Introduction to Matrix Algebra

Why Learn Matrix Algebra?

- Matrix Algebra is the most popular language of chemometricians.
- Used in chemometrics Texts, Journal Papers and Oral Presentations.
- Need to know Matrix Algebra to stay current with the latest techniques and new ways of applying older techniques.

Scalar

$$a = 5.4367$$

Just another name for a single number

Vector

Transpose to a Row Vector

$$\mathbf{b} = \mathbf{a}^{\mathrm{T}} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4 \ \mathbf{a}_5 \ \bullet \ \bullet \ \mathbf{a}_{\mathrm{m}}]$$

= [3.0 -2.1 9.6 6.9 0.4 8.2 -9.4]

left and right

Matrix

$$\mathbf{A} = \underline{\mathbf{A}} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ a_{41} & a_{42} & a_{43} & \cdots & a_{4n} \\ a_{51} & a_{52} & a_{53} & \cdots & a_{5n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$

Second index is Column Number

A Matrix is Just a Table of Numbers

	Specific Gravity	App Extr	Alcohol (%w/w)	Real Ext	O.G.	RDF	Calories	рН	Color	IBU	VDK (ppm)
1											_
Shea's Irish	1.01016	2.60	3.64	4.29	11.37	63.70	150.10	4.01	19.0	16.1	0.02
Iron Range	1.01041	2.66	3.81	4.42	11.82	64.00	156.30	4.33	11.6	21.1	0.04
Bob's 1st Ale	1.01768	4.50	3.17	5.89	12.04	52.70	162,70	3.93	30.7	21.1	0.11
Manns Original	1.00997	2.55	2.11	3.58	7.77	54.90	102.20	4.05	58.9	18.2	0.05
Killarney's Red	1.01915	4.87	3.83	6.64	14.0	54.30	190.20	4.36	12.3	17.9	0.02
Killian's Irish	1.01071	2.74	3.88	4.48	12.0	64.10	158.80	4.28	53.0	14.2	0.03
- 1							\				
								\			
6 v 11 Matrix											

Transpose a Matrix by Interchanging Rows and Columns

$$\mathbf{B} = \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 1.2 & 3.5 & -3.1 & 8.6 \\ -0.3 & 8.6 & 0.2 & -4.3 \\ 9.3 & 4.9 & 2.7 & -0.7 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1.2 & -0.3 & 9.3 \\ 3.5 & 8.6 & 4.9 \\ -3.1 & 0.2 & 2.7 \\ 8.6 & -4.3 & -0.7 \end{bmatrix}$$

3 x 4 Matrix becomes a 4 x 3 Matrix

The Power of Matrix Algebra is that It Can Perform Operations on a Whole Table of Numbers at Once.

Matrix Algebra Operations:

Matrix Addition

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} 1.2 & 3.5 \\ -0.3 & 8.6 \\ 9.3 & 4.9 \end{bmatrix} + \begin{bmatrix} -3.1 & 8.6 \\ 0.2 & -4.3 \\ 2.7 & -0.7 \end{bmatrix} = \begin{bmatrix} -1.9 & 12.1 \\ -0.1 & 4.3 \\ 12.0 & 4.2 \end{bmatrix}$$

Matrix Addition is:

 $\bullet \quad \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$

Commutative

• A + (B + C) = (A + B) + C

Associative

Scalar Multiplication

Vector Inner Product (Dot Product)

The Inner Product Can Be Used to Calculate a Vector Length

$$\mathbf{u}^{\mathrm{T}} \ \mathbf{u} = \begin{bmatrix} x & \overline{y} \\ & y \end{bmatrix} \begin{bmatrix} x \\ & y \end{bmatrix} = x^2 + y^2$$

According to Pythagorean Theorem

$$u^2 = x^2 + y^2$$

or the length of **u** is

$$\mathbf{u} = ||\mathbf{u}|| = (\mathbf{u}^{\mathrm{T}} \ \mathbf{u})^{1/2}$$

Matrix Multiplication

(All Possible Vector Inner Products)

Matrix Multiplication Not Communicative

$$\mathbf{A} * \mathbf{B} \neq \mathbf{B} * \mathbf{A}$$

$$\mathbf{B} * \mathbf{A} = \begin{bmatrix} 2 & -3 \\ 8 & 4 \\ -3 & 0 \end{bmatrix} * \begin{bmatrix} 1 & 3 & 5 \\ 4 & -2 & 3 \\ 9 & 8 & -3 \end{bmatrix} = \begin{bmatrix} ? \\ ? \\ \end{bmatrix}$$

$$3 \times 2 * 3 \times 3$$
Must be the same

Matrix Multiplication is:

•
$$(\mathbf{A} * \mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} * \mathbf{A}^{\mathrm{T}}$$

•
$$(A + B) * C = A * C + B * C { \neq C * A + C * B}$$

Distributive
• $(A * B) * C = A (B * C)$ Associative
• $(A^T)^T = A$

•
$$(\mathbf{A} * \mathbf{B}) * \mathbf{C} = \mathbf{A} (\mathbf{B} * \mathbf{C})$$
 Associative

•
$$(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$$

Must maintain the order of multiplication!

Another Special Multiplication -Vector Outer Product

(All Possible Scalar Products)

$$\mathbf{a} * \mathbf{b}^{T} = \begin{bmatrix} 2 & 4 & 8 \\ 5 & 4 & 3 & 5 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 2 & 15 & 25 & 35 & 45 \\ 4 & 3 & 5 & 7 & 9 \end{bmatrix}$$

Note: Vector Inner Product resulted in a Scalar

Vector Outer Product resulted in a Matrix

A Special Matrix - Identity Matrix

Diagonal Matrix of 1's

Identity Matrix is like the number 1 in Scalar Mathematics

$$\mathbf{A} * \mathbf{I} = \mathbf{I} * \mathbf{A} = \mathbf{A}$$

Both **A** and **I** must be square (m x m) and equal size

There is No Division in Matrix Algebra

$$\mathbf{A}^{-1} * \mathbf{A} = \mathbf{A} * \mathbf{A}^{-1} = \mathbf{I}$$
Inverse of A

Not All Matrices Have an Inverse

- They must be square.
- Must not be Collinear.

Collinear - any column (or row) is a linear combination of other columns (or rows).

Other words for Collinear are Singular and Correlated

This Matrix is Collinear (Singular)

Simultaneous Equations

$$2x + 3y + 4z = 0
x + 0 + 2z = 0$$

$$4x + 6y + 8z = 0$$
3rd Row =
1st Row*2

How many unknowns? 3

How many equations? 2

This matrix is not Full Rank Rank = 2

Beer-Lambert Law

$$A = C \epsilon$$

Solve This Equation for **E**

$$A = C \epsilon$$

 $C^{-1} A = C^{-1} C \epsilon$ But C is usually not square

$$A = C \epsilon$$

 $C^T A = (C^T C) \varepsilon$ $C^T C$ is square

$$(C^T C)^{-1} C^T A = (C^T C)^{-1} (C^T C) \epsilon = \epsilon$$

C⁺ Moore-Penrose Pseudo Inverse

Moore-Penrose Pseudo Inverse

- $(X^T X)^{-1} X^T$ Use when # rows > # columns
- $X^T(X X^T)^{-1}$ Use when # columns > # rows
- X Must not be Collinear

The Opposite of Collinear is Orthogonal

Two vectors are Orthogonal (independent) if their inner product $\mathbf{q}_i^T * \mathbf{q}_j = 0$; i = j

Other words for Orthogonal are Perpendicular and Independent

A Matrix is Orthogonal if all the columns are Orthogonal

Special feature of Orthogonal Matrix

 $A^{-1} = A^{T}$ if **A** is an Orthogonal Matrix

There are Shades of Grey between Orthogonal and Collinear

2	3	4	2.00
1	0	2	1.00
4	6	8	4.01
5	9	10	5.02

2.00	3.00	4.01
1.00	0	2.00
4.01	6.00	7.99
5.02	9.01	10.01

Collinear

With Noise Added Nearly Collinear

Let's Apply Some of What We Have Learned to Define Projection

Project vector **u** onto vector **v**

Projection onto a Line

Some Algebra

```
\mathbf{v}^{\mathrm{T}} (\mathbf{u} - \mathbf{p}) = 0; since \mathbf{p} = \mathbf{b}\mathbf{v}

\mathbf{v}^{\mathrm{T}} (\mathbf{u} - \mathbf{b}\mathbf{v}) = 0

solving for \mathbf{b}

\mathbf{v}^{\mathrm{T}} \mathbf{u} - \mathbf{v}^{\mathrm{T}} \mathbf{b}\mathbf{v} = 0

\mathbf{v}^{\mathrm{T}} \mathbf{u} = \mathbf{v}^{\mathrm{T}} \mathbf{b}\mathbf{v}

divide both sides by \mathbf{v}^{\mathrm{T}} \mathbf{v} (Inner Product, a scalar!)

\mathbf{b} = \mathbf{v}^{\mathrm{T}} \mathbf{u} / \mathbf{v}^{\mathrm{T}} \mathbf{v}

\mathbf{p} = (\mathbf{v}^{\mathrm{T}} \mathbf{u} / \mathbf{v}^{\mathrm{T}} \mathbf{v})\mathbf{v}
```


We Shall Teach More Matrix Algebra as We Need It

