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•  Definitions	

•  Multi-level data	

•  DOE, crossed and nested designs	

•  ASCA – ANOVA simultaneous component analysis	


•  Example	


•  MLSCA – Multi-level simultaneous component analysis.	

•  Example	


•  Multi-block 	

•  Alignment	

•  Examples	


Outline!
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Definitions!
•  Single-block: data that is logically contained in a 

single matrix	

•  Two-block: two single block data sets that share a 

common mode (typically the sample mode)	

•  Multi-block: multiple single blocks that share a 

common mode	

•  Multi-set: groups of related samples that have the 

same variables, typically from designed experiments	

•  Multi-level: same as multi-set except typically from 

nested or happenstance designs	
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Definitions (cont.)!

•  Multi-way: Data that is logically arranged in 3-
way (or more) arrays	


•  Data fusion: the process of combining multiple 
sources of data to improve accuracy 	


•  Alignment: the process of matching the axes 
(time, wavelength, evolution, spatial) of two data 
sets along one or more modes 	
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Single, Two and Multi-block!
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Single block	


Two block	
X	


X	


y or Y	


X1	
 X2	
 X3	
 Multi-block	


L- and U- Configurations!
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X	


Y	
 W	


Z	


S. Wold, S. Hellberg, T. Lundsted, M. Sjöström, 
H. Wold, (1987), PLS modeling with latent 
variables in  two or more dimensions. In: 
Proceedings: PLS Model Building: Theory and 
Applications. Symposium Frankfurt am Mein 
September 23-25, 1987.	

	

H, Martens, E, Anderssen, A. Flatberg, L. H. 
Gidskehaug, M. Høy, F. Westad, A. Thybo and 
M. Martens (2003) : Regression of a data matrix 
on descriptors of both its rows and  of its columns 
via latent variables: L-PLSR. Computational 
Statistica & Data Analysis, 48(1), pps 103-123. 	

	

H. Martens, (2005) Domino PLS: A framework 
for multi-directional path modeling. Proc. 
PLS’05 Intl Symposium “PLS and related 
methods”. (Eds. T. Aluja, J. Casanovas, V.E. 
Vinzi, A. Morineau, M. Tenenhaus) SPAD 
Groupe Test&Go), pp125-132.	


Not going to cover this!	
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Multi-way!
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3-way or 3-mode	


4-way	


5-way	


Combinations!
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Coupled matrix and tensor factorizations: 	

E. Acar, T. G. Kolda, and D. M. Dunlavy. All-at-once Optimization for Coupled 
Matrix and Tensor Factorizations. KDD Workshop on Mining and Learning 
with Graphs, 2011. 	

E. Acar, M. A. Rasmussen, F. Savorani, T. Næs, and R. Bro. Understanding 
Data Fusion within the Framework of Coupled Matrix and Tensor 
Factorizations, Submitted (May, 2012) 	
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•  Groups (sets) of related 
samples which have the 
same variables.	


	


	


	


Multi-set Data!
variables	


sa
m

pl
es
	


Differences between groups may hide variability 
inherent to all samples.	

For samples grouped according to an experimental 
design we can separate variability due to each design 
factor, and systematic variability independent of the 
factors. This is the purpose of ASCA and MLSCA	
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•  Nested designs: samples 
belong to groups which 
are organized 
hierarchically.	


	


	


Crossed and nested designs!
•  Crossed (factorial) designs: 

One or more factors with 
samples measured for every 
combination of factor 
levels.	


	


	


SCHOOLS	

	


    1             2            3                   4	


STUDENTS	

	

1   2    3  4   5    6   7   8    9  10  11  12	


These are both 2-factor designs	
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Crossed and Nested Designs!

Sum of Squares Decomposition!
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For such designs the sum of squares can be decomposed into 
contributions from each factor (and interactions) and the within 
group (residual):	


ASCA and MLSCA are exploratory analysis methods which use 
this separation to isolate variability associated with each factor 
and reveal systematic variability inherent to the samples but not 
related to the factors.	


||X||2 = ||Xavg||2 + ||XA||2 + ||XB||2 + ||XAB||2 + ||E||2	


offset         -------------between--------------        within    	
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For multivariate datasets based on crossed experimental 
designs, ASCA applies ANOVA decomposition and 
dimension reduction (PCA) to :	

•  Separate the variability associated with each factor.	

•  Estimate contribution of each factor to total variance.	

•  Test main factor and interaction effects for significance.	

•  View scores and loadings for these effects.	


Especially useful for high-dimension datasets where 
traditional ANOVA is not possible.	
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ASCA  
ANOVA Simultaneous Component Analysis!

ASCA Method!
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•  X data matrix, with 2 factors A and B.	

•  Decompose into DOE components	


•  Build PCA model for each main effect and interaction	


•  Calculate permutation P-value to estimate each 
factor’s significance.	


•  Project residuals onto each PCA sub-model.	


X = Xavg + XA + XB + XAB + E	


X = Xavg + TAPA
T + TBPB

T + TABPAB
T	
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ASCA Demo data: asca_data!

X: Measured glucosinolate levels in cabbage plants,	

3 treatments, Control, Root, Shoot.	

4 time points, Days 1, 3, 7, and 14.	

5 replicates for each time-treatment.	

11 measured concentrations.	

	

X: (60, 11)	

F: (60, 2) design matrix.	

See X.description for details.	
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Time (Day)	

1          3          7           14	


Tr
ea

tm
en

t	


C	


R	


S	


5 replicates each	
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Using ASCA from the GUI!
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Using ASCA from the GUI!
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Built ASCA!

18	
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ASCA Scores Plot!
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ASCA Scores Plot 
”Time” factor sub-model, PC 1!
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PC 1 of Time dependency common to all Treatments.	

Class = Treatment. Connect Classes = Mean at each X	
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PC 1 of Time dependency at each Treatment level. 	

Class = Treatment. Connect Classes = Mean at each X	


ASCA Scores Plot 
”Time” x “Treatment” interaction sub-model, PC 1!

ASCA Scores Plot!

22	
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ASCA Treatment Scores Plot!

23	


Separating out the Time  and Time x Treatment effects 	

highlights the Treatment effect	
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PCA Scores Plot!

…better than is seen by simply applying PCA to the data.	
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Loadings Plot!

25	


ASCA Box Plot!
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To view raw or preprocessed X “Response” data	
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ASCA Conclusions!

ASCA allows the variation associated with each 
factor to be resolved, and to see the main variables 
involved. 	

•  For a perturbed biological system the Time factor 

scores reveal the common response, Treatment 
factor scores show the Treatment effect 
independent of Time. The Time x Treatment 
interaction scores show the additional time 
dependency at each Treatment level.	
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ASCA Conclusions, cont.!

•  The % contribution of each factor or interaction to 
the total SSQ shows which effects are important.	


•  Perturbation P-values for each factor estimates the 
probability that there is no difference between the 
factor level averages for this effect. 	


28	
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MLSCA is a special case of ASCA applied to data from 
designed experiments with nested factors. 	

•  Separates variability associated with each factor and residual.	

•  Estimate contribution of each factor to total sum of squares.	

•  View scores and loadings for these effects.	

•  Also builds PCA model on the residuals, or “within” 

variability. “Within” is often the focus of the analysis. 	

•  Note that “Class Center” pre-processing can achieve same 

result if there is a single nesting factor.	
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MLSCA  
Multi-level Simultaneous Component Analysis!

MLSCA!

30	
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MLSCA: simple example!
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MLSCA can be used to 
reveal systematic 
variability within grouped 
samples which can be 
obscured by inter-group 
differences.	

	

Example:   X: (400,2)	

400 samples from 3 
individuals.    	


MLSCA: simple example!
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Example:   X: (400,2)	

400 samples from 3 
individuals, A, B, and C.    	

	

Need to remove offsets 
for each individual to see 
the internal, “within” 
individual variation.	
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“BETWEEN”	

  Individual 	

  averages	


“WITHIN”	

 Individual	

 deviations	


X =  average for each individual	

       + deviations from that	


Nested dataset “mlsca_data”!
12 engineering variables from a LAM 9600 Metal 
Etcher over the course of etching 107 wafers.	
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EXPERIMENT	


WAFER	
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1 2 3 
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80	

REPLI-	

CATES	


•  Three experiments were 
run at different times.	


•  Experiment have 34, 36 
and 37 wafers each, for 
107 unique wafers. 	


•  80 samples (replicates) 
measured for each 
wafer during etching. 	


•  X is (8560, 12)	

Nested factors are not crossed.	
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MLSCA Method!
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•  X data matrix, with 2 nested factors A and B.	

•  Decompose into DOE components	


•  Build PCA model for each effect and residual	


X = Xavg + XA + XB(A) + E	

XA contains factor A level averages	

XB(A) contains factor B level averages for each level A	

E are the residuals, “within” component	


X = Xavg + TAPA
T + TB(A) PB(A)

T + TEPE
T	


	

constant  between A     between B         within	


Using MLSCA from the GUI!

36	


•  MLSCA located under “Design of Experiments” in browse	
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Using MLSCA from the GUI!
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•  MLSCA located under “Design of Experiments” in browse	


MLSCA Scores Plot 
”Experiment” factor sub-model, PC 1 vs 2!

38	
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MLSCA Loadings Plot 
”Experiment” factor sub-model, PC 1 and 2!

MLSCA Scores Plot 
”Within” Residual sub-model, PC 1 vs. time !

40	
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PCA Scores Plot 
PC 1 vs. time, Colored by Experiment class!
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The spike at time step 47-48 is not seen in PC 1.	

It shows up in PC 2 because the offset between 	

experiments dominates PC1 in simple PCA.	


MLSCA Scores Plot 
”Within” sub-model, PC 1 vs 2, colored by time!

42	
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MLSCA Loadings Plot 
”Within” Residual sub-model, PC 1 and 2!

MLSCA Conclusions!
MLSCA allows the variation associated with each 
nested factor to be resolved, and to see the main 
variables involved. 	

•  Often used to reveal the inherent “within” group 

variability of samples after factor effects are 
removed. For process data this allows separation of 
within-run variation from between-run variation.	


•  SSQ contributions show which nested factors are 
important.	


44	




23 

ASCA and MLSCA!
•  MLSCA is a special case of ASCA.  	

    However, as implemented,  	


	
ASCA = crossed designs, 	

	
MLSCA = nested designs. 	


•  ASCA used to study fixed effect factors while 
MLSCA focuses on residuals, “within” variability, 
of nested random effect factors.	
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References!
ASCA:	

•  Smilde, A.K.,  J.J. Jansen, H.C.J. Hoefsloot,  R-J.A.N. Lamars, J. van der 

Greef, M.E. Timmerman, "ANOVA-simultaneous component analysis 
(ASCA): a new tool for analyzing designed metabolomics data", 
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•  Zwanenburg, G., H.C.J. Hoefsloot, J.A. Westerhuis, J.J. Jansen, and A.K. 
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MLSCA:	

•  de Noord, O.E., and E.H. Theobald, Multilevel component analysis and 

multilevel PLS of chemical process data. J. Chemometrics 2005; 301–307 
•  Timmerman, M.E., Multilevel Component Analysis. Brit. J. Mathemat. 

Statist. Psychol. 2006, 59, 301-320. 
•  Jansen, J.J., H.C.J. Hoefsloot, J. van der Greef, M.E. Timmerman and A.K. 

Smilde, Multilevel component analysis of time-resolved metabolic 
fingerprinting data. Analytica Chimica Acta, 530, (2005), 173–183. 
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Multi-block Data Fusion!

•  Data fusion can be done at three levels	

•  Low level: single model of combined data blocks 

appropriately scaled/preprocessed	

•  Mid level: combining scores from individual data 

blocks into a consensus model	

•  High level: combining predictions from individual 

models in some sort of voting scheme	
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Example: Plasma Metal Etch!

•  Linewidth (Critical Dimension) Control	

•  Constant linewidth reduction run to run and across wafer	

•  Constant linewidth reduction for every material in stack	


•  Minimal damage to oxide	


Silicon

Oxides
500Å Ti
1000Å TiN

6000Å AlCu (.5%)

500Å TiN
Resist Resist

Silicon

Oxides
Ti

TiN

AlCu

TiN
Resist Resist

TiN

CD

TiN

Ti
Etch in  

Cl2/BCl3
Plasma
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Available Measurements!
•  Machine State Data: Equipment has SECS-II Port	


•  Provides traces with time stamp and step number	

•  Regulatory controller setpoints & controlled variable measured 

values	

•  gas flows, pressure, plasma powers	


•  Regulatory controller manipulated variables	

•  exhaust throttle valve, capacitors	

•  mass flow controller do not provide valve position	


•  Additional process measurements	

•  broadband plasma emission (often used for endpoint)	

•  impedance measurements 	


•  Optical emission spectra	

•  RF plasma variables	
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Sensitivity of MSPC Models!
•  Three experiments performed with 21 “induced” faults on:	


•  TCP top power	

•  RF bottom power	

•  Cl2 flow	

•  BCl3 flow	

•  Chamber pressure	

•  Helium chuck pressure	


•  Data available for Machine State, RF and OES	

•  Goal: Compare ability of models considered for detecting 

faults: best case and for routine data	
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Generating Faults!
•  Set points were changed for controlled process variables	


•  very easy to detect set point changes by simply looking at the 
variable for which the setting was changed, however…	


•  Data for the controlled variable was adjusted to have the 
original desired set point	

•  the mean set point was reset to the original	


•  Result is data that looks like a sensor has developed a bias	

•  more difficult to detect the fault on the single variable	

•  model must detect the fault based on changes in relationships 

between variables	


•  Each wafer is analogous to batch in chem process	

•  wafter-to-wafer = batch-to-batch	


Example with Etch Data!

•  Available data: Machine, OES and RFM data for 
104 normal wafers and 20 induced faults	


•  Data reduced just to mean over each batch	
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>> clear!
>> load Etch_Means!
>> whos!
  Name                     Size              Bytes  Class !
  machinemeans_cal       104x22              33294  dataset              !
  machinemeans_test       20x22              23466  dataset              !
  oesmeans_cal           104x129            158054  dataset              !
  oesmeans_test           20x129             37614  dataset              !
  rfmmeans_cal           104x71             109122  dataset              !
  rfmmeans_test           20x71              27790  dataset              !
!
>> !
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Browse Interface!
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Multi-block Tool Interface!

54	


Drag calibration data sets here	


Drag test data sets here	
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Multi-block Interface Loaded!
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Choose preprocessing for each	

Right click, “edit”	


Click join data icon	


Joined Data!
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Right click “Joined Data”	

Analyze--PCA	


File—Save Joined New Data	
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Data pushed into PCA!

57	


With Test Data Loaded!

58	
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Redo at Mid-level!

•  Develop individual PCA models of data blocks 	
	

•  Load models into Multi-block tool	

•  Choose model outputs	

•  Join and push into PCA	
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Alignment!

•  Many data fusion problems involve aligning one 
block of data with another	


•  There are many ways of doing alignment!	


60	
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Alignment and Warping 
Methods!

•  A veritable smorgasbord of methods available	

•  Rank minimization	


•  similar to rank annihilation factor analysis (RAFA)	

•  Dynamic Time Warping (DTW)	

•  Correlation Optimized Warping (COW)	

•  Indicator variable/step number	

•  Linear interpolation	

•  Align and truncate	

•  Combinations and variations of the above	

•  etc. 	


Multi-way Alignment!
•  For test matrix BI2xJ and standard matrix NIxJ (where I2>I) 

NB is the IxJ sub-matrix of B that minimizes the rank of 
[N|NB]	


N IxJ NB, IxJ

BI2xJ

•  Can also minimize residuals of projecting NB onto a bilinear model of N	

•  Optimize based on sum of eigenvalues to the fourth power	
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•  Typical process data has a different number of time points for 
each wafer processed.	


•  MPCA requires the same number M for each wafer.	


•  Misalignment adds rank ���
irrelevant to process 
monitoring.	

•  PCs must account for time 

shifts in the process data.	

•  Irrelevant variance often 

results in a reduction of 
model sensitivity.	


Process Data Alignment!

0 20 40 60 80 100 120 500 

1000 

1500 

2000 

Time 

E
nd

P
tA
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PCA Scores of Machine Data!

•  Use PCA scores to characterize 
process trace	


•  Data centered around “peak” in 
TiN etch or transition from 
process step 4 to 5	

•  simple!	
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Alignment Algorithm!
•  Based on rank minimization	
 The submatrix of the test wafer that 

minimizes the residuals when 
projected onto a PCA model of the 
standard data matrix is selected as 
the MxN test matrix. 

data from new test wafer 

M0	


M1	


MxN	


data matrix of a 
standard wafer 

M0>M	
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•  Alignment is based on aligning all process variables 
simultaneously.	

•  Data at the very beginning and end of process are not used.	

•  Monitoring is based on the “interesting” part of the process.	


Aligned Process Data!

0 10 20 30 40 50 60 70 80 500 

1000 

1500 

2000 

Time Pt 

E
nd

P
tA
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Correlation Optimized Warping!

•  Piecewise preprocessing method	

•  Allows limited changes in segment lengths, 

controlled by slack parameter	

•  Linear interpolation over segments	

•  Dynamic programming used to optimize 

correlation between warped sample and reference	

•  Less flexible than DTW (unless constrained)	
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COW References!
•  N.P.V Nielsen, J.M. Carstensen and J. Smedsgaard, “Aligning of single and 

multiple wavelength chromatographic profiles for chemometric data analysis 
using correlation optimized warping,” J. Chromatogr. A, 805, 17-35, 1998.	


•  G.  Tomasi,  F.  van  den  Berg  and  C.  Andersson,  “Correlation  Optimized 
Warping  and  Dynamic  Time  Warping  as  Preprocessing  Methods  for 
Chromatographic Data,” J. Chemometrics, 18, 231-241, 2004.	


•  G.  Tomasi,  T.  Skov  and  F.  van  den  Berg,  Warping  Toolbox,  see: 
http://www.models.life.ku.dk/source/DTW_COW/index.asp	
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Example: COW!
COW breaks signals into segments and linearly expands or contracts 
them to optimize correlation 

70	


Hints on COW!
May be better to calculate warp with 2nd derivative 
Apply calculated warp to other variables 
Calculate warp on PCA scores or other latent variable  
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Example from Image Analysis!

71	
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50 µm

Multi-Method Imaging!

Detector	


Raman & Fluorescence	

Detect molecular species, 

some inorganics	


Energy Dispersive X-Ray 
Fluorescence (EDXRF)	


Detects elemental composition	
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Data Fusion!
•  Alignment of Images	

•  Balancing of Data Variance	

•  Concatenation	
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X
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X

Data Fusion!
•  Alignment of Images	

•  Balancing of Data Variance	

•  Concatenation	


100 200 300 400 500 600 

0.35 
0.4 

0.45 
0.5 

0.55 
0.6 

0.65 
0.7 

0.75 

 4  9 13 18 22 27 31 35 0 

2 

4 

6 

8 

10 
x 10 8 

Raman	

275 Variables	

0.15 RMS Signal	


EDXRF	

4096 Variables	

8.4x107 RMS Signal	
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Data Fusion!
•  Alignment of Images	

•  Balancing of Data Variance	

•  Concatenation	


Raman	

275 Variables	

0.15 RMS Signal	


EDXRF	

4096 Variables	

8.4x107 RMS Signal	


XRaman 	


0.15 x 275	


XEDXRF 	


8.4x107 x 4096	


Data Fusion!
•  Alignment of Images	

•  Balancing of Data Variance	

•  Concatenation	


XFused = [XRaman   XEDXRF]	
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Pre-Preprocessing!
Raman	


Fluorescence, Z=0	


Fluorescence, 
Z=20	


Normalize	
Baseline	


Normalize	


Normalize	


Combined Data	


Raman	
 Fluorescence, Z=0	
 Fluorescence, 
Z=20	


Multivariate	

Curve	


Resolution	


15609 x 1024	


19881 x 1024	


19881 x 1024	


15609 x 3072	


Data Analysis!

•  Multivariate Curve Resolution	

•  With Contrast "bias" – Pushes solution to a 

specified edge of the feasible bounds	

•  Provides solution within noise level which is most 

consistent with:	

•  Image/conc. contrast: best spatial resolution	

•  Spectral contrast: best spectral resolution	
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Image of Granite!
White Light	


Dimensions 2 x 2 mm	
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Selected Channels	


Raman	

Selected Peaks	


George J. Havrilla, 
Ursula Fittschen	


Los Alamos National 
Laboratory ���

Los Alamos, NM	
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MCR Spectra for Fused Data!
Raman	
 EDXRF	


Concentration Contrast	


Si	


Si, K, Sr	


Si, K	


Si	


S, Fe	


Fe	


SiO2	


FeS	
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Conclusions I!

•  ASCA 	

•  for multi-set data typically from designed experiments	


•  MLASCA 	

•  for multi-level data typically from happenstance data 

(often semi-batch)	

•  ASCA and MLASCA allow new ways to partition 

and understand variance	
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Conclusions II!
•  Data Fusion methods combine multi-block data 

that share a common mode	

•  Data Fusion can be done at three levels	


•  Low Level: joining blocks after preprocessing	

•  Mid Level: joining model outputs such as scores	

•  High Level: Combine predictions from multiple models 

in some sort of voting scheme	

•  Alignment often important	

•  Often brings out aspects of data that aren’t 

obvious in blocks analyzed separately 	
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