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Definitions

Single-block: data that is logically contained in a
single matrix

Two-block: two single block data sets that share a
common mode (typically the sample mode)

Multi-block: multiple single blocks that share a
common mode

Multi-set: groups of related samples that have the
same variables, typically from designed experiments
Multi-level: same as multi-set except typically from
nested or happenstance designs
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Definitions (cont.)

e Multi-way: Data that is logically arranged in 3-
way (or more) arrays

* Data fusion: the process of combining multiple
sources of data to improve accuracy

* Alignment: the process of matching the axes
(time, wavelength, evolution, spatial) of two data
sets along one or more modes
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Single, Two and Multi-block

Single block

orY Two block
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L- and U- Configurations

S. Wold, S. Hellberg, T. Lundsted, M. Sjostrom,
H. Wold, (1987), PLS modeling with latent
variables in two or more dimensions. In:

Z Proceedings: PLS Model Building: Theory and
Applications. Symposium Frankfurt am Mein
September 23-25, 1987.

H, Martens, E, Anderssen, A. Flatberg, L. H.
Gidskehaug, M. Hgy, F. Westad, A. Thybo and
M. Martens (2003) : Regression of a data matrix
on descriptors of both its rows and of its columns
via latent variables: L-PLSR. Computational
Statistica & Data Analysis, 48(1), pps 103-123.

H. Martens, (2005) Domino PLS: A framework
for multi-directional path modeling. Proc.
PLS’05 Intl Symposium “PLS and related

A . methods”. (Eds. T. Aluja, J. Casanovas, V.E.
Not going to cover this! Vinzi, A. Morineau, M. Tenenhaus) SPAD
Groupe Test&Go), pp125-132.
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Multi-way

3-way or 3-mode

T T

f@@f@ 4-way
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Combinations

—

Coupled matrix and tensor factorizations:

E. Acar, T. G. Kolda, and D. M. Dunlavy. All-at-once Optimization for Coupled
Matrix and Tensor Factorizations. KDD Workshop on Mining and Learning
with Graphs, 2011.

E. Acar, M. A. Rasmussen, F. Savorani, T. N&s, and R. Bro. Understanding
Data Fusion within the Framework of Coupled Matrix and Tensor

Factorizations, Submitted (May, 2012) roum
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Multi-set Data

variables —

* Groups (sets) of related e
samples which have the %ﬁ
same variables. T

Differences between groups may hide variability
inherent to all samples.

For samples grouped according to an experimental
design we can separate variability due to each design
factor, and systematic variability independent of the
factors. This is the purpose of ASCA and MLSCA
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Crossed and nested designs

* Crossed (factorial) designs: Treatment
One or more factors with A |B |€ |D
samples measured for every | {11
combination of factor e
levels. =

* Nested designs: samples sc%
belong to groups which 1 W 3 4
are orgaplzed SITDE
hierarchically.

12 345 678 9101112

These are both 2-factor designs o Em
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Crossed and Nested Designs

For experimental design with 2 factors, A and B, the data
matrix X can be decomposed:
Crossed designs:
X=Xpg+ Xa+ Xp+ Xyp+E
Nested design:
X = Xavg + XA + XB(A) +E

Xavg: ~ matrix with column averages of X for each row.

Xy matrix with level averages for factor A. Similarly for Xp.

Xp(ay: matrix with level averages for factor B at a given A level.

X,p:  matrix with level averages for interaction between factors A and B.
E: matrix with residuals.
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Sum of Squares Decomposition

For such designs the sum of squares can be decomposed into
contributions from each factor (and interactions) and the within
group (residual):

X2 = 11X g 12 + X, + X IR 4+ 1X 12 + NEIR

offset  ---mmmemee- between-------------- within

ASCA and MLSCA are exploratory analysis methods which use
this separation to isolate variability associated with each factor
and reveal systematic variability inherent to the samples but not
related to the factors.
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ASCA

ANOVA Simultaneous Component Analysis

For multivariate datasets based on crossed experimental
designs, ASCA applies ANOVA decomposition and
dimension reduction (PCA) to :

* Separate the variability associated with each factor.

* Estimate contribution of each factor to total variance.

* Test main factor and interaction effects for significance.
* View scores and loadings for these effects.

Especially useful for high-dimension datasets where
traditional ANOVA is not possible.
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ASCA Method

e X data matrix, with 2 factors A and B.
* Decompose into DOE components

X=X, +Xps+ X+ X5 +E
¢ Build PCA model for each main effect and interaction

e (Calculate permutation P-value to estimate each
factor’s significance.

* Project residuals onto each PCA sub-model.
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ASCA Demo data: asca data

X: Measured glucosinolate levels in cabbage plants,

3 treatments, Control, Root, Shoot.

4 time points, Days 1, 3,7, and 14.
5 replicates for each time-treatment.
11 measured concentrations.

X: (60, 11)
F: (60, 2) design matrix.

See X.description for details.

Time (Day)

1 (3 |7 14
gl C _
E|r | 5 replicates each
@
=l s
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Using ASCA from the GUI

File Edit Preprocess Analysis Refine Tools Help FigBrowser

(0| B8t | ¥

(2| © ]

>

ASCA Settings

(© MLSCA (Nested Design)

Number of Permutations: 0
Interactions: No Change =l
Remove Center Points: On A

Help

Response
DOE
| Calibrate

View: S5Q Table
@ ASCA (Crossed Design)

Data has been loaded but no model exists. Set the preproce:
options (from the Preprocess and Tools menus) and calibrate a model (click on
“Moder icon in the status pane). Data can be viewed and edited by clicking on
i and/or "Y" icons,

ssing and other

Analysis Flowchart

1. Load X (Response) data

2. Load Y (DOE) data

3. Choose Preprocessing
4. Perform Analysis

/-

Cache: "general” DATOX ~
@B Cache Settings and Vi
£7) No Cached Data Avai
£ Demo Data
) Alcoholics Biologi
@) Aminoacid Fluore
@) Archeology XRF (=
Aspirin and Polyef
W Aspirin and Polyel
W Avicel Drug Bead
W Biscuit Dough NIF|
@ Brain Scan (MRI2!_|
&) Brain Weight and
&) Bread 3-Way Sens
@ Cenvical | Cancer EE
W Dorrit 4-compone
) Dupont Batch Stal
&) FIA of Hydroxy-Be
@ FTIR Microscopy ¢

) GCMS Data of Rec
Ly L~ YGlucosinolate Lev|
1§l Hald Portland Cer
W Indian Pines Land
W) LCMS of Surfactar
W LCMS of Surfactar ~
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Using ASCA from the GUI

> — —
I Analysis - ASCA (No Model) - Cabbage, Design Factors for Glucosinolates Data

ile Edit Preprocess Analysis Refine Tools Help FigBrowser

FAIMEY | |

ASCA (Crossed Design)

©) MLSCA (Nested Design)

Number of Permutations:

Interactions:

3. Choose Preprocessing
4. Perform Analysis

Remove Center Points:

Factors Only
2-Way Interactions

2 & 3-Way Interactions

Data has been loaded but no model exists. Set the preprocessing and other
options (from the Preprocess and Tools menus) and calibrate a model (click on
“Moder icon in the status pane). Data can be viewed and edited by clicking on

J Cache: "general” DAT(Y ~
B Cache Settings and Vi
{5 Demo Data
& Alcoholics Biologi
) Aminoacid Fluore|
) Archeology XRF
&) Aspirin and Polye
&) Aspirin and Polyei
@ Avicel Drug Bead
W@ Biscuit Dough NIF|
1§ Brain Scan (MRI 2!
W Brain Weight and
) Bread 3-Way Sens
W Cervical Cancer Ef
W Dorrit 4-compone
1§ Dupont Batch Stal
W FIA of Hydroxy-Be
& FTIR Microscopy ¢
@ Fluorescence EEM
W) GCMS Data of Rec
W@ Glucosinolate Lev
W) Hald Portland Cer
W&l Indian Pines Land
W LCMS of Surfactar
@ LCMS of Surfactar
W&l LCMS of Surfactar ~
»

Analysis Flowchart

1. Load X (Response) data

2. Load Y (DOE) data

<[Lm

Built ASCA

BB Analysis - ASCA - Cabbage, Design Factors for Glucosinolates Data |

File Edit Preprocess Analysis Refine Tools Help FigBrowser

B! | B8 &2

Analysis Flowchart

1. Load X (Response) data

X [ Cache: "general” DAT
8 Cache Settings and Vi ||
{2 Demo Data

@ Alcoholics Biologi

Auto Select

Term PCs Cum Eigen Val  \_Effe Coavalue)

1 Time. 3 152 1380 0.0010

2 Treatment 2 254 210 0.0010

3 |(Time)x(Trea... 6 149 1358 0.0010

4 Mean - - 000 -

5 Residuals - - 4952 -
[1 of 1] Note: The x-block appears to be -
mean centered. This is OK but will cause the "mean” in the effects table to be =)
zero

——

2. Load Y (DOE) data

. Choose Preprocessing
4. Perform Analysis

&) Aminoacid Fluore|
W Archeology XRF (i
W Aspirin and Polyel
W Aspirin and Polyel
W) Avicel Drug Bead
@ Biscuit Dough NIF
W Brain Scan (MRI2!
@ Brain Weight and
W@ Bread 3-Way Sens
W Cervical Cancer E
W Dorrit 4-compone
& Dupont Batch Stal
W FIA of Hydroxy-Be
& FTIR Microscopy ¢
W Fluorescence EEM
&l GCMS Data of Rec
& Glucosinolate Lev
& Hald Portland Cer
&) Indian Pines Land
& LCMS of Surfactar
& LCMS of Surfactar
Wl LCMS of Surfactar ~
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ASCA Scores Plot

File Edit View Plot FigBrows

Fig 1: Samples/Scores ... v
X Sample -

A'¢ Time Scores on PC 1 [
Time Scores on PC 2
Time Scores on PC 3

Treatment Scores on f

Color By...
Plot Plot Type...

Select | Tool

Q con Q con Ref.

T con T con Ref.

data info

Show Cal Data with Test

("] Show Error Bars

BB Figure 1: Samples/Scores - ASCA - Cabbage, Design Factors for Glucosinolates .. | = | & | % |

File Edit View Inset Tools Desktop Window Help FigBrowser PlotGUI £
IR PAREEI:
E DT PEELE Ve lr A SR

7

Time Scores on PC 1
N

ASCA Scores Plot

”Time” factor sub-model, PC 1

5

4

=4

Time Scores on PC 1
——Fe=e=mm === === == ===

4 Control
®  Root -
A shoot

A4

=

4
Fy
° ¢
L]

Time (Days)

PC 1 of Time dependency common to all Treatments.
Class = Treatment. Connect Classes = Mean at each X
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ASCA Scores Plot

”Time” x “Treatment” interaction sub-model, PC 1

(Time) x (Treatment) Scores on PC 1

A
¢ Control
B Root 4
A shoot

Time (Days)

PC 1 of Time dependency at each Treatment level.
Class = Treatment. Connect Classes = Mean at each X
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ASCA Scores Plot

B Plot Controls

= @] %

e 3
B Figure 1: Samples/Scores - ASCA - Cabbage, Design Factors for Glucosinolates ... |L=2.| 2 s

File Edit View Insert Tools Desktop Window Help FigBrowser PlotGUI ~

File Edit View Plot FigBrowser

>

DG@s 2[NS 9REL 308

a0

Fig 1: Samples/Scores - ASCA - Cabb...

X Treatment Scores on PC 1
Y:Time Scores on PC 1 B
Time Scores on PC 2
Time Scores on PC 3
Treatment Scores on PC 1
reatment

(Time) x (Treatment) Scores on PC 2

(Time) x (Treatment) Scores on PC 1 M

v

Z:none v
Color By. l
Plot Plot Type...
Select | Tool
Q con Q con Ref.
Tcon T con Ref.
data info

Show Cal Data with Test

|| Show Error Bars
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Treatment Scores on PC 2

4

v | Treatment

None

Time

Time:Treatment

SHEAAESIR 3

2

NN

0 1

Treatment Scores on PC 1

K.
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ASCA Treatment Scores Plot

Treatment Scores on PC 2

Treatment Scores on PC 1

Separating out the Time and Time x Treatment effects
highlights the Treatment effect
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PCA Scores Plot

6 [
5L : & Control| |
| @  Root
1 A shoot
4t I 1
|
X 3f
o
0
8 2f
~
21
§
o 0
I
Q
B-1r
2+
3k
4 \ . \ \
6 -4 2 0 2 4 6 8

Scores on PC 1 (38.50%)

...better than is seen by simply applying PCA to the data.
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0.7

0.6

0.5

Treatment Loadings on PC 1, Treatment Loadings on PC 2

-0.3

A&

Loadings Plot

z
o

H

T T
I Treatment Loadings on PC 1
I Treatment Loadings on PC 2

GBC o

t

o
o
o

Gl
#— 4MeOH
NAS
——
NEO

L L n L

IS

6 8 10 12
Variable

ASCA Box Plot

To view raw or preprocessed X “Response” data
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File  Edj rocess Analysis Refine Tools Help FigBrowser

B Figure 2

zero.

[mean centered. This is OK but will cause the "mean n the effects tabl

File Edit View Inset Tools Desktop Window Help

DEES K ARVUDEL- S 0E =D

4
ol
DO P i 35 1
Calibrate
| 3 !
View: S50 Table Ascas])
Humber PCs: | 25 4
° L
x 2 i 1
o
Term PCs Cum Eig 05 ] |
1 152
2 Treatment 254 1 ? ]
3 Men - b
4 Residuals 05 ]
ol o+ M - P
s 5 B8 s 5 B s 5 B s 5 B8
2 8 8 2 8 8 g 8 8 £ 8 8
s T 5 s T 5 5§ 5 s % 5
© = = SIS Q@ = & eg 3
&8z &z &z Tz
1 of 1] Note: The x-block appears to be 8 e 38 e 8 e g °a

=& EIGENVECTOR

RESEARCH INCORPORATED

13



27

28

ASCA Conclusions

ASCA allows the variation associated with each
factor to be resolved, and to see the main variables
involved.

* For a perturbed biological system the Time factor
scores reveal the common response, Treatment
factor scores show the Treatment effect
independent of Time. The Time x Treatment
interaction scores show the additional time
dependency at each Treatment level.
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ASCA Conclusions, cont.

¢ The % contribution of each factor or interaction to
the total SSQ shows which effects are important.

* Perturbation P-values for each factor estimates the
probability that there is no difference between the
factor level averages for this effect.
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#\24 RESEARCH INCORPORATED

14



29

30

MLSCA

Multi-level Simultaneous Component Analysis

MLSCA is a special case of ASCA applied to data from
designed experiments with nested factors.

» Separates variability associated with each factor and residual.
* Estimate contribution of each factor to total sum of squares.
* View scores and loadings for these effects.

¢ Also builds PCA model on the residuals, or “within”
variability. “Within” is often the focus of the analysis.

* Note that “Class Center” pre-processing can achieve same
result if there is a single nesting factor.
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MLSCA

» 2-level data (replicates grouped by 1 factor),
Samples drawn from N participants.

Xik,= measurement for participant i (i = 1, ..., N), for
sample k; (k =1, ..., K;).

» Use the level information to decompose into a
constant, a “between” participants and a “within”
participants part:

o Xigg = Xow + Ko — X))+ (Xig, — Xii)

“constant” “between” “within”
* indicates “averaging”.
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MLSCA: simple example

30

MLSCA can be used to
reveal systematic
variability within grouped
samples which can be
obscured by inter-group
differences.

Example: X: (400,2) | -
400 Samples from 3 5 10 15 20 » 25 30 35 40
individuals.
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MLSCA: simple example

Example: X: (400,2) . M

400 samples from 3 f -y -

individuals, A, B,and C. =, fa e R TER "
Sl o, y@f'ﬂ .

Need to remove offsets ’: % T x .

for each individual to see " H‘%? o

the internal, “within” sl oo

individual variation.

5 10 15 20 25 30 35 40
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“BETWEEN”
%[ Individual
averages

5 10 15 20 25 30 35 40

35
¢ A
oA LI
A ¢

*

*

=

<
3
var2
°

X = average for each individual s .
+ deviations from that s
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Nested dataset “misca data”

12 engineering variables from a LAM 9600 Metal
Etcher over the course of etching 107 wafers.

* Three experiments were

run at different times. EXPERIMENT
. 1 2 3
° Experlment have 34’ 36 WAFER|1/2 34B5/3¢ +++ 170171172 - 0
and 37 wafers each, for x|x R HHE: X
. 80 X| X X | X[ x X | XX X
107 unique wafers. Rer || | : :
» 80 samples (replicates) sxl Jxfxlx x [ x|x x
measured for each
wafer during etching. Nested factors are not crossed.

* Xis (8560, 12)

FMEIGENVECTOR
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MLSCA Method

e X data matrix, with 2 nested factors A and B.

* Decompose into DOE components

X=X, + X+ X +E

avg

X, contains factor Alevel averages
Xpa) contains factor B level averages for each level A

E are the residuals,

‘within” component

¢ Build PCA model for each effect and residual

constant between A  between B

within

s~ EIGENVECTOR
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Using MLSCA from the GUI
* MLSCA located under “Design of Experiments” in browse
File Edit Preprocess Analysis Refine Tools Help FigBrowser =
| Bel[ | S
i X~
R B o Analysis Flowchart DD
i) 1 Alcoholic
1. Load calibration data| & Aminoaci
e P ) 2. Build and Review M... : :;;’I‘::':'
P W& Aspirin ar
I Calibrate @ Avicel Dr
e SSQ Table @ Blscrmt D¢
() ASCA (Crossed Design) : g:::: \S’::
(® MLSCA (Nested Design) @ Bread 3-\
@ Cenvical ¢
Number of
L @ Dorrit 4-¢
Interactions: No Change @ Dupont B
Remove Center Points: o, : FIA of Hy
—J FTIR Micr
Help @ Fluoresce
@ GCMS Dz
@ Glucosinc
[Data hes been loaded but no model exists. Set the preprocessing W& Hald Port
Teon i the siaus pane). Dta @ Indian Pir ¥
can be viewed ar agmuymc e e e < >
[~ ] E
wes E|GENVECTOR
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Using MLSCA from the GUI

- — —
B Analysis - MLSCA - x, F

(=] 6 [

File Edit Preprocess Analysis Refine Tools Help FigBrowser

~

| &8 et | B & A\

=IMOOOE

View: SSQ Ta&e

Number PCs: \; Auto Select

Analysis Flowchart

1. Load calibration data
2. Build and Review Model...

( Term ) PCs Cum Eigen Val ( Effect)

1 Expt 2 3.08 2569
2 Wafer 4 029 241
3 Error 2 863 7189
4 Mean - - 0.00

A model has been calbrated from the data. Review the model using the toolbar
button(s), save the model (File menu), or load test (validation) data (File menu). The

O A cache : “general” &TE

B Cache Settings and
{2 Demo Data
27-Apr-2015
21-Apr-2015

MLSCA Scores Plot

“Experiment” factor sub-model, PC 1 vs 2

B Figure 1: Samples/Scores - MLSCA - x, F

(=]@] = ]

-
B Plot Controls

[E=E) File Edit View Insert Tools

Desktop Window Help FigBrowser

PlotGUI £l

File Edit View Plot FigBrowser ~

Dade| b QROUVRAL-|2|0E | O
EL TN VB G eI YK .

Fig 1: Samples/Scores - MLSCA - .. v |

X Between Expt Scores on PC 1

15 T T
'Y:Between Expt Scores on PC 1 |a
Between Wafer Scores on PC 1 ‘5 [5]
Between Wafer Scores on PC 2 1
Between Wafer Scores on PC 3 -
Between Wafer Scores on PC 4 by
\Within Scares on PC. 1 . T g5
= =
Z: none - o
Color By.... I %
Plot Plot Type... @ OF-——————-
=
Select | Tool =
2 05
Q con Q con Ref. é
T con T con Ref. @
data info ArF ¢
Show Cal Data with Test
[ Show Error Bars -15 L L

L L

[] Conf. Limits: = 95 | %

L
1) 05 1 15
Between Expt Scores on PC 1

EIGENVECTOR
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MLSCA Loadings Plot

“Experiment” factor sub-model, PC 1 and 2

o < o o
[N} ES o =3

o

Between Expt Loadings on PC 1, Between Expt Loadings on PC 2

T — & T T
N <
Q\Y@QQQ Qg
&<
O @
S
M’
&N

I Between Expt Loadings on PC 1
I Between Expt Loadings on PC 2

6 8 10 12
Variable
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k) H H 7 H H
Within”’ Residual sub-model, PC 1 vs. time
B Figure 1: Samples/Scores - MLSCA - x, F =8 X
[ B Plot Controls HE) File Edit View Insert Tools Desktop Window Help FigBrowser PlotGUI ~
File Edit View Plot FigBrowser DEde | M ARAODLEL- (2 0E| D
; | 8| B 206|[$ A &| K &R 24 >
Fig 1: Samples/Scores - MLSCA - ... ~
X Time Steps v 4
Y: Between VWater Scores on PC 3
Between Wafer Scores on PC 4 3
\Within Scores on PC 1
\Within Scores on PC 2 B 2
Q (Between Expt) E
Q (Between Wafer)
Q (Within) -1
O
Z: none - o g
c “f
Color By.. | o
2
Plot Plot Type... 5
@
Select | Tool £ 2
Q con Q con Ref. § -3
T con T con Ref. 4
data info
Show Cal Data with Test 5
[] show Error Bars 5 L L L L L . L
— 10 20 30 40 50 60 70 80
["] Conf. Limits: = 95 % Time Steps
\
w8 EIGENVECTOR
40
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PCA Scores Plot

PC 1 vs. time, Colored by Experiment class

I ITCILIv
Hithhii

Scores on PC 1 (23.99%)

10 20 30 40 50 60 70 80
Time Steps

The spike at time step 47-48 is not seen in PC 1.
It shows up in PC 2 because the offset between
experiments dominates PC1 in simple PCA.

EEIGENVECTOR
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MLSCA Scores Plot

”Within” sub-model, PC 1 vs 2, colored by time

[ B Figure 1: Samples/Scores - MLSCA - , F (=6 e
= File Edit View Insert Tools Desktop Window Help FigBrowser PlotGUI N
B Piot Controls B %
o = ® 6 Y
File Edit View Plot FigBrowser ¥ DEHS K RRAOVDE LB @A =@
Fig 1: Samples/Scores - MLSCA - . + EDIN) ) SERENEEER A TSES i
X Within Scores on PC 1 - 4
Between Water Scores on FC 3, |
Between Wafer Scores on PC 4 |
Within Scores on PC 1 3 |
in Scores on PC 2 B !
Q (Between Expt) E I
Q (Between Wafer) 2 :
Q (Within 2 o~ BN
Z: none - £ 1 1|.
<
Colored. | b
Plot Plot Type... 5 " st -
@
Select | Tool E =il
Qcon Q con Ref. =
T con T con Ref. 2
data info
in’ 3 :
Show Cal Data with Test N
[ ] Show Error Bars 4 © |
B -4 -2 0 2 4
[|Conf. Limits: | 95 | % Within Scores on PC 1
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MLSCA Loadings Plot

"Within” Residual sub-model, PC 1 and 2

-02 1

-0.4

Within Loadings on PC 1, Within Loadings on PC 2

I \Vithin Loa
I Within Loa

a

in
in

onPC1
s on PC 2

a

@ @
@

-0.6

0 2 4 6 8 10 12 14
Variable
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MLSCA Conclusions

MLSCA allows the variation associated with each
nested factor to be resolved, and to see the main
variables involved.

* Often used to reveal the inherent “within” group
variability of samples after factor effects are
removed. For process data this allows separation of
within-run variation from between-run variation.

* SSQ contributions show which nested factors are
important.

PMEIGENVECTOR
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ASCA and MLSCA

* MLSCA is a special case of ASCA.

However, as implemented,
ASCA = crossed designs,
MLSCA = nested designs.

* ASCA used to study fixed effect factors while

MLSCA focuses on residuals, “within” variability,
of nested random effect factors.

~ ]
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Multi-block Data Fusion

* Data fusion can be done at three levels
* Low level: single model of combined data blocks
appropriately scaled/preprocessed
* Mid level: combining scores from individual data
blocks into a consensus model

* High level: combining predictions from individual
models in some sort of voting scheme

Eﬁi EIGENVECTOR
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Example: Plasma Metal Etch

Resist Resist Resist Resist
500A TiN TiN TiN
e 65 q o
1000A TiN Etch in TiN i
500A Ti Clo/BCl3 Ti Ti
L [ | |

Plasma

Silicon Silicon

e Linewidth (Critical Dimension) Control
» Constant linewidth reduction run to run and across wafer
* Constant linewidth reduction for every material in stack
=\
14

s EIGENVECTOR
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* Minimal damage to oxide r
[ |
»
L

P.adll
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Available Measurements

* Machine State Data: Equipment has SECS-II Port
* Provides traces with time stamp and step number

* Regulatory controller setpoints & controlled variable measured
values
¢ gas flows, pressure, plasma powers

* Regulatory controller manipulated variables
* exhaust throttle valve, capacitors

* mass flow controller do not provide valve position

* Additional process measurements
¢ broadband plasma emission (often used for endpoint)

. impedance measurements
* Optical emission spectra
* RF plasma variables

s EIGENVECTOR
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Sensitivity of MSPC Models

* Three experiments performed with 21 “induced” faults on:
e TCP top power
* RF bottom power
* CI2 flow
* BCI3 flow
e Chamber pressure
* Helium chuck pressure

e Data available for Machine State, RF and OES

* Goal: Compare ability of models considered for detecting
faults: best case and for routine data

r
u
50 | 4
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Generating Faults

Set points were changed for controlled process variables

* very easy to detect set point changes by simply looking at the
variable for which the setting was changed, however...

original desired set point

* the mean set point was reset to the original

Data for the controlled variable was adjusted to have the

Result is data that looks like a sensor has developed a bias

* more difficult to detect the fault on the single variable

* model must detect the fault based on changes in relationships

between variables

o wafter-to-wafer = batch-to-batch

Each wafer is analogous to batch in chem process

PN EIGENVECTOR

@\ RESEARCH INCORPORATED

Example with Etch Data

¢ Available data: Machine, OES and RFM data for
104 normal wafers and 20 induced faults

* Data reduced just to mean over each batch

>> clear

>> load Etch_Means

>> whos
Name
machinemeans cal
machinemeans_test
oesmeans_cal
oesmeans_test
rfmmeans_cal
rfmmeans_test

>>

Size
104x22
20x22
104x129
20x129
104x71
20x71

Bytes Class

33294 dataset
23466 dataset
158054 dataset
37614 dataset
109122 dataset
27790 dataset

#\Z RESEARCH INCORPORATED
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Browse Interface

e O 6 PLS_Workspace Browser

File Edit View Analyze Help FigBrowser El
0@ =@

CurrentFolder: /Documents/EVRI_Repository/pls/app/trunk v

Analysis Tools

: Workspace

Topics (double click to open)
» 3 FAVORITES
¥ TooLs
L+ DataSet Editor
L+ Hierarchical Modeling
L& Model Optimizer
L
L& Script Interpreter
L& Trend Tool
£} DECOMPOSITION
#* REGRESSION
= CLUSTERING
LASSIFICATION
. DESIGN OF EXPERIMENTS
(© BATCH ANALYSIS

«

YYVVYVYVYVYVYVYVYY

=+ TRANSFORM Cache : "general" LINEAGE View (* = Not Available)
OTHER » B Cache Settings and View

(] IMAGE PROCESSING ¥ ) Demo Data

* HELP ﬁ Alcoholics Biological Data (alcohol)

[E EIGENGUIDE ONLINE VIDEOS ﬁ Aminoacid Fluorescence EEMs (aminoacids)

Current Workspace Variables

Name Value Bytes
Wil machinemeans_cal <104x22 dataset> 33204
ﬁ machinemeans_test <20x22 dataset> 23466
ﬁ oesmeans_cal <104x129 dataset> 158054
Wl oesmeans_test <20x129 dataset> 37614
ﬁ rfmmeans_cal <104x71 dataset> 109122
@l rfmmeans_test <20x71 dataset> 27790

Model Cache

ﬁ Archeology XRF (Arch)
ﬁ Aspirin and Polyethylene Image (Raman 21x33x501)

|l E IGENVECTOR RESEARCH INCORPORATED |
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Multi-block Tool Interface

8006

Multi-block Tool

File Edit Help FigBrows

er ~

W OB &

[ s cuisin

Source Data

___—— Drag calibration data sets here

Source Models

Model Fields

8
E Preprocessing
F
Yo bata _— Drag test data sets here
= _New pata —
i &
H
3
z Join Data
2
3
%

EIGENVECTOR
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Multi-block Interface Loaded

800 Multi-block Tool
File Edit Help FigBrowser

W oBY W&

= Sourck Models N\
\\ |
= oelFieias ~ / Choose preprocessing for each
9 Right click, “edit”
E = Preprgcessing

S C.T) Il 1 Click join data icon
u Trew
i B Janﬂa:a
L — — | (A ]|
— — s EIGENVECTOR
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Joined Data
800 Multi-block Tool
File: dit Help FigBrowser
B O &

Right click “Joined Data”
Analyze--PCA
= Sourc Models \\
— Mot Fleids \ File—Save Joined New Data

Apply New Data [

=& EIGENVECTOR

LILJ RESEARCH INCORPORATED
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Data pushed into PCA

8 00 Analysis - PCA 3 PCs - x1
File Edit Preprocess Analysis Refine Tools Help FigBrowser »
Bl o MW a M x|l
8 00 Figure 2: Samples/Scores - PCA 3 PCs - x1
_‘ File Edit View Insert Tools Desktop Window Help FigBrowser PlotGUI ~

Jnsde » R 99eA- 3 0@ s

Calibrate Apply / Validate

View: $5Q Table

Number PCs:| 3 Auto Seloct 25 T T T T — T
Percent Variance Captured by PCA Model (¥ = suggested) :
2 ]
Eigenvalue % Variance % Variance !
ofgCov(X) This PC Cumulative LR RSECy I
1 1.87e+00 62.25 62.25 0.07108  0.07351  suggested o A 1
2 3.50e-01 11.68 73.93 0.05907  0.06792 - ! S~
3 2.86e-01  9.52 83.45 0.04706  0.1264 current £ - : N 4
4 8.12e-02  2.71 86.16 0.04304 | 0.1262 £l | N
5 5.93e-02  1.98 88.13 0.03985 | 0.1231 S osl | v
6 4.89e-02 163 89.76 0.03701  0.1278 £ | '! A
7 3.94e-02 131 91.08 0.03455 | 0.1326 g 1 . \
8 3.73e-02 124 92.32 0.03206 | 0.1394 5 T T AT = =
9 2.92e-02  0.97 93.30 0.02995 | 0.1489 o \ | J
10 2.69e-02  0.90 94.19 0.02788 | 0.1544 o5k N ! s /o
11 2.30e-02  0.77 94.96 0.02598 | 0.1565 N : ' L7
12 1.94e-02  0.65 95.61 0.02425 | 0.1565 AL S I e |
13 1.65e-02  0.55 96.15 0.02269 0.16 SO | P
S~ T
1.5 . . . - _l_ - X X i A1
3 2 -1 0 1 2 3
Scores an PC 1 (62.25%)
57 L@NZJ RESEARCH INCORPORATED

With Test Data Loaded

8 0 6 Analysis - PCA 3 PCs - x1
File Edit Preprocess Analysis Refine Tools Help FigBrowser ~
A &3 2 »| X
8: @ E 8 ﬂ % X E e 0 6 Figure 2: Samples/Scores - PCA 3 PCs - x1
J File Edit View Insert Tools Desktop Window Help FigBrowser PlotGUI ~
Rl DS de b RAODER- 3 0B = O
7 2 il N8|\ »
Calibrate Apply / Validate (DD | :'_J Ak B
View: S5Q Table
Number PCs:| 3 ‘Auto Select
Percent Variance Captured by PCA Model (* = suggested)
Eigenvalue % Variance % Variance
of Cov(X)  This PC Cumulative RMSEC RMSECV
1 1.87e+00 62.25 62.25 0.07108 0.07351 suggested
2 3.50e-01 11.68 73.93 0.05907 0.06792 -
3 2.86e-01 9.52 83.45 0.04706 0.1264 current é
4 8.12e-02 2.71 86.16 0.04304 0.1262 =
5 5.93e-02 1.98 88.13 0.03985 0.1231 §
6 4.89e-02 1.63 89.76 0.03701 0.1278 5
7 3.94e-02 131 91.08 0.03455 0.1326 8
8 3.73e-02 1.24 92.32 0.03206 0.1394 E
9 2.92e-02 0.97 93.30 0.02995 0.1489
10 2.69e-02  0.90 94.19 002788 0.1544 o
11  2.30e-02 0.77 94.96 0.02598 0.1565
12 1.94e-02 0.65 95.61 0.02425 0.1565
13 1.65e-02 0.55 96.15 0.02269 0.16

w 8 EIGENVECTOR
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Redo at Mid-level

Develop individual PCA models of data blocks
Load models into Multi-block tool

Choose model outputs

Join and push into PCA

s EIGENVECTOR
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Alignment

* Many data fusion problems involve aligning one
block of data with another

* There are many ways of doing alignment!

PMEIGENVECTOR
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Alignment and Warping
Methods

* A veritable smorgasbord of methods available

Rank minimization

* similar to rank annihilation factor analysis (RAFA)
Dynamic Time Warping (DTW)
Correlation Optimized Warping (COW)
Indicator variable/step number
Linear interpolation
Align and truncate
Combinations and variations of the above
etc.

PMEIGENVECTOR
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Multi-way Alignment

* For test matrix B,y and standard matrix N, ; (where I>I)
Nj; is the IxJ sub-matrix of B that minimizes the rank of
[NIN,]

B1xJ
N 1xJ NB, IxJ

* Can also minimize residuals of projecting Ny onto a bilinear model of N

* Optimize based on sum of eigenvalues to the fourth power

s EIGENVECTOR
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* Typical process data has a different number of time points for

Process Data Alignment

each wafer processed.

* MPCA requires the same number M for each wafer.

2001

1500]

EndPtA

1000

500
0

63

64

e Misalignment adds rank

irrelevant to process
monitoring.

¢ PCs must account for time

shifts in the process data.

¢ Irrelevant variance often
results in a reduction of
model sensitivity.

~NHE
ANH

PCA Scores of Machine Data

Use PCA scores to characterize
process trace

Data centered around “peak” in
TiN etch or transition from
process step 4 to 5

e simple!

Scores on First PC of Machine Data

EIGENVECTOR
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Wafer 1

Wafer 2 Wafer 3 Wafer 4

M

50

' ' ' ' ' L
100 150 200 250 300 350

Sample Number

L
400

e EIGENVECTOR
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Alignment Algorithm

e Based on rank minimization The submatrix of the test wafer that
minimizes the residuals when

projected onto a PCA model of the
standard data matrix is selected as
the MxN test matrix.

data from new test wafer
P

data matrix of a
standard wafer

A41
Adb
!
MM w8 EIGENVECTOR
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Aligned Process Data
* Alignment is based on aligning all process variables
simultaneously.
* Data at the very beginning and end of process are not used.
* Monitoring is based on the “interesting” part of the process.
2000y
1500
S
5
&
1000
d romm
e T we= EIGENVECTOR
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Correlation Optimized Warping

Piecewise preprocessing method

Allows limited changes in segment lengths,
controlled by slack parameter

Linear interpolation over segments

Dynamic programming used to optimize
correlation between warped sample and reference
Less flexible than DTW (unless constrained)

& EIGENVECTOR
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COW References

N.P.V Nielsen, J.M. Carstensen and J. Smedsgaard, “Aligning of single and
multiple wavelength chromatographic profiles for chemometric data analysis
using correlation optimized warping,” J. Chromatogr. A, 805, 17-35, 1998.

G. Tomasi, F. van den Berg and C. Andersson, “Correlation Optimized
Warping and Dynamic Time Warping as Preprocessing Methods for
Chromatographic Data,” J. Chemometrics, 18,231-241,2004.

G. Tomasi, T. Skov and F. van den Berg, Warping Toolbox, see:
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3000

2500

End Point A Signal

2000

Example: COW

COW breaks signals into segments and linearly expands or contracts
them to optimize correlation

End Point A Before Alignment ith COW End Point A Ater Aignment vith COW
- T T - s00 [ v v . . 7
2500 E|
5 2000 ]
&
o
<
1500 & 1so0 | d
E
&
1000 X 1000 (4.9 B
500 s00 | R
n , 1 , L
20 40 60 80 100
Time Step Time Step

69

End Point & Signal 2nd Derivative

-800 L L

70

EEIGENVECTOR

Hints on COW

May be better to calculate warp with 2nd derivative
Apply calculated warp to other variables
Calculate warp on PCA scores or other latent variable

End Point A 2nd Derivative after Alignment with COW

600

600

End Point A 2nd Derivative before Alignment with COW

End Point & Signal 2nd Derivative

L L L 800 L L L L L L L
20 40 60 80 100 120 10 20 30 40 50 80 70 80 90 100

Time Step Tirme Step

=& EIGENVECTOR
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Example from Image Analysis
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Multi-Method Imaging

v

Raman & Fluorescence Energy Dispersive X-Ray
Detect molecular species, Fluorescence (EDXRF)
some inorganics Detects elemental composition

@S LEIGENVECTOR
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Data Fusion
e Alignment of Images ¢
e Balancing of Data Variance
* Concatenation

~ ]

s EIGENVECTOR
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Data Fusion

e Alignment of Images
* Balancing of Data Variance (o
e Concatenation

0.75 10

07 d 10
Raman EDXRF

0651 275 Variables | . 4096 Variables
0.15 RMS Signal 1 8.4x107 RMS Signal

4 9 13 18 22 27 31 35

=& EIGENVECTO
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Data Fusion
e Alignment of Images
* Balancing of Data Variance (o
* Concatenation

Raman EDXRF

275 Variables 4096 Variables

0.15 RMS Signal 8.4x107 RMS Signal

XRaman XEDXRF
0.15x 275 8.4x107 x 4096

o
@ EIGENVECTOR
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Data Fusion

e Alignment of Images
e Balancing of Data Variance

¢ Concatenation |

XFused = [XRaman XepxrE

PMEIGENVECTOR
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Pre-Preprocessing

i

15609 x 1024

Fluorescence, Z=0

Combined Data

19881 x 1024

Fluorescence,

7=20
19881 x 1024

Fluorescence,
7=20

15609 x 3072 s>u= EIGENVECTOR
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Fluorescence, Z=0

Data Analysis

e Multivariate Curve Resolution
e With Contrast "bias" — Pushes solution to a
specified edge of the feasible bounds
e Provides solution within noise level which is most
consistent with:
* Image/conc. contrast: best spatial resolution
* Spectral contrast: best spectral resolution =

w 8 EIGENVECTOR
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Image of Granite

White Light '
Dimensions 2 x 2 mm

George J. Havrilla,
Ursula Fittschen
Los Alamos National
Laboratory
Los Alamos, NM

Raman EDXRF

Selected Peaks Selected Channel%’l‘= E IGENVECTOR
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MCR Spectra for Fused Data

Raman EDXRF
P Nsof [}~ s
2 N D _ ShES]
3t M Mk b o]
4 [ L Fe |
500 o sk
6MFeS+lum “ L 3
7 by [ S

>

8 LM«M [\A S, Fe 4
Y s Y Cu |
@ EIGENVECTOR
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MCR Spectra for Fused Data

Raman

[E—

) so

EDXRF

N ©Si |

[ A f. Si, K, Sr

Note: #2 and #5 would be almost indistinguishable in
EDXRF without correlated Raman peaks.

) _ SLK|

Information Correlated With Both Methods

8L S Fes]

L s

Concentration Contrast
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MCR Spectra for Fused Data

Raman

EDXRF

Information Unique to One Method
(not observed with correlation spectroscopy)

U L ]

4

L) Fe |

6 M FeS+lum
T L ey

Yl s

N DNCT
L L Cu |

Concentration Contrast
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Conclusions |

ASCA
* for multi-set data typically from designed experiments
MLASCA

» for multi-level data typically from happenstance data
(often semi-batch)

ASCA and MLASCA allow new ways to partition
and understand variance

PN EIGENVECTOR
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Conclusions Il

Data Fusion methods combine multi-block data
that share a common mode
Data Fusion can be done at three levels
* Low Level: joining blocks after preprocessing
* Mid Level: joining model outputs such as scores
* High Level: Combine predictions from multiple models
in some sort of voting scheme

Alignment often important

Often brings out aspects of data that aren’t
obvious in blocks analyzed separately
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