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•  Three-way data?
•  Simply a set of ‘equivalent’ two-way matrices obtained 

at different occasions
•  Data measured as a function of three ’things’

•  E.g. samples, variables, times

•  xij is a matrix element and xijk is a three-way element

Introduction

A B

C

Sensory analysis
§  Score as a function of (Food sample, Judge, Attribute)

Process analysis
§  Measurement as a function of (Batch, Variable, time)
§  Measurement as a function of (Variable, Lag, Location)

Image analysis
§  Pixelvalue as a function of (Sample, Image pixel, Variable)

Experimental design
§  Response as a function of (factor 1, factor2, factor3,..)

Spectroscopy
§  Intensity as a function of (Wavelength, Retention, Sample, Time, Location , Treatment)

Environmental analysis
§  Measurement as a function of (Location, Time, Variable)

Chromatography
§  Measurement as a function of (Sample, Retention time, Variable)

Examples Unfolding/matricization

Traditional approach
§  Unfolding leading to two-way data 

and analysis

Three-way models
§  Natural extensions of two-way 

models
§  PCA leads to PARAFAC or 

Tucker3 depending on how it is 
extended

§  PLS leads to multilinear PLS (N-
PLS)

Sample 
Wavelength 

pH 

pH Sample 

Sample 

Sample 

Wavelength 

Wavelength 

Wavelength pH 

pH 

     Unfolding/matriciation
     Often leads to overfitting
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Multi-way notation

Matricized array 
Unfolded array 

Sample 

Elution 
Wavelength 

Elution 
Wavelength 

Slab 
Slice 

Three-way array 
Third-order tensor 
Three-mode array 
Three-dimensional array 

Vectorized  
horizontal slab 

Kiers. Towards a standardized notation and 
terminology in multiway analysis. Journal of 
Chemometrics 14 (3):105-122, 2000. 

•  PCA - bilinear model,
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PARAFAC

•  PCA - bilinear model,

•  PARAFAC - trilinear model,
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PARAFAC invented 
in 1970 by Harshman 
based on Cattell 
1944 

PARAFAC
…. or 

Canonical Decomposition 
=

CanDecomp

CP
…or combined 

R. A. Harshman, Foundations of the PARAFAC 
procedure: model and conditions for an 'explanatory' 
multi-mode factor analysis, UCLA Working Papers in 
phonetics, 16 (1970) 1.

J. D. Carroll, J. Chang, Analysis of individual differences 
in multidimensional scaling via an N-way generalization 
of "Eckart-Young" decomposition, Psychometrika, 35 
(1970) 283.

PARAFAC
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•  Rank of two-way matrix
•  Minimum number of bilinear (PCA) components 

needed to reproduce matrix
•  Rank of three-way array

•  Minimum number of trilinear (PARAFAC) 
components needed to reproduce array

X
= +

c2

b2

a2

c1

b1

a1

Three-way rank 
A motivating example: 
Monitor pollution empirically 

from water samples

Lamp
(uv-vis)

Sample

Excitation 
monochromator

Emission
monochromator

Detector/
IntensityExcitation

Emission

Excitation-emission matrix – 
a chemical fingerprint

Fluorescence 

A practical example: 
Data from each sample

State of the art: Peak-spotting!!! 
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Practical example  
 

•  Rotational freedom of PCA

X                    =               TP’ 

T 

P’ 

250 300 350 400 450
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Practical example  
 

•  Rotational freedom of PCA
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Instead of peak spotting or 
strange PCA components

Get the real thing – the chemistry

Eliminates major problems
•  Removes indirect correlations
•  Eliminates outliers
•  Determines underlying sources
•  Chemical/physical = simpler
•  Way more noise insensitive

Uniqueness - what does it mean?
•  Mixtures of analytes can be separated
•  Concentrations can be estimated
•  Pure spectra and profiles can be estimated

Mathematical chromatography

Uniqueness* - conditions
A PARAFAC model is unique when

kA + kB + kC ≥ 2F + 2

F is the number of components and kA is 
the k-rank of loading A = maximal 
number of randomly chosen columns 
which will have full rank (≤F)

J. B. Kruskal. Linear Algebra and its Applications 18:95-138, 1977. 
N. D. Sidiropoulos and R. Bro. Journal of Chemometrics 14 (3):229-239, 

2000. 
 

X 
B 

A 

C 

*Up to scaling and permutation

PARAFAC – when is it unique
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•  PARAFAC algorithms not sequential
•  PCA is a least squares model, fitted sequentially (NIPALS). Three 

comp. solution = two comp. plus one
•  PARAFAC not sequential. Hence refitting necessary.

•  Algorithm - Alternating least squares (ALS)
•  Ex.: Bilinear model : ||X – ABT||
•  1. BT = (ATA)-1ATX = A+X
•  2. AT = (BTB)-1BTXT = B+XT

•  3. Goto 1 until convergence (small change in fit ||X-ABT||)

PARAFAC
Algorithm

* Hadamard (elementwise 
product) 
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1. Initialize  and 

2. ' * '

3. ' ' * '

4. ' * ' diag ' , =1,..,  

5. Step 2 until relative change in fit is small

K

k

K

k

diag k K

B C

A X BD B B C C

B X AD A A C C

D B B A A A X B

Why ALS? 
Simple 
Extends to N-way 
Handles missing 
Handles ML fitting 
Constraints: 
•     Nonnegativity 
•     Unimodality 
•     Orthogonality 
•     Linear constraints 
•     Fixed parameters 
•     Smoothness 
•     Functional 
•     etc 
 

Three-way ALS

Two fundamental problems 
with PARAFAC

•  Convergence
•  The solution may not be achieved because of lack of convergence

•  Two-factor degeneracy
•  There may not be a solution at all

None of these problems occur in e.g. PCA. 
When you do PCA, you ‘get PCA’.

Convergence?? 

The algorithm is iterative and stops when ‘nothing happens’

Important to understand what that means and how it is evaluated
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Convergence??

The algorithm is iterative and stops when ‘nothing happens’

Important to understand what that means and how it is evaluated

Local 
minimum

Global 
minimum

Not 
converged

•  Two factors become almost identical but with opposite sign 
(a1*b1*c1 = -a2*b2*c2)

•  Grow in size and similarity with more iterations
•  Combined contribution to the model is appr. zero
•  Use Tuckers congruence (”correlation”) or plots to spot 

degeneracy
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Two-factor degeneracy

•  Two factors become almost identical but with opposite sign 
(a1*b1*c1 = -a2*b2*c2)

•  Happens when 
•  Too many components or 
•  When PARAFAC is not appropriate
•  Or during iterations something similar can happen
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Two-factor degeneracy Number of components?

Simpler than PCA (but takes more time):
•  Cross-val, Scree etc. as in PCA
•  Plus split-half
•  Plus core consistency
•  Plus chemical validation
•  Plus algorithmic indications (degeneracy, many 

iterations, local minima etc.)

These are the main ones. 
Always look at the model to validate it.
Use core consistency but carefully. 
Use split-half for definitive validation
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Core consistency Split-half 
analysis

•  Fit model to several independent samples
•  If loadings the same, reasonable number chosen 

Original data 

Split 2

Split 1

Multi-way analysis in fluorescence data, Report 2002, Giorgia Servente & Jordi Riu 
 

Original data Split 1 Split 2

Pick the 
best one

Split-half 
analysis

Pick the best of the two

Outlier 
detection

Same as in two-way analysis
•  Residual analysis  - X = M + E, all of same sizes

Look at (summed) squared residuals to find unusually 
large residuals 

•  Influence analysis - A, B, C from Tucker or 
PARAFAC Plot e.g. for finding extreme samples or 
use for calculating leverages (Hotellings T2).
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Plots available Some applications

Second order 
calibration 

How many samples are needed to build a 
calibration model?

Say you want to predict protein in flour. How 
many samples would you need?

 
Curve resolution

For two-way data lots of ‘tricks’ necessary to fix 
rotational freedom

For three-way trilinear data …………  PARAFAC
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Sugar processing

Sugar made from beets

•  Product sampled 8th hour 
for three months

•  Fluorescence measured
•  260 samples

Thick juice 

Massecuite 

Standard 
liqour 

Sugar 
boiling  

Centrifuge 

Thin juice 
A little 

Syrup Wash syrup 
Wash water 

Wash juice 
Water 

Sugar 
X7 

X8 

X1 

X2 

X3 

X4 

X5 
X6 

Color 15 

25 

35 

0 10 20 30 40 50 60 70 80 90 Days 

CaO 
0 10 20 30 40 50 60 70 80 90 Days 

a.u. 

Correlation to process- & quality 

= + + + 

8h sample (14 weeks total) 

268 sugar fluorescense-landscapes PARAFAC model 

4 components 

300 400 500 
Wavelength (nm) 

0.60 0.69 

- 0.42 

0.43 0.64 

0.81 - 

Color 
(r) 

Ash 
(r) 

comp. 1 

"Tyrosine" 

"Tryptophan" 

Comp. 4 

Emission -spectra 

8h shift (week 1-14) 
0 50 100 150 200 250 

4 
3 
2 
1 

Scores for components 4 estimated emission spectra 

Correlation to quality parameters ash and color 

4 
3 
2 
1 

Blue  – reference 

Red – From
 fluorescense 

PARAFAC + fluorescence

•  Several advantages

•  Chromatographic analysis of the whole process 
•  Process monitoring (MSPC) on a chemical basis
•  Chemical understanding of why coloring occurs (PAC)
•  On-line prediction of quality 
•  On-line prediction of process parameters

•  Nowadays = PAT – process analytical technology

Traditional approach for cancer diagnostics and 
monitoring: Biomarkers

APP

SCC

-

THYROIDCT TG

BREASTCA15.3 CEA

OVARYCA125 CEA CA72.4
HCGAPP

CERVIXSCC

TROPHOBLASTbHCG CEA

ENDOMETRIUMCEA CA19.9

SCCHEAD/NECK, ESOPHAGUS

NSE CEASCCLUNG

AFP CEACA19.9LIVER

CA19.9 CEACA72.4STOMACH

CA19.9 CEACOLON RECTUM

CA19.9 CEACA50PANCREAS

PAP PSAPROSTATE

bHCG AFPPCAPTESTIC

APP

SCC

-

THYROIDCT TG THYROIDCT TGCT TG

BREASTCA15.3 CEA BREASTCA15.3 CEACA15.3 CEA

OVARYCA125 CEACA125 CEA CA72.4
HCGAPP

CERVIXSCC CERVIXSCC

TROPHOBLASTbHCG CEA TROPHOBLASTbHCG CEA

ENDOMETRIUMCEA CA19.9 ENDOMETRIUMCEA CA19.9CEA CA19.9

SCCHEAD/NECK, ESOPHAGUS

NSE CEASCCLUNG

AFP CEACA19.9LIVER

CA19.9 CEACA72.4STOMACH

CA19.9 CEACOLON RECTUM

CA19.9 CEACA50PANCREAS

PAP PSAPROSTATE

bHCG AFPPCAPTESTIC

SCCHEAD/NECK, ESOPHAGUS

NSE CEASCCLUNG NSE CEASCC NSE CEASCCLUNG

AFP CEACA19.9LIVER AFP CEACA19.9 AFP CEACA19.9LIVER

CA19.9 CEACA72.4STOMACH CA19.9 CEACA72.4 CA19.9 CEACA72.4STOMACH

CA19.9 CEACOLON RECTUM CA19.9 CEACOLON RECTUM

CA19.9 CEACA50PANCREAS CA19.9 CEACA50 CA19.9 CEACA50PANCREAS

PAP PSAPROSTATE PAP PSAPROSTATE

bHCG AFPPCAPTESTIC bHCG AFPPCAP bHCG AFPPCAPTESTIC

cancer 



11 

The three-way version 
Here we just show the 
information obtained from 
a tiny part of the overall 
data 

Cancer diagnostics
Concentrations Emission spectra 
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Excitation spectra 

1 2 3 4 5 6 7 
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0.4 
0.5 
0.6 
0.7 

Cancer diagnostics

0 0.2 0.4 0.60

0.1

0.2

0.3

0.4

Conc. Comp. 1

Cancer
Non-cancerConc. Comp. 4

It works! 

Examples

Metabonomics 
Anthropometry 

Tracing dissolved organic matter 

User separation in CDMA 

Electronic nose 

Light-induced oxidation  
of cheese 

2, L. America (Indian)

15, S. India
16, N. Asia

19, Australia

20, Korea/Japan

12, S.E.Africa
11, W. Africa

10, N. Africa
18, S.E. Asia

13, Near East

9, Iberian Peninsula

6, E. Europe

7, S.E. Europe

17, S. China

3, L. America

14, N. India

1, N. America

5, C. Europe

4, N. Europe
8, France

2, L. America (Indian)

15, S. India
16, N. Asia

19, Australia

20, Korea/Japan

12, S.E.Africa
11, W. Africa

10, N. Africa
18, S.E. Asia

13, Near East

9, Iberian Peninsula

6, E. Europe

7, S.E. Europe

17, S. China

3, L. America

14, N. India

1, N. America

5, C. Europe

4, N. Europe
8, France

EEG 
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•  Example
•  Instead of ‘PCA’: || X - AB’||
• fit the model: || X - AB’||, 
  subject to A and B are nonnegative

•  Constraints are essential in two-way curve resolution 
because the model is unidentified

•  In three-way curve resolution the model is often unique 
but constraints are still useful 

Using constraints

Why constraints?

•  Obtain sensible parameters
•  Ex.: Require chromatographic profiles to have but one peak

•  Obtain unique solution 
•  Ex.: Use selective channels in data to obtain uniqueness

•  Test hypotheses
•  Ex.: Investigate if tryptophane is present in sample 

•  Avoiding degeneracy and numerical problems
•  Ex.: Enabling a PARAFAC model of data otherwise inappropriate for the 

model
•  Speed up algorithms

•  Ex.: Use truncated bases to reexpress problem by a smaller problem
•  Enable quantitative analysis of qualitative data

•  Ex.: Incorporate gender and job type predicting income

Try

Aminoacid data
 
Try to model a three-component PARAFAC model of sample 
four and five – the two mixtures. 

Does the model look good? If not; what to do? 
For two-way data a bilinear 
model is used

For three-way data a trilinear 
model is used X

N-PLS

X

PLS

T
regress

y

T
regress

y

PLS for multi-way arrays
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Multilinear PLS regression
Use a trilinear (PARAFAC-like) model of X but such 

that the scores are predictive of y.

X E
= + +

c2

b2

t2

c1

b1

t1

T y

b

Bro. Multiway calibration. Multi-linear 
PLS. Journal of Chemometrics 
10:47-61, 1996. 

Three-way, two-way: 
Does it make a difference?

5 breads (in replicates) × 11 
attributes × 8 judges

10 breads

11
 a

ttr
ib

ut
es

Judge 2 Judge 8Judge 1

11
 a

ttr
ib

ut
es

11
 a

ttr
ib

ut
es

X
10 breads

8 Judges

11 attributes

_

Sensory 
example

Data due to Magni Martens

PCA

Score one

Sc
or

e 
tw

o

-10 0 10 20-10

-8

-6

-4

-2

0

2

4

6

8

10

78

3

1
2

4

5

6

9
10

PARAFAC

Score one

Sc
or

e 
tw

o

-10 -5 0 5 10 15-10

-8

-6

-4

-2

0

2

4

6

8

10

34

5
6

7
8

12
910

Scores PCA and PARAFAC

Similar but note that replicates are closer for PARAFAC

Three-way more robust because of ‘stronger’ structural model

rb@life.ku.
dk

Loadings from bilinear PCA
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PCA - unfolded 
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X
10 breads

8 Judges

11 attributes
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Off-flav

Tough   
Salt-t  

Sweet-t 

Other-t 

Bread-od

Yeast-od

Colour  

Moisture

Yest-t  

Total   

PARAFAC - Attributes PARAFAC - Judges

-0.5
Loading one

0 0.5

-0.6

-0.2

0.2

0.6

Lo
ad
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g 
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o

0.2 0.3 0.4 0.5 0.6 0.7

0.15

0.25

0.35
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0.55
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6

1
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4
5

7
8

65

8010
14

19

21

25

30

36 43
54

63
74

76

85
1

8

11

13

22
415264
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69

77

4950
73
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2
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6
7
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12
15
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24
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39
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46
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51

53

55

56

575859
60

61
62

66

68

7071

72

75
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79

81
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84
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PCA - unfolded

-0.2 -0.1 0 0.1 0.2

Loading one

-0.3

-0.1

0.1

0.3

Lo
ad

in
g 

tw
o

PARAFAC 19 loading-elements per component
PCA 88 loading-elements per component!

Loadings from PCA and PARAFAC
Calibration - predict salt content 

un
fo
ld
-P
L
S

Tr
ili
ne
ar
 P
L
S

LV Variation explained /% RMSE

X cal. X val. Y cal. Y val. Y cal. Y val.

1 43 25 80 62 0.21 0.29

2 61 38 95 76 0.10 0.23

3 74 49 100 84 0.03 0.19

1 31 22 75 60 0.23 0.30

2 46 36 93 82 0.12 0.20

3 54 44 98 91 0.07 0.15

un
fo
ld
-P
L
S

Tr
ili
ne
ar
 P
L
S

25% better with NPLS 
Less overfit Example sugar processing

Sugar made from 
beets 

90 samples of white 
sugar measured by 
fluoroescence 
 

Thick juice

Massecuite

Standard
liqour

Sugar
boiling 

Centrifuge

Thin juice

A little

SyrupWash syrup

Wash water

Wash juice

Water

Sugar

X7

X8

X1

X2

X3

X4

X5

X6
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Example sugar processing 

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

Variables

F
lu
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es
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e 
in

te
ns

ity

Excitation 290 nm

Excitation 550 nm

Three-way

Two-way

0 20 40 60 80 100

-0.4

-0.2

0

0.2

Loading weights unfold PLS model

Variable #

290 330 370 410 450 490 530

-0.2

0

0.2

0.4

0.6

Excitation loading weights N-PLS model

nm
330 370 410 450 490 530 570

-0.2

0

0.2

0.4

0.6

Emission loading weights N-PLS model

nm

Hence easier to explore 

330370
410

450
490

530570 290 330 370 410 450 490 530

0

500

1000

1500

Excitation (nm)Emission (nm)

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

V ar iab les

Fluorescence intensity

Ex c ita tion 290 nm

Ex c ita tion 550 nm

Trilinear model much more simple
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Regression coefficients unfold PLS
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x 10-6
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10
x 10-6

-5 0 5 10

x 10-6

-5

0

5

10
x 10-6

Regression coefficients multi-way PLS

The variance-stabilization of 
multi-way models

Important note on N-PLS

There is NO second order advantage in N-PLS
• You cannot handle new interferents that 

were not in the calibration set
• N-PLS works under the same premises as 

ordinary PLS 
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PARAFAC can not handle shifts and shape changes

PARAFAC(1) Xk = ADkBT

PARAFAC2 R. A. Harshman. UCLA working papers in phonetics 22:30-47, 1972.
H. A. L. Kiers, J. M. F. ten Berge, R. Bro. J. Chemom. 13:275-294, 1999. 
R. Bro, C. A. Andersson, H. A. L. Kiers. J. Chemom. 13:295-309, 1999. 

PARAFAC2 for handling shifts*

PARAFAC2 Xk = ADkBk
T    subject to Bk

TBk constant

PARAFAC(1) Xk = ADkBT

*Actually it is more general than 
shifts but it’s a feasible 
approximation to what 
PARAFAC2 can handle 

PARAFAC2 for shifted data

•  Two-way shifts 
•  Chromatography 
•  Retention times constant => bilinear data 
•  Retention times vary => breakdown Elution profiles - no shifts Loadings - no shifts 

Elution profiles - shifts Loadings - shifts 

60 wine samples measured by GC-MS
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PARAFAC2 results

PARAFAC2 results
Tucker 
modeling
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Row- and column ranks

A (20�2) rank 1

BT (50�2) rank 2

X=ABT 

Rank 1 or 2?

A

BT

Row- and column ranks

X=ABT Rank 1 or 2?

XT X

Row- and column ranks

In ordinary algebra row = 
column = rank = 1. 

This is boring!

XT X

Row- and column ranks
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In multi-way algebra 

Row-rank ≠ column-rank ≠ rank. 

Much more intuitive in fact – but highly unusual
XT X

Row- and column ranks

In multi-way algebra 

Row-rank ≠ column-rank ≠ rank. 

XT XLeads to subspace models such as 
Tucker3

PARAFAC

Row- and column ranks

•  For three-way data, three orthogonal 
bases, A, B, and C; one for each 
mode

•  Tucker3 is X = AG(C�B)’ + E

•  Loadings are truncated bases and G 
the representation of X in these 
reduced spaces
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L. R. Tucker. The extension of factor analysis to three-dimensional matrices. In: Contributions to Math. 
Psychology, Eds. Frederiksen, Gulliksen, New York:Holt, Rinehart & Winston, 1964 

L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika 31:279-311, 
1966 

The Tucker3 model Differences from PARAFAC:
•  The number of components can vary in A, B, and C!
•  G is not superdiagonal
•  Tucker loadings not unique (only subspace) = 

rotational freedom 
•  Tucker loadings orthogonal => variance-partitioning

=
X

G

C

B

A

Tucker3 versus PARAFAC
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Typical data
Marianne Dyrby 

Control (5 rats) 
Low dose (5 rats) 
High dose (5 rats) 

Toxic study

Benefit of Tucker3 instead of 
commonly used unfolding: 
Shows recovery of low-dose 
rats as well as an early 
response to taurine and 
creatine. 
 
Remaining problem: 
Are components reflecting dose 
effect or biological variation 
within dose? 

Hydrazine study

Toxic study

rb@life.ku.
dk

• Further analysis
• Use ANOVA-SCA (simultaneous component analysis)

, , , , , , ,( )
dose doserat time nmr nmr time nmr dose time nmr rat time nmrx eµ α αβ= + + +
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ANOVA-Simultaneous component analysis (ASCA): a new tool for 
analyzing designed metabolomics data 

AK Smilde, JJ Jansen, HCJ Hoefsloot, RN Lamers, J van der Greef, 
ME Timmerman 

Toxic study • PARAFAC on dose/time-effect

Separate the effect into a shock 

High-dose only 

Irreversible 
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PARAFAC factor 1 

All-dose linear 

Reversible 

and a reversible effect 
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PARAFAC factor 2 
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, ,( )dose time nmrαβ

Difference between reversible and irreversible effect 
Creatine indicating chronic kidney damage 
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Toxic study Tucker3 has the number 3 because three modes are ’reduced’.
Tucker2 and Tucker1 reduces two and one modes respectively
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Tucker3 

Tucker1 

Tucker2 

Tucker2 core 
often called 

Extended Core 
Array 

Tucker1 is identical 
to PCA on 

matricized X 

Other Tucker models

= 
X 

A 

G 

Tucker1 

Tucker1 is identical 
to PCA on 

matricized X 

Other Tucker models

NB: Core consistency
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PARAFAC Can be written as a constrained Tucker3 model

1 1 1 1 

G 
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Core consistency
Test PARAFAC model using PARAFAC A, B and C and see what an unconstrained core gives
I.e. the core = X ”divided” by A, B and C

1 1 1 1 

Target 

0 0 

1 1 1 1 

Example core 1 
Consistency 100% 

.9 .3 .1 1 

Example core 2 

1.5 

Consistency -30% 

.... 

.... 

• Principle
•  Fit PARAFAC model with 1 to F components
•  Calculate core consistency 

– =% of trilinear variation in the model space
•  If << 100%, wrong # components

How to
X 

B 
A 

C 

Cook book 

In practice?

•  How to fit multi-way models
•  Everything said below is of inferior importance compared to knowing 

your data and the models you use and that you use the models very 
critically

•  How to fit N-PLS
•  Exactly as two-way PLS (cross-validation etc.)

•  How to fit PARAFAC/Tucker
•  Can be more cumbersome ….
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•  How to fit PARAFAC/Tucker
•  Screen raw data etc. and deal with extreme outliers

•  Do initial PCA models on different two-way versions
•  Note potential outliers for later
•  Note the rank in each mode (points to possible rank of three-way model). If rank is 

P, Q, R of the three matricized arrays, then a (P, Q, R) Tucker3 will do the job. 
PARAFAC may also be applicable even though the ranks are different. 

•  Do initial PARAFAC/Tucker3 models
•  Use appr. correct number of components as experienced from above (several 

alternative ones)
•  Explore explained variance compared to noise level, explore loadings, scores, 

residuals to find indications of too many or too few components being used
•  For PARAFAC note indications of too many components (many iterations needed, 

low core consistency, local minima etc.)

In practice?

… Choice between PARAFAC and Tucker
•  Multi-way and multi-linear is not the same thing

•  Any multi-way dataset can be modeled with Tucker.
•  If the ranks are low, this is feasible 
•  Argument similar to PCA on two-way data
•  Tucker is almost as parsimonious as PARAFAC compared to PCA

•  Only some datasets can be modeled with PARAFAC
•  If the data approximately follow the multilinear model of PARAFAC
•  Hence, PARAFAC when a priori tells so or when uniqueness is 

desperately needed and Tucker otherwise

In practice?

Interpreting Tucker3  

Some attention required when interpreting Tucker3 models
–  In PARAFAC, PCA etc. each score/loading is only involved 

in one component
–  In Tucker3 all interactions are allowed
–  Therefore, bi-plots can not be made immediately

•  Interpret loadings from one mode at a time
•  Combine only when taking the core values into account

Number of components?
•  PARAFAC

•  Simpler than PCA (but takes more time):
•  Cross-val, Scree etc. as in PCA
•  Core consistency
•  Plus split-half
•  Plus algorithmic indications (degeneracy, many iterations, 

local minima etc.)
•  N-PLS

•  As in bilinear PLS
•  Tucker

•  Tough one, but basically as in PCA, except there are now 
three numbers of components to choose 

Mainly
these
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Cross-validation

Number of  

components 
PARAFAC Tucker3 Tucker1 

 Fit Cross-val Fit Cross-val Fit Cross-val 

1 35.3 14.5 35.3 14.5 44.6 13.2 

2 49.2 26.2 49.2 26.2 65.8 26.5 

3 57.4 32.9 57.7 31.6 74.3 18.6 

4 62.7 34.4 64.6 19.6 80.7 <0 

5 67.2 33.0 72.7 24.6 86.2 <0 
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•  Cross-validation hardly ever used for PARAFAC and Tucker
•  Below: PARAFAC fits worse but provide best predictions
•  Thus nothing gained going to more complex Tucker3 or even more 

complex PCA (Tucker1)
•  Note that PCA fits indicates that PCA is excellent!

U
sing the m

odels

•  PARAFAC (& PARAFAC2)
•  Algorithm occasionally slow & problematic
•  Requires some experience
•  Not nested
•  Unique
•  Solutions easy to interpret

•  N-PLS
•  Algorithm fast & robust
•  Non-’unique’
•  Nested
•  Solutions easy to interpret

•  Tucker
•  Algorithm fast & robust
•  Non-unique
•  Not nested
•  Solutions difficult to interpret 

Tensor models provide

Mathematical chromatography
Huge noise reduction
Intuitive models (chemically)
Better handling of correlations
Simpler interpretation
Robustness

Conclusion


