B-1A-1

• Same set of transformations that transform A to I
transform I to A-1

• Known as the Gauss-Jordan method

46

Example of Gauss-Jordan

2 1 1 | 1 0 0

4 1 0 | 0 1 0

!2 2 1 | 0 0 1

"

#

$
$
$

%

&

'
'
'

(

2 1 1 | 1 0 0

0 !1 !2 | !2 1 0

0 0 !4 | !5 3 1

"

#

$
$
$

%

&

'
'
'

2 1 0 |
!1

4

3

4

1

4

0 !1 0 |
1

2

!1

2

!1

2

0 0 !4 | !5 3 1

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

2 0 0 |
1

4

1

4

!1

4

0 !1 0 |
1

2

!1

2

!1

2

0 0 !4 | !5 3 1

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

1 0 0 |
1

8

1

8

!1

8

0 1 0 |
!1

2

1

2

1

2

0 0 1 |
5

4

!3

4

!1

4

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

A =

2 1 1

4 1 0

!2 2 1

"

#

$
$
$

%

&

'
'
'
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Gauss-Jordan in MATLAB
» format rational
» A = [2 1 1; 4 1 0; -2 2 1];
» B = rref([A eye(3)])

B =

      1         0         0        1/8       1/8      -1/8
      0         1         0       -1/2       1/2       1/2
      0         0         1        5/4      -3/4      -1/4

» A*B(:,4:6)

ans =

      1         0         0
      0         1         0
      0         0         1

48

Inverse Function in MATLAB
» Ainv = inv(A)

Ainv =

     1/8       1/8      -1/8
    -1/2       1/2       1/2
     5/4      -3/4      -1/4
» inv(A') - inv(A)'

ans =

      0            0            0
      0            0            0
      0            0            0
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Vector Spaces and Subspaces
• Vector spaces denoted R1, R2, R3, … Rn

• Dimension of the space is n
• R3 is our usual three dimensional space
• R2 is a planar space
• A subspace is a vector space contained within another
• A subspace of a vector space is a subset of the space

where:
• the sum of any two vectors in the subspace is also in the subspace
• any scalar multiple of a vector in the subspace is also in the

subspace.

50

Linear Independence
• Given a set of vectors v1, v2, ... , vk, if all non-trivial combinations of

the vectors are nonzero

c1v1 + c2v2 + ... + ckvk ≠ 0   unless   c1 = c2 = ... = ck = 0

then the vectors are linearly independent. Otherwise, at least one of the
vectors is a linear combination of the other vectors and they are
linearly dependent.

• A set of vectors w1, w2, ... , wk, in Rn is said to span the space if every
vector v in Rn can be expressed as a linear combination of w’s, i.e.

v = c1w1 + c2w2 + ... + ckwk for some ci.

Note that for the set of w’s to span Rn then k≥n.
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Basis Sets
• A basis for a vector space is a set of vectors that

are linearly independent and span the space.
• The number of vectors in the basis must be equal to the

dimension of the space.
• Any vector in the space can be specified as one and

only one combination of the basis vectors.
• Any linearly independent set of vectors can be extended

to a basis by adding (linearly independent) vectors so
that the set spans the space.

• Any spanning set of vectors can be reduced to a basis
by eliminating linearly dependent vectors.
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Row Spaces and Column
Spaces

• For matrix Amxn of rank r, reduced echelon form U
• Row space is the space spanned by rows of A
• Dimension of the row space, R(AT), equals r
• Rows of U form basis for row space of A
• Column space is the space spanned by columns of A
• Dimension of the column space, R(A), also equals r
• Columns of U (with non-zero pivots) form basis for

column space of A
• Row rank = column rank!
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Null Spaces
• The nullspace of A, N(A), is of dimension n - r.
N(A) is the space of Rn not spanned by the rows
of A.

• Likewise, the nullspace of AT, N(AT), (also
known as the left nullspace of A) has dimension m
- r, and is the space of Rm not spanned by the
columns of A.

54

Orthogonality of Subspaces
• Vectors, v, w, orthogonal if inner product zero
• Subspaces V and W are orthogonal if every vector v in V

is orthogonal to every vector w in W
• Thus, for Amxn

• nullspace N(A) and the row space R(AT) are orthogonal subspaces
of Rn.

• left nullspace N(AT) and the column space R(A) are orthogonal
subspaces of Rm.

• The orthogonal complement of a subspace V of Rn is the
space of all vectors orthogonal to V and is denoted V⊥

(pronounced V perp).
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Projections onto Lines
• Projections of points onto lines (also planes and subspaces)

very important in chemometrics!
• Projections involve the inner product:

x

p

y

The projection of the vector y onto the vector x

p =
xTy

xTx
If ||x|| = 1, then p = xTy
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Derivation of Projection
• Finding p is straightforward given that

• p must be a scalar multiple of x, i.e. p = bx
• the line connecting y to p must be perpendicular to x

• Also works to project point y on subspace X, provided that
X is of rank r = n, i.e. XTX is invertible.

x
T
y ! bx( ) = 0" x

T
y = bx

T
x" b =

x
T
y

x
T
x

p = bx =
x
T
y

x
T
x
x
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Least Squares

• Consider single variable case with more than 1
equation
• Want to minimize E = ||xb - y||, or the square
• E2 = (xb - y)T(xb - y) = xTxb2 - 2xTyb + yTy

• Take derivative of E2 wrt b and set to zero

• Same solution as projection problem!

dE
2

db
= 2x

T
xb ! 2x

T
y = 0" b =

x
T
y

x
T
x
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Multivariate Least Squares
• Consider Xb = y with Xmxn, m>n
• Require Xb - y be perpendicular to column space of X
• So, each vector in X must be perpendicular to Xb - y
• Each vector in column space X expressible as Xc
• Thus, for all choice of c:

• (Xc)T(Xb - y) = 0,   or   cT[XTXb - XTy] = 0
• thus, XTXb = XTy so b = (XTX)-1XTy

• We often call b the regression vector
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Least Squares in MATLAB

» X = [1 1; 1 2; 2 1; 2 2];
» y = [6 6 7 11]';
» b = inv(X'*X)*X'*y

b =

    3.0000
    2.0000

X =

1 1

1 2

2 1

2 2

!

"

#
#
#
#

$

%

&
&
&
&

y =

6

6

7

11

!

"

#
#
#
#

$

%

&
&
&
&

» b = X\y

b =

    3.0000
    2.0000
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Projection of y onto X,
orthogonality of residuals

» p = X*b

p =

      5
      7
      8
     10

» d = y-p

d =

      1
     -1
     -1
      1

» X'*d

ans =

   1.0e-14 *

   -0.9770
   -0.9770
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Least Squares Summary
• When m>n the system of equations Xb = y is

overdetermined and the method of least squares can be
used to determine b

b = (XTX)-1XTy
• XTX is square (nxn) but the inverse won’t exist if it’s not

full rank (i.e. if rank(X) < n)
• What if it’s nearly rank deficient?...

62

Ill-conditioned Matrices
• Suppose that there are two systems of equations with X nearly rank

deficient and differ by only a small amount (as might be expected from
data with noise)

• Small changes in y (and/or X) can have a significant impact on the
regression results for nearly rank deficient systems
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MATLAB on Similar Example
» X = [1 2; 2 4; 3 6; 4 8.0001]; y = [2 4 6 8]';
» b = X\y

b =

     2
     0

» X = [1 2; 2 4; 3 6; 4 8.0001]; y = [2 4 6.0001 8]'; b = X\y

b =

    3.7143
   -0.8571

» X = [1 2; 2 4; 3 6; 4 8.0001]; y = [2 4 5.9999 8]'; b = X\y

b =

    0.2857
    0.8571
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Projection Matrices

• For problem Xb = y, projection of y onto columns
of X, p was:

p = X(XTX)-1XTy, p = Py
• P is a projection matrix, and is

• Idempotent, i.e. PP = P2 = P
• Symmetric, i.e. PT = P
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Orthogonal and Orthonormal
Bases

• Orthonormal basis, v1, v2 … vk has property

• Project y onto X with orthonormal columns, so
XTX = I

P = X(XTX)-1XT = XXT

• Square matrix with orthonormal columns is called
an orthogonal matrix

v
i

T
v
j
=

0 for i ! j

1 for i = j

"
#
$

%
&
'
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Orthogonal Matrix Properties

• For an orthogonal matrix Q (orthonormal
columns)

QTQ = I
QQT = I
QT = Q-1

• Q will also have orthonormal rows!
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Pseudoinverses

• How to sove Xb = y if XTX singular?
• Introduce pseudoinverse, X+

• Many solutions, which to choose?
• One that minimizes length of b, ||b||
• Require that b lie in the row space of X

• Xb equals projection of y into the column space of X
• b lies in the row space of X.

• Must find a way to calculate X+

68

Singular Value Decomposition

• Any m by n matrix X can be factored into
X = USVT

U orthogonal and m by m
V orthogonal and n by n
S diagonal and m by n

• Non-zero elements of S are singular values and
decrease from upper left to lower right
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Example SVD
» X = [1 2 3; 2 3 5; 3 5 8; 4 8 12];
» [U,S,V] = svd(X)

U =

    0.1935    0.1403   -0.9670    0.0885
    0.3184   -0.6426    0.0341    0.6961
    0.5119   -0.5022   -0.0341   -0.6961
    0.7740    0.5614    0.2503    0.1519

S =

   19.3318         0         0
         0    0.5301         0
         0         0    0.0000
         0         0         0

V =

    0.2825   -0.7661    0.5774
    0.5221    0.6277    0.5774
    0.8047   -0.1383   -0.5774

X =

1 2 3

2 3 5

3 5 8

4 8 12
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Verify SVD
» U*S*V'

ans =

    1.0000    2.0000    3.0000
    2.0000    3.0000    5.0000
    3.0000    5.0000    8.0000
    4.0000    8.0000   12.0000

• Note that last singular value appears to be zero!
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Formation of the
Pseudoinverse

• Recall inverse of a product is product of inverses
in reverse order, thus

X+ = VS+UT

• Remember, U and V are orthogonal!
• How to form S+?
• Set singular values close to zero to zero in the

inverse or truncate the matrices r = rank(X)
columns
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Reconstruction with two
Factors

» U(:,1:2)*S(1:2,1:2)*V(:,1:2)'

ans =

    1.0000    2.0000    3.0000
    2.0000    3.0000    5.0000
    3.0000    5.0000    8.0000
    4.0000    8.0000   12.0000
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Pseudoinverse Calculation
» Xinv = V(:,1:2)*inv(S(1:2,1:2))*U(:,1:2)'

Xinv =

   -0.2000    0.9333    0.7333   -0.8000
    0.1714   -0.7524   -0.5810    0.6857
   -0.0286    0.1810    0.1524   -0.1143
» pinv(X)

ans =

   -0.2000    0.9333    0.7333   -0.8000
    0.1714   -0.7524   -0.5810    0.6857
   -0.0286    0.1810    0.1524   -0.1143
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Return to our Ill-Conditioned
Problem

X =

1 2

2 4

3 6

4 8.0001

!
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#
#
#
#
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&
&
&
&

y =

2

4

6

8

!
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#
#
#
#

$

%

&
&
&
&
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Solution
» X = [1 2; 2 4; 3 6; 4 8.0001]; y = [2 4 6 8]';
» [U,S,V] = svd(X);
» Xinv = V(:,1)*inv(S(1,1))*U(:,1)'

Xinv =

    0.0067    0.0133    0.0200    0.0267
    0.0133    0.0267    0.0400    0.0533

» b = Xinv*y

b =

    0.4000
    0.8000
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Solution no Longer Sensitive
to Minor Changes

» y = [2 4 5.9999 8]';
» b = Xinv*y

b =

    0.4000
    0.8000

» y = [2 4 6.0001 8]';
» b = Xinv*y

b =

    0.4000
    0.8000

Inverse stabilized!
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Higher Order Tensors

• Arrays can be extended beyond conventional
tables, e.g. to 3-D arrays

• Third, fourth, fifth… order tensors
• Usually denoted by bold upper case with

underline, e.g. A
• Collection of samples from GC-MS, batch runs
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Algebra of Higher Order
Tensors

• Not as well defined as conventional linear algebra
• Addition and scalar multiplication as expected
• Multiplication of tensors definitions not

universally accepted
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Summary
• Basic vector and matrix operations

• addition and subtraction
• multiplication
• vector inner and outer products

• Matrix rank
• number of independent rows or columns (same)
• rank ≤ min{m,n} (number of rows and columns)
• found by reducing to echelon form

• Matrix inverses
• exist only for square matrices
• do not exist for rank deficient matrices

• Least squares
• used to solve inconsistent systems
• solution unstable in nearly collinear systems

• Singular Value Decomposition and Pseudoinverses


