Abstract

Many processes and analytical methods generate multivariate or multiway data sequentially. In calibration mode this
1s not generally a problem, one just waits until all the data is in, then sets about modeling. Often, particularly in pro-
cess applications, it 1s desired to know how well the model represents the incoming data before the complete record is
available. Several options have been proposed to deal with this problem. Some of the methods are based on in-filling
the missing data so that the models may be applied in the usual way. This approach, however, suffers from all the
problems associated with missing data. How does one fill in the record, particularly when the missing parts are sys-
tematic, not random? An alternative approach is considered here. Models are fit to partial data records by simply trun-
cating the model loadings to coincide with the available data and fitting the partial factors using a classical least
squares (CLS) approach. The estimated scores and residuals are found to converge to those of the entire record quite
rapidly in the data sets considered. In fault detection applications the implies that it is often possible to detect a bad
batch well before its completion. The partial refit method is compared to the method for in-filling missing data in PCA
developed previously. The methods are found to be mathematically identical.

Why Partial Refitting?

« PCA/MPCA and CLS/PARAFAC models
generally developed on complete data records

Approaches to Partial Records

* Sometimes want to compare incoming data to o
model before complete record is available Propagate-current-deviation

- Batch process monitoring most common * Solve for missing variables-complete the squares

e Solve for scores with truncated Classical Least

* Where is process going to wind up?
Squares

e (Can faults and off-normal batches be detected mid
batch?

Missing Variables in PCA
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Truncated CLS Approach

 (Calculate scores by fitting truncated loadings to
available data

* Normally done by projection, but loadings not
orthogonal after truncation

» Use Classical Least Squares approach

CLS Approach to PCA
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Method of Wise and Ricker (1991) and
Nomikos and MacGregor (1995) are equivalent!

Proof
Note: P'P, +P'P, =1—P'P, =1-P'P,
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Re-fitting PCA, MPCA and PARAFAC Models to Incomplete Data Records

Estimated scores on Factor Number 2

Estimated Residual Q

Estimated scores on Factor Number 1

Estimated Residual Q

MPCA on Etch Calibration

10 20 30 40 50 60 70 80
Batch Time Step Number

10 20 30 40 50 60 70 80
Batch Time Step Number

Estimated scores on Factor Number 2

-2.5

Scores on Second PC

-1.5¢

-0.51

-1.5¢

-0.51

2
1.5F
1
0.51

ok

1+

2

0 10

2

20

30 40 50 60 70 80
Batch Time Step Number

Progression of Score Estimates on Machine Calibration Data

JZ&L

1.5¢

)35
1F &

/Y
0.5}
0 =

-1

-2 L
-2 -1

0 1 2 3 4
Scores on First PC

MPCA on Etch Test

10 20 30 40 50 60 70 80
Batch Time Step Number

e

0

10 20 30 40 50 60 70 80
Batch Time Step Number

Scores on Second PC

Estimated scores on Factor Number 2

0 10

20

30 40 50 60 70 80
Batch Time Step Number

Progression of Score Estimates on Machine Test Data

v

i J

0%, =4

. ¥
L

{

e &

-1

0 1 2 3 4
Scores on First PC

Data Sets

* Semiconductor etch process
» 80 time steps by 12 variables by 107 batches
20 test batches

* Dupont batch polymer process
« 100 time steps by 10 variables by 47 batches
& test batches

 EEM of sugar (sece MATLAB demo)

7 excitation by 44 emission by 268 samples

Refitting PARAFAC Models

« Refitting PARAFAC model with fixed loadings 1n all
but one mode 1s a single CLS step

* Loadings of fixed factors multiplied out and unfolded

* Unfolded loadings fit to data unfolded in sample mode

Residuals in a CLS Fit

e=x—c¢S’

e=x—xS(S’'S) 8’

e=x(1-5(s"s)"s"

0= X(I - S(STS)_1 S’ )XT = xRx’

Comment on CLS with Missing Data

» Solution based on complete the squares works for
CLS, as does solution based on truncated CLS

» Solutions the same, as before

MPCA on Dupont Polymer Calibration
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Conclusions

* Methods based on minimizing residual and
truncated CLS equivalent for refitting
PCA/MPCA models to incomplete data records

e Same 1s true for CLS/PARAFAC models

* Solutions converge to final results very early for
some processes (semiconductor etch, EEM of
sugar) not so well for others (Dupont polymer)
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