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Examples

C

Sensory analysis

= Score as a function of (Food sample, Judge, Attribute)

Process analysis
=  Measurement as a function of (Batch, Variable, time)
= Measurement as a function of (Variable, Lag, Location)

Image analysis A

= Pixelvalue as a function of (Sample, Image pixel, Variable)

Experimental design

= Response as a function of (factor 1, factor2, factor3,..)

Spectroscopy

= Intensity as a function of (Wavelength, Retention, Sample, Time, Location , Treatment)

Environmental analysis

=  Measurement as a function of (Location, Time, Variable)

Chromatography

= Measurement as a function of (Sample, Retention time, Variable)

Introduction

Three-way data?

* Simply a set of ‘equivalent’ two-way matrices obtained
at different occasions

* Data measured as a function of three ’things’
* E.g. samples, variables, times

* X; is a matrix element and Xy is a three-way element

A B
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Unfolding/matricization

pH
Sample@

Traditional approach Merdlergh
= Unfolding leading to two-way data
and analysis = _——
,,,,,, — /
Three-way models T =
= Natural extensions of two-way ‘
models S .
= PCA leads to PARAFAC or | ‘ ‘
Tucker3 depending on how it is Sample

extended Sample Wavelength
pH i:l:l:i]

= PLS leads to multilinear PLS (N-
PLS) " Sample

Unfolding/matriciation
Often leads to overfitting
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Multi-way notation

Sample.

Three-way array
Third-order tensor

xﬁfitzc:)rrlft?;lj slab e Three mode array
Wavelength i ; array

Elution

Slab
Slice

Wavelength

Matricized array
Unfolded array

Kiers. Towards a standardized notation and
terminology in multiway analysis. Journal of
Chemometrics 14 (3):105-122, 2000.

PARAFAC

PARAFAC invented
in 1970 by Harshman

.- based on Cattell
* PCA - bilinear model, 1322 on wate

F
Xy =Y ab, +e,
f=1

¢ PARAFAC - trilinear model,

F
Xk = zaifbjfckf + €
=1

o o2
b1 b2
= + + =
s | | :
at a2

PARAFAC

e PCA - bilinear model,

c
X, = Za,,,bj,, +e
f=1

I A R T B I N
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PARAFAC

. or

Canonical Decomposition

-~ oy

CanDecomp

...or combined

R. A. Harshman, Foundations of the PARAFAC

model and conditions for an ‘explanatory’ J.D. Carroll, J. Chang, Analysis of individual differences

multi-mode factor analysis, UCLA Working Papers in in multidimensional scaling via an N-way generalization
of "Eckart-Young" decomposition, Psychometrika, 35

phonetics, 16 (1970) 1.
(1970) 283.
b —




Three-way rank

* Rank of two-way matrix

* Minimum number of bilinear (PCA) components
needed to reproduce matrix

* Rank of three-way array

¢ Minimum number of trilinear (PARAFAC)
components needed to reproduce array

/01 /cz

b1 b2
= +
al a2
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Excitation Emission
monochromator monochromator

Sample

Lamp
(uv-vis)

—  Detector/
Intensity

- o

e Excitation
Emission

Intensity

Excitation-emission matrix —
a chemical fingerprint

Ermission

Fluorescence  ssEicenvecTor
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ELSEVIER Marine Chemistry §2 (2003) 239- 254

i el it com hocate marchem

Tracing dissolved organic matter in aquatic environments using a
new approach to fluorescence spectroscopy

Colin A. Stedmon™*, Stiig Markager®, Rasmus Bro®
g

940 10000° F

Z—

A motivating example:
Monitor pollution empirically

~ N ¢/ Hansted
from water samples N \é.<rf System ¥

Denmark
Skagerrak

Bygholm system
P

5550

C / ’k - =
j \\ / {} : /:\4./. .

Fig. 1. Map of the Horsens catchment and its location on the east coast of Jutland, Denmark. Filled circles represent sampling stations and
hollow circles represent the locations of the samples used in Fig. 7.
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A practical example:
Data from each sample

Emission (v : Excitation (1

State of the art: Peak-spotting!!!

EIGENVECTOR
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Practical example Practical example

¢ Rotational freedom of PCA ¢ Rotational freedom of PCA

X = T

AL

722\
A\
7\

.

EIGENVECTOR T EIGENVECTOR
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Instead of peak spotting or Get the real thing — the chemistry
strange PCA components

C.A. Stedmon et al. / Marine Chemistry 82 (2003) 239-254 247
Component 1 Component 2 Component 3
550
e 500
0.1 £
¢ 40
01 §
400
005
o 350
250 200 350 200
Ex, (om)
Description
UV humic-like 230 430
UV humic-like 260 380-460
visible humic-like 320-360 420-460
soil fulvic acid 390 509
soil fulvic acid 455 521
marine humic-like 290-310 370-410
associated with 280 370
phytoplankton
productivity
protein-like 275 340
& EIGENVECTOR . (typtophany
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Mathematical chromatography PARAFAC - when is it unique

Uniqueness - what does it mean?

+ Mixtures of analytes can be separated Uniqueness* - conditions
+ Concentrations can be estimated A PARAFAC model is unique when
+ Pure spectra and profiles can be estimated C

ky+ky+ke=2F+2

F is the number of components and k, is
Eliminates major problems the k-rank of loading A = maximal
) number of randomly chosen columns
which will have full rank (<F)

I><
[>]

* Removes indirect correlations
« Eliminates outliers
. . .
Determlnes underlylng sources J. B. Kruskal. Linear Algebra and its Applications 18:95-138, 1977.
* Chemical/physical = simpler N. D. Sidiropoulos and R. Bro. Journal of Chemometrics 14 (3):229-239,
2000.
* Way more noise insensitive

EIGENVECTOR U 10 sealing and permuation @ EIGENVECTOR
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¢ PARAFAC algorithms not sequential

¢ PCA is a least squares model, fitted sequentially (NIPALS). Three
comp. solution = two comp. plus one

* PARAFAC not sequential. Hence refitting necessary.

¢ Algorithm - Alternating least squares (ALS)
¢ Ex.: Bilinear model : IIX — ABII
¢ 1.BT=(ATA)'ATX = A*X
e 2.AT=(B"B)'B™X" = B*X"

¢ 3. Goto 1 until convergence (small change in fit IX-ABI)

sé

~ PARAFAC
A6  Algorithm

Two fundamental problems
with PARAFAC

* Convergence

* The solution may not be achieved because of lack of convergence

* Two-factor degeneracy

¢ There may not be a solution at all

None of these problems occur in e.g. PCA.
When you do PCA, you ‘get PCA’.

@  EIGENVECTOR
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Why ALS?
1. Initialize B and C Simple
P Extends to N-way
_ ! e\t Handles missing
2. A= [;kaDk ]{(B B)*(C C)} Handles ML fitting
/(_ Constraints:
3.B- [ZX'k AD, ]{(A'A) “(co)f’ [ gt
k=1 + Orthogonality
1 « Linear constraints
4. diagd, ={(B'B)* (A'A)} diag(A'X,B), k=1,..,K - Fixed parameters
« Smoothness
5. Step 2 until relative change in fit is small + Functional

- efc

* Hadamard (elementwise
product)

Three-way ALS PYEIGENVECTOR

M\ RESEARCH INCORPORATED

The algorithm is iterative and stops when ‘nothing happens’

Important to understand what that means and how it is evaluated

2¢€

A
Convergence? ? gyeicenvecion
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Two-factor degeneracy

Important to understand what that means and how it is evaluated * Two factors become almost identical but with opposite sign
(a,;*b,*c; = -a,*b,*c,)

* Grow in size and similarity with more iterations

The algorithm is iterative and stops when ‘nothing happens’

z * Combined contribution to the model is appr. zero
c Not * Use Tuckers congruence (“correlation”) or plots to spot
converged
degeneracy
Global
inimum ) ) )

Local
minimum

Conver gence?.‘“=E|GENVECToR T ST 7 BYEIGENVECTOR
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Two-factor degeneracy Number of components?

* Two factors become almost identical but with opposite sign
(a,;*b,*c; = -a,*b,*c,) Simpler than PCA (but takes more time):

¢ Cross-val, Scree etc. as in PCA
* Plus split-half
* Plus core consistency

* Happens when
* Too many components or

* When PARAFAC is not appropriate * Plus chemical validation
* Or during iterations something similar can happen * Plus algorithmic indications (degeneracy, many
Mode 1 loadings Mode 2 oadings Mode 3 londings iterations, local minima etc.)
60 o 0.45|
a0} 0.4 0.4
20 0.2] 0.35]
0)
“ ! :2: These are the main ones.
:: 4 ;u Always look at the model to validate it.
7 4 65 % e P Use core consistency but carefully.

Use split-half for definitive validation




Core consistency

LIL= RESEARCH INCORPORATED

Pick the best of the two

Original data Split1 Split

¥ = Split-half

\ analysis

best one

Firs sust Emisson Fird subset, Extoion Fird sbset, Emisson Fird subset. Extaion
05 - \
02 / B(\ o8 au
AN // \\
o1s I\ \ 04 /7 \\
A\ /) A\
o \ // AN
/ \ N 02 1/ \
N NN Y \\

N = A\
260 280 300 320 340 360
Second subset. Emission

260 280 300 320 340 360 00

Multi-way analysis in fluorescence data, Report 2002, GIO%EI GENV E CTO R
L]

L&\ RESEARCH INCORPORATED

-
S I l t_ h a I f ¢ Fit model to several independent samples
¢ If loadings the same, reasonable number chosen

analysis =

Original data ’ ‘

Split 2

% EIGENVECTOR

| |
EIEH RESEARCH INCORPORATED

Same as in two-way analysis
* Residual analysis - X =M + E, all of same sizes

Look at (summed) squared residuals to find unusually
large residuals

¢ Influence analysis - A, B, C from Tucker or
PARAFAC Plot e.g. for finding extreme samples or
use for calculating leverages (Hotellings T?).

Outlier
detection

EIGENVECTOR
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Plots available Some applications

) Figure 1 PARAFAC(S) of Fuorescence O SminG B6d 96375 o ool
EERIRIESY T 208 ea
Parameters Residuals Data Auxiiary

Loadings M1 Res. Sum Sq, M1 Model st Core Consistency 100

K

Eig- EIGENVECTOR
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Second order Curve resolution
calibration

How many samples are needed to build a For two-way data lots of ‘tricks’ necessary to fix
calibration model? rotational freedom

Say you want to predict protein in flour. How
many samples would you need? For three-way trilinear data ............ PARAFAC

BHEIGENVECTOR PNEIGENVECTOR

LJ RESEARCH INCORPORATED -4 RESEARCH INCORPORATED



Sugar processing

Thin juice
4 Alitte

Sugar made from beets

I.X I.><

I

Thick juice

* Product sampled 8" hour
for three months

Standard
¢ Fluorescence measured oo

e 260 samples suom

Massecu\ls(

Weater
Wash water X8 [’
i 1
Wash syrug - + Sy _{
xé Centrifuge T Wash juice

sugar <1
EIGENVECTOR
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I

x

PARAFAC + fluorescence

* Several advantages

¢ Chromatographic analysis of the whole process

¢ Process monitoring (MSPC) on a chemical basis

* Chemical understanding of why coloring occurs (PAC)
¢ On-line prediction of quality

¢ On-line prediction of process parameters

¢ Nowadays = PAT — process analytical technology

¥ EIGENVECTOR
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268 sugar fluorescense-landscapes PARAFAC model

e

8h sample (14 weeks total) 4 components
Scores for components 4 estimated emission spectra
Colsr | Ash Emission -spectra
comp. 1 060 | 0.69 ___/\
1 1
"Tyrosine™ - 0.42
2 g AN 2
3 “Tryptophan” | 0.43 | 064 _/\
4 3
Comp. 4 081 | - 4
0 50 100 150 200 250 KWeve\engfho?nm) 500
8h shift (week 1-14) Correlation to quality parameters ash and color

Correlation to process- & quality

Traditional approach for cancer diagnostics and
monitoring: Biomarkers
i OO

HEADNECK, ESOPHAGUS  (RRD

COLON-RECTUM @@ f > %@ y
oncizss @D D ED @S ooy
mosa: EDED D e

cancer

10



Cancer diagnostics

The three-way version
Here we just show the
information obtained from
a tiny part of the overall

data

Emission wavelengthinm

.Cancer
e G .Non—cancer
0.4 T TTTTTTT T TS
L (5] P
)
03 ° A
| )
@ o0
o © Qe
02l ® ¢ o
o O o ©
L ® ®
e0®?® H
[ S
L p L
0.1 ® ; ®
L ®
o e e g
0 0.2 0.6

It works!

¥ EIGENVECTOR
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Cancer diagnostics

Concentrations

Emission spectra

A

5

DefU
AU

Excitation spectra

20 40 60 80 100 120

0.7
0.4

04

0.3

~

Metabonomics

# s EIGENVECTOR
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Examples

EEG
X=a,0b, 06, +a,0by 00, +E
- — e \ L Anthropometry

: ‘..J_LL..AJ_..J.‘“_‘ |

l@ B Bubpe™ LT TR
Europe b, == i Ar"bff"‘f

Light-induced oxidation

O of cheese

a

el

"
O-O{E{D b T
|| = Electronic nose

11



Using constraints

* Example
¢ Instead of ‘PCA’: X -AB’ll
¢ fit the model: 1X-AB’l,

subject to A and B are nonnegative

* Constraints are essential in two-way curve resolution
because the model is unidentified

* In three-way curve resolution the model is often unique
but constraints are still useful pee EIGENVECTOR

F.
-/
Ld\7 RESEARCH INCORPORATED

Aminoacid data

Try to model a three-component PARAFAC model of sample
four and five — the two mixtures.

Does the model look good? If not; what to do?

EIGENVECTOR

M\J RESEARCH INCORPORATED

Obtain sensible parameters

¢ Ex.: Require chromatographic profiles to have but one peak
Obtain unique solution

¢ Ex.: Use selective channels in data to obtain uniqueness
Test hypotheses

* Ex.: Investigate if tryptophane is present in sample
Avoiding degeneracy and numerical problems

¢ Ex.: Enabling a PARAFAC model of data otherwise inappropriate for the
model

Speed up algorithms Eé' ﬂ
* Ex.: Use truncated bases to reexpress problem by a smaller problem
Enable quantitative analysis of qualitative data
¢ Ex.: Incorporate gender and job type predicting income

Why constraints? 5% EIGENVECTOR

EIAEE RESEARCH INCORPORATED

PLS for multi-way arrays

PLS
For two-way data a bilinear X ||| |y
model is used
N-PLS
For three-way data a trilinear ’ ress
. X T = |y
model is used

EIGENVECTOR

L&\ RESEARCH INCORPORATED
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Multilinear PLS regression

Use a trilinear (PARAFAC-like) model of X but such
that the scores are predictive of y.

cl c2
ﬁm ﬁbz
= +
't1 't2

L3
m

Bm Mu/trwai calibration. Multi-linear

GENVECTOR

LILJ RESE ARCH INCORPORATED

Scores PCA and PARAFAC

PARAFAC
10 10
8 8 8 8
6 6
o * 6 ° 4 6
Z 5 Z 2 5
Q 0 e 0
o 9 Q
8 2 10 2 (7)’ 2 10
4 1 4 12
6 -6
sl 7 hd ]8
8
040 0 0 20 040 5 0 5 0 75
Score one Score one
Similar but note that replicates are closer for PARAFAC
Three-way more robust because of ‘stronger’ structural model

| 2
| |
EILJ RESEARCH INCORPORATED

Three-way, two-way:
Does it make a difference?

5 breads (in replicates) x 11
attributes x 8 judges

Sensory
example

8 Judg

es

10 breads

11 attributes

11 attributes

11 attributes

Judge 1 | Judge 2
10 breads|

[
c
S

Q
@
®

N

11 attributes

Data due to Magni Martens

# s EIGENVECTOR
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Loadings from bilinear PCA

PCA - unfolded

03

0.1

&

omy Bugpeo

86,
799

1634

20 13

75
55 40 35
i

ke

7 9
65
22 Bg 74

8 Judges

R
X
10 breads

11 attributes

11 attributes.
11 attributes.

11 attributes

Judge 1

a7 1

ZG:\“‘&

6
P C RS
T 87y 5 o

0.2

0.1

0 0.1 0.2

Loading one

10 breads|

Judge 2

£
&
&
?
®

EIGENV
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R
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Loadings from PCA and PARAFAC

PCA - unfolded PARAFAC - Attributes PARAFAC - Judges
0. 06
86
7979 5013 v¥8stda 055 2
5 7
55 % 35 7
o 01 o g 02| Moisturg, 2 045 8
H ;:‘35?% 3 2 8391 . 2 otal 2
2 £
'-,-f 8 g&g 47 11% 38634315 ',% Tough BleHioa Swebtt § 035
ERAINE s 54514 | S 02| saltt 3 1 4
18
8%g 72 6 8 Off-flay 0.25 5
Pther-t
0.3] ,
06 0.15 3
0.2 0.1 [ 0.1 0.2 05 0 05 02 03 04 05 06 07
Loading one Loading one Loading one
PARAFAC 19 loading-elements per component
PCA 88 loading-elements per component!
roEm
¥HEIGENVECTOR
L@\ RESEARCH INCORPORATED

25% better with NPLS
Less overfit

Lv Variation explained /% RMSE
Xcal. Xval. Ycal. Yval | Ycal. Yval
o 1 43 25 80 62 0.21 0.29
i 61 38 95 76 0.10 0.23
g 3 | 74 49 100 84 003  0.19
n
u
7 | 1 31 22 75 60 0.23 0.30
E 2 46 36 93 82 0.12 0.20
r 3 54 44 98 91 0.07 0.15
4

OO

Calibration - predict salt content

SEmeR—

e

# s EIGENVECTOR
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Example sugar processing

Sugar made from
beets

90 samples of white
sugar measured by
fluoroescence

14



Example sugar processing

Three-way

2500

Two-way

A LUV | BEEIGENVECTOR

LIEE RESEARCH INCORPORATED

Regression coefficients unfold PLS
The variance-stabilization of x 10 _
multi-way models

Regression coefficients multi-way PLS

x 107

S
L —7
— [ —
| |
|

Trilinear model much more simple
Hence easier to explore

Loading weights unfold PLS model

3 B DO Varigble # 0 80 100

Excitation loading weights N-PLS model Emission loading weights N-PLS model

06

290 330 370,410 450 490 530 330 370 410 430 49 530 570
nm

¥ EIGENVECTOR

LI‘EE RESEARCH INCORPORATED

Important note on N-PLS

There is NO second order advantage in N-PLS

* You cannot handle new interferents that
were not in the calibration set

* N-PLS works under the same premises as
ordinary PLS

15



PARAFAC can not handle shifts and shape changes

=
ES/AT s

PARAFAC(1) X, =AD,BT

PARAFACD

PARAFAC?2 for shifted data

* Two-way shifts
e Chromatography
¢ Retention times constant => bilinear data

Elution profiles - no shifts Loadings - no shifts * Retention times vary => breakdown
Elution profiles - shifts Loadings - shifts

ML L

PARAFAC2 for handling shifts*

*Actually it is more general than
shifts but it's a feasible
approximation to what

r—j PARAFAC2 can handle
| & [

PARAFAC2 Xk = ADkBkT subject to B, "B, constant
PARAFAC(1) X, =ADBT

- Harshman. UCLA working papers in phonetics 22:30-47, 1972.
. L. Kiers, J. M. F. ten Berge, R. Bro. J. Chemom. 13:275-294, 1999

LA
LA L.
. Bro, C. A. Andersson, H. A. L. Kiers. J. Chemom. 13:295-309, 1999.

nI®

60 wine samples measured by GC-MS

K samples

o X(IxJxK)

&£
Qfo

mass spectra
—

elution time

elution time

#x EIGENVECTOR

L&\ RESEARCH INCORPORATED
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)Choma!g aphic loadings b) Concentration loading

o hfw‘lpdwhf/ly PARAFACZ results

o

elution time (scans) samples

\ fronting

| VS SCAw
I }h I

| [ lge . ; |
11 U 0. 1
o 1000 2000~ 3000 2000 5000 6000 ol adoo b
o T a0 e B e e we
elution time (scans) NVE CTO R m/z fragments

' RESEARCH INCORPORATED

intensity (a.u.)

intensity (a.u.)

28

200

Eii- EIGENVECTOR

A RESEARCH INCORPORATED

Tucker
=~ modeling

¢TOR

LILJ RESEARCH INCORPORATED

intensity (a.u.)

\ if’i‘]‘"l‘ln"*l-:‘l“.%‘*ﬁﬁi"ar‘m' ﬁ.[m

m/z fragments

¥ EIGENVECTOR
|7 |
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A (20[?]2) rank 1

BT (50[Z]2) rank 2

I

Row- and column ranks

X=ABT Rank 1 or2?

XT X

Row- and column ranks

A X=ABT

Rank 1 or 2?

%BT

Row- and column ranks

In ordinary algebra row =
column =rank = 1.

This is boring!
XT X

AN
Row- and column ranks

18



In multi-way algebra

Row-rank # column-rank # rank.

Much more intuitive in fact — but highly unusual
X7 X

Row- and column ranks

The Tucker3 model

 For three-way data, three orthogonal

bases, A, B, and C; one for each /Y
mode ”

» Tucker3is X =AG(C[Z]B)’ + E

* Loadings are truncated bases and G
the representation of X in these
reduced spaces

L. R. Tucker. The extension of factor analysis to three-dimensional matrices. In: Contributions to Math
Psychology, Eds. Frederiksen, Gulliksen, New York:Holt, Rinehart & Winston, 1964

FBEIGENVECTOR

| 2
H
L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika 31:279-311, o[
1966 L&\ RESEARCH INCORPORATED

In multi-way algebra

Row-rank # column-rank # rank.
W ~ ) R

Leads to subspace models such as PARAFAC
Tucker3

Row- and column ranks

Differences from PARAFAC:

* The number of components can vary in A, B, and C!
¢ G is not superdiagonal

* Tucker loadings not unique (only subspace) =
rotational freedom

* Tucker loadings orthogonal => variance-partitioning

8

Tucker3 versus PARAFAC

2 EIGENVECTOR

M\ RESEARCH INCORPORATED

X

F.adll
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Toxic study

Typical data Q@Q‘

Control (5 rats)
Low dose (5 rats)
High dose (5 rats)

NMR

ELSEVIER

Multiway chemometric analysis of the metabolic response to toxins
monitored by NMR

Marianne Dyvby?, Dorrit Baunsgaarc® “"E. FIGENVECTOR

L@\7J RESEARCH INCORPORATED

Toxic study

ANOVA-Simultaneous component analysis (ASCA): a new tool for
. analyzing designed metabolomics data

*Further analysis AK Smilde, JJ Jansen, HCJ Hoefsloot, RN Lamers, J van der Greef,

+Use ANOVA-SCA (simultaneous component analysis) ME Timmerman

ANOVA

X 18t yee ime ,nmr = /unmr + af/me,nmr + (aﬂ )dose,ame,n + e/atdase Jtime ,nmr

X ]
Tat yoee LLime , nmr /unmr

Toxic stud

Hydrazine study @

Benefit of Tucker3 instead of ; of-d =

commonly used unfolding: A

Shows recovery of low-dose e

Scare component one

rats as well as an early
response to taurine and (©
creatine.

04

Remaining problem: \
Are components reflecting dose T

effect or biological variation )

within dose?

*PARAFAC on dose/time-effect

Separate the effect into a shock

Dose effect relative to control

151
10
5
Control Lowdose  High dose
Time effect High-dose only
0.1
0.
0.:
— ]
12 3 4 5 6 7 8 lrreversible
time
NMR effect
0.
0.:
50 100 150 200
shift
PARAFAC factor 1

o

and a reversible effect

Dose effect relative to control
100,

50

Time effect

Control Lowdose  High dose

All-dose linear

Reversible

0.4]
0
1 2 3 4 5 6 7
time
NMR effect
0.
0.

50 mEprem
'shifell

WECTOR

PAREFWFE&BPQINCORPORATED
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Toxic study

Difference between reversible and irreversible effect
Creatine indicating chronic kidney damage

N o Creatine
e Creatine

NMR loading two

& (@79)) dose time imr

NMR loading one

Jul m_FEEIGENVECTOR
L#\7 RESEARCH INCORPORATED

T
\N HeNce P

Tuckerl is identical
to PCAon
matricized X
U\J(’O\g _.__.“'1

st

Tuckerl

Other Tucker models

Tucker3 has the number 3 because three modes are "reduced’.
Tucker2 and Tucker] reduces two and one modes respectively

Yy
| ]

L

Tucker3

X

Tucker2

Tucker2 core
often called
Extended Core
Array

Other Tucker models

Tuckerl is identical

to PCA on
matricized X
e
L 1
- H
Tuckerl

NB: Core consistency

PARAFAC Can be written as a constrained Tucker3 model

®

| AN

[ 4
w4
Ca

1

»3 EIGENVECTOR

NE RESEARCH INCORPORATED
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Core consistency Principle

* Fit PARAFAC model with 1 to F components
* Calculate core consistency
Test PARAFAC model using PARAFAC A, B and C and see what an unconstrained core gives
Le. the core = X "divided” by A, B and C —=% of trilinear variation in the model space

* If << 100%, wrong # components

Consistency 100% Consistency -30%

Target Example core 1 Example core 2 C
— yad
<
L1y T % _
: 1 1 .
How to
EEIGENVECTOR
LdLZ RESEARCH INCORPORATED L@\ RESEARCH INCORPORATED

¢ How to fit multi-way models

¢ Everything said below is of inferior importance compared to knowing
your data and the models you use and that you use the models very
critically

¢ How to fit N-PLS

¢ Exactly as two-way PLS (cross-validation etc.)

C 0 O k b O O k * How to fit PARAFAC/Tucker

¢ Can be more cumbersome ....

In practice?

¥ EIGENVECTOR

LIEE RESEARCH INCORPORATED




How to fit PARAFAC/Tucker

¢ Screen raw data etc. and deal with extreme outliers

¢ Do initial PCA models on different two-way versions
* Note potential outliers for later

¢ Note the rank in each mode (points to possible rank of three-way model). If rank is
P, Q, R of the three matricized arrays, then a (P, Q, R) Tucker3 will do the job.
PARAFAC may also be applicable even though the ranks are different.

¢ Do initial PARAFAC/Tucker3 models

* Use appr. correct number of components as experienced from above (several
alternative ones)

* Explore explained variance compared to noise level, explore loadings, scores,
residuals to find indications of too many or too few components being used

* For PARAFAC note indications of too many components (many iterations needed,
low core consistency, local minima etc.)

In practice? ..
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Some attention required when interpreting Tucker3 models

— In PARAFAC, PCA etc. each score/loading is only involved
in one component

— In Tucker3 all interactions are allowed

— Therefore, bi-plots can not be made immediately

¢ Interpret loadings from one mode at a time
¢ Combine only when taking the core values into account

Interpreting Tucker3

... Choice between PARAFAC and Tucker

¢ Multi-way and multi-linear is not the same thing

¢ Any multi-way dataset can be modeled with Tucker.
 If the ranks are low, this is feasible
¢ Argument similar to PCA on two-way data
o Tucker is almost as parsimonious as PARAFAC compared to PCA

¢ Only some datasets can be modeled with PARAFAC
o If the data approximately follow the multilinear model of PARAFAC

* Hence, PARAFAC when a priori tells so or when uniqueness is
desperately needed and Tucker otherwise

n practice?
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Number of components?

¢ PARAFAC
e Simpler than PCA (but takes more time):
Cross-val, Scree etc. as in PCA
Mainly ‘ * Core consistency
these Plus split-half
Plus algorithmic indications (degeneracy, many iterations,
local minima etc.)
* N-PLS
¢ Asin bilinear PLS
¢ Tucker

¢ Tough one, but basically as in PCA, except there are now
three numbers of components to choose
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Cross-valldatlon

Cross-validation hardly ever used for PARAFAC and Tucker
¢ Below: PARAFAC fits worse but provide best predictions

¢ Thus nothing gained going to more complex Tucker3 or even more
complex PCA (Tuckerl)

¢ Note that PCA fits indicates that PCA is excellent!

Number of  |PARAFAC Tucker3 Tucker1

components
Fit Cross-val |Fit Cross-val |Fit Cross-val 8 Judges
353 14.5 353 145 446 13.2 M —_—
49.2 26.2 49.2 26.2 65.8 26.5 10breads T attributes

574 329 [57.7 316 743 186
62.7 344 (646 196 [80.7 <0
67.2 33.0 727 246 [86.2 <0

g BN =

(ECTOR

Conclusion

Tensor models provide

Mathematical chromatography
Huge noise reduction

Intuitive models (chemically)
Better handling of correlations
Simpler interpretation
Robustness
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* PARAFAC (& PARAFAC2)
¢ Algorithm occasionally slow & problematic
* Requires some experience
¢ Not nested
¢ Unique
¢ Solutions easy to interpret
* N-PLS
 Algorithm fast & robust
¢ Non-’unique’
¢ Nested
¢ Solutions easy to interpret
* Tucker
 Algorithm fast & robust
¢ Non-unique
¢ Not nested
¢ Solutions difficult to interpret
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