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•  Variance Filtering for Images: 	
•  Maximum Autocorrelation Factors, Maximum 

Difference Factors, Generalized Least Squares 
Weighting (MAF, MDF, GLSW)	

•  Multivariate Image Regression and Quantiative 
Analyses	
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Resources!
•  Hyperspectral Image Analysis, eds. P. Geladi and H. Grahn, Wiley (2007),  ISBN 978-0-470-01086-0	
•  Chemometrics, M.A. Sharaf, D.L. Illman and B.R. Kowalski, Wiley-Interscience (1986) ISBN 0-471-83106-9	
•  Multivariate Analysis, K.V. Mardia, J.I. Kent and J.M. Bibby, Academic Press, (1979) ISBN 0-12-471252-2	
•  Multivariate Calibration, H. Martens and T. Næs, John Wiley & Sons Ltd. (1989) ISBN 0-471-90979-3	
•  Chemometrics: a textbook, D.L. Massart et al., Elsevier (1988) ISBN 0-444-42660-4	
•  Chemometrics: A Practical Guide, K.R. Beebe, R.J. Pell, M.B. Seasholtz, Wiley (1998) ISBN 0-471-12451-6	
•  Multivariate Data Analysis In Practice, Kim H. Esbensen,  CAMO ASA (2000), ISBN 82-993330-2-4	
•  A user-friendly guide to Multivariate Calibration and Classification, T. Næs, T. Isaksson, T. Fearn, T. Davies, 

NIR Publications(2002), ISBN 0-9528666-2-5	

•  Journal of Chemometrics	
•  IEEE Trans. on Geosci. and Remote Sensing	
•  Chemometrics and Intelligent Laboratory Systems	
•  Analytical Chemistry	
•  Analytica Chemica Acta	
•  Applied Spectroscopy	
•  Critical Reviews in Analytical Chemistry	
•  Journal of Process Control	
•  Computers in Chemical Engineering	
•  Technometrics	
•  ....	
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Course Materials 

•  These slides	
•  PLS_Toolbox and MIA_Toolbox or Solo+MIA	
•  Data sets	

•  From DEMS folder (distributed with software) 		
•  EDS Wire Alloy, 	

•  From EVRIHW folder (additional data sets)	
•  Nuts3.jpg, Mississippi, Excedrin_small, PVA, bananas	
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Univariate Image!
• Grey scale	

•  each pixel is an number defining an 
intensity level e.g.,	

•  integer (0 to 255) unsigned 8-bit	
•  integer (0 to 4095)	
•  double (floating point)	
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Multivariate Image  
(3 Variables)!

• Red/Green/Blue (RGB) (e.g. JPEG)	
•  each layer defines color intensity level	
•  much more information-rich	
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Image Analysis!

•  Many methods have been developed to examine 
the spatial structure w/in an image	
•  the methods recognize spatial patterns within an image	

•  based on the light / dark contrast and continuity of regions	

•  edge detection, image sharpening, wavelets	
•  particle size distributions, machine vision, medical 

applications, security, …	
•  MIA has been traditionally applied to the spectral 

dimension first followed by spatial analysis	
•  some methods that examine both are appearing	
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Multivariate Image  
(4-10 Variables)!

• Measure at several wavelengths (e.g., Landsat)	
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How should we display 
a seven variable image? 
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Multivariate Image  
(4-10 Variables)!

• Choose 3 of 7 (Landstat)	
Montana (blue/SWIR-1/thermal) 
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Hyperspectral Image  
(>10 Variables)!

• Spectrum at each pixel	
•  could be 100-1000s of variables	
•  often floating point double 10-100s Mbytes	
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Spectral ! Chemical Information 
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Multivariate Images!

•  Data array of dimension three (or more)	
•  where the first two dimensions are spatial and 	
•  the last dimension(s) is a function of another variable 

(e.g, spectroscopy).	
•  Chemical system(s) of interest include	

•  microscopic, medical, machine vision, process 
monitoring crystallization, stand-off and remote 
sensing, …	

•  vapors, liquids, solids (or combination)	
•  visible, infra-red, Raman, mass spectroscopy, …	
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Mass 14	
Mass 13	

Physics of Measurement!

•  Point scanning	
•  spectra measured on a point-by-point basis	
•  secondary-ion mass spec	
•  atomic force microscopy	
•  surface Raman	

•  Line scanning	
•  push broom	

•  Focal plane array	
•  images can be acquired very quickly	

Mass 12	

...	
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Volumetric Analysis Techniques!
•  Confocal Wavelength Resolved Imaging	
•  Surface Ablation Techniques	

•  Produces multivariate data in 3-dimensional space	
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Standoff and Remote Sensing!
•  Detection of residues on, and under, 

surfaces at standoff distances using 
hyperspectral imaging	
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Simple Image Analysis Tools!

•  TrendTool – Univariate Data Investigation	
•  Analyze multivariate data using simple univariate 

measurements	
•  Image Manager – Data Manipulation and Analysis	

•  Concatenating / Manipulating  (e.g. rotation) Images	
•  Particle Analysis	

•  Image Exploration Tools	
•  Cross-section, Drill, and Magnification	

•  Preprocessing	
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TrendTool!

•  Display results of univariate calculations on 
multivariate data	
•  Signal at given variable	
•  Integrated signal across range of variables	
•  Peak position	
•  Peak width	

•  With or without baselines	
•  Ratio of measurements	
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Opening TrendTool!

Image Manager Toolbar	

Plot Controls Window	Workspace Browser	
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TrendTool Windows: Data View!
Use Data View to:	
•  Set analysis markers	
• Choose analysis mode	
•  Select references and 

baseline points	

Hints:	
• Right-click white space 

to set marker or use 
toolbar button	

• Drag markers to move	
• Right-click markers to 

change types	
• Use toolbar to save or 

load marker sets	
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TrendTool Windows: Trend View!
Results displayed in Trend View	
•  Single marker displays with 

false-color	
• Multiple markers display in 

RGB	

Toolbar Buttons:	
•       autoscale image	
•       select pixels to display in 

Data View	
•           save or spawn plot of 

results (respectively)	
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TrendTool Analysis Modes!
•  Height – gives response at position (single marker)	
•  Area – gives integrated response between markers	
•  Position – gives position of peak response between 

markers	
•  Width – gives full width at half height between 

markers	

"Add Reference" to subtract a single point baseline. 
Convert reference to baseline (via right-click) to do 
two-point linear baseline.	

"Normalize to Region" to normalize all regions to the 
response of the selected region.	
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TrendTool Example!
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Example: "wires" dataset	
Energy Dispersive X-Ray Spectroscopy (EDS)	
Image of wires composed of different alloys.	
	
• Workspace Browser: Model Cache > Demo Data	
• Drag “Wire Alloy Image" to TrendTool in Other 
Analysis Tools	
• Use TrendTool to look at various peaks (right-click 
peak to change to peak type)	

Energy dispersive spectrometry (EDS)	

M.R. Keenan, Multivariate Analysis of Spectral 
Images Composed of Count Data, In: H. F. 
Grahn, P, Geladi (eds.), Techniques and 
Applications of Hyperspectral Image Analysis, 
pp. 89-126, Wiley & Sons, 2007	

Image Exploration!
•  Cross-section Tool – Transect of spatial dimension	
•  Drill Tool – Profile through variables of image	
•  Magnification Tool – Enhance spatial visibility	
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Example: "wires" dataset using TrendTool to look 
at one or more peaks…	
Use "Spawn Results Plot" button on Trend View	



Cross-Section Tool!
•  Transect of spatial dimensions	
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Cross-section Tool	

drag line on image	

Example: "wires" dataset	
Workspace Browser: right-click wires > Plot	
Select menu: Plot > Data Summary	
Select x-axis menu control:  "Samples"	
Select  toolbar button: "Open/Close Drill Axis"	

Drill Tool!
•  Display of data under a given point	
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Drill Tool!

27	

Spectrum at point 
underneath cursor's 
position	

Double-click to view multiple spectra	

Magnification Tool!
•  Show magnified view of image	
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Drag region around to move magnifying glass	
Make selections/etc on either image	



Opening Image Manager!

Plot Toolbar	

Plot Controls Window	Workspace Browser	
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Currently Loaded 
Images List	

Load / Import	
Images Controls	

Image Manager & 
Tools Settings	

Image Manager Overview!
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click	
to view	

currently	
loaded	
images	

click	
to load	

Image Manager Overview!
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Image Groups!
Grouping allows you to:	
•  Combine images into a single DataSet for analysis	
•  Apply a univariate operation (rotate, crop, etc) to all images	

Example: combining three slabs of RGB image	

Image Group Controls	
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Image Groups!

click to view	
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With all 3 images 
loaded and grouped	

Concatenating Images!
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Concatenating Images: 
Spatial Domain!

(768 x 1536) x 1	
	

X, Y, Z, or tile…	
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Concatenating Images: 
Variable Domain!

(768 x 512) x 3	
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Group Manipulation Example: 
Rotation!

Hint: to apply an action to only ONE image, click the 
"Apply Changes to Image Group" button until only one 
thumbnail is outlined in the image group pane.	
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Particle Analysis!

•  Identify isolated regions (particles) in an image 
and give statistics on individual particles.	

•  Screen out particles and/or background. 	
•  Create models based on particle statistics.	

•  Particle outlier models (e.g. identify unusual particles)	
•  Inferential models (e.g. drug activity based on particle 

statistics)	
•  Based on long-established ImageJ platform.	
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Particle Analysis Example!
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Example: "wires" dataset	
Create Plot of data using Workspace Browser	
Select menu: Plot > Data Summary	
Select x-axis control:  Samples	
Select  toolbar button: "Open in Image Manager"	

Particle Analysis Example!
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Select Particle 
Analysis tool	

Note: given enough memory, you COULD work 
on the entire image, but here we're limiting 
ourselves to a single slab (the mean).	
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Actions Toolbar	
Image with mask	
	
	
Particle Analysis Settings	
	
	
	
	
	
	
	
Summary of results	
	
	
Table of located particles	

Particle Analysis Settings!
• Area Min/Max: Ignore particles with area outside 
this range.	

• Circularity Min/Max: Ignore particles outside this 
range.	

• Include Holes: On = Include centers of particles even 
if below threshold.	

• Include Edge Particles: On = Include particles which 
touch the edge of the image.	

• Absolute Value: On = Consider positive and negative 
deviation from zero as "on" when making mask.	

• Reverse Mask: Light Particles = Low signal is 
considered "off" (dark = not particle). Dark Particles = 
Low signal is considered "on" ("dark image" mode).	
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2!
2!

Particle Mask Settings!
Adjusts which pixels are considered particles	
• Threshold Slab: For multi-slab images, 
which image slab is used to mask.	
• Threshold: Signal level separating particles 
from background (slider adjusts or “Auto” 
checkbox does automatic threshold 
detection.)	
• Preprocessing: Allows various operations 
on the binary image mask:	

• Dilate: Decrease mask around unmasked regions	
• Erode: Increase mask around unmasked regions.	
• Smooth: Smooth out noise in mask.	
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Particle Analysis Example!
•  On "settings" tab, set Min Size to "2"	
•  On "Particle Mask" tab, set threshold to "0.4"	
•  Click "Recalc" button (next to threshold)	
•  Use Background Color and Grayscale settings to 

adjust display.	
•  Select row of table to highlight corresponding particle.	
•  Select particle in image to highlight corresponding 

row of table. 	
•  Sort by column using right-click menu.	
•  Use Export toolbar buttons to send table or image to 

Analysis.	
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Particle Analysis Example!
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• Sorted by Area	
• Highlight first 4 rows (particles which 
were too close to separate giving high 
areas)	
	
Statistics include: Area, Mean Intensity 
(Mean), Position of Centroid (X, Y), 
Circularity (Circ.), Aspect Ratio (AR), 
Roundness (Round), and Solidity.	

PCA of Particle Statistics  
Biplot of PCs 1 and 2!
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unusual particles	
variable loadings	

regular particles	

Autoscaled PCA model with mean intensity 
(Mean) and centroid (X, Y) variables excluded	

Using Preprocessing!
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• Add preprocessing:	
• Erode (window = 3)	
• Dilate (window = 3)	

• Recalculate…	
Only TWO joined particles	

Image-Oriented Preprocessing!
•  Image-specific preprocessing operates in pixel-space 

and are either Intensity or Binary based	
•  Intensity-Based Image Correction:	

•  Background Subtraction (Flatfield): Rolling-ball background subtraction 
for images. 	

•  Min: Min value over neighboring pixels. (filter out high-value pixels)	
•  Max: Max value over neighboring pixels. (filter out low-value pixels)	
•  Mean: Mean value over neighboring pixels. (filter out low/high pixels)	
•  Median: Median value over neighboring pixels. (robust filter of low/high 

pixels)	
•  Trimmed Mean: Trimmed mean value over neighboring pixels. 	
•  Trimmed Median: Trimmed median value over neighboring pixels. 	
•  Smooth: Spatial smoothing for images. (a weighted mean)	
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Image-Oriented Preprocessing!
•  Binary-Based Image Correction	

•  Dilate: Perform dilation on a binary image. 	
•  Erode: Perform erosion on a binary image. 	
•  Close (Dilate+Erode): Perform dilation followed by erosion on a binary 

image. 	
•  Open (Erode+Dilate): Perform erosion followed by dilation on a binary 

image.	

•  NOTE: Image-Oriented methods may break covariance (add 
multivariate rank) because variable slabs handled separately	

•  Standard variable-space preprocessing can be used too, but are 
spatially insensitive	

49	

Particle Analysis: Nuts!
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•  Mixed nuts laid out on cutting board	
•  Photo taken with iPhone	
•  Under counter lighting plus flash	
•  In HW folder as Nuts3.jpg	

Import to Image Manager!
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Import Image	

Crop Image	
Send to 	
Particle Analysis	

Particle Analysis Settings!
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Include holes	 Dark particles	

Particle Mask	

Adjust Threshold	

Calculate	
Particles	 Export table to Analysis	



PCA on Particle Table!
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Autoscaled, X and Y variables omitted	

Assign Classes to Particles!
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Edit data, create class set “Nuts”	
Select nuts Particle Analysis	
Assign classes	

Further Possibilities and 
Improvements!
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•  Would help to have better background subtraction	
•  Use image of background with no particles and 

subtract	
•  Fit function to background and substract	

•  Could build classifier (PLS-DA, etc.) based on particle 
statistics	

Displaying a Multivariate Image  
(4-10 Variables)!

• How to choose the 3 variables?	
•  In which order should they be displayed?	

• Doesn’t choosing ignore potential information in 
the remaining variables?	

• How could information be extract from the image?	
• What happens when we go to more variables? ...	
• …. Factor-based techniques	

•  use the correlation structure to enhance S/N	
•  really good for hyperspectral	
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MIA: PCA-Based Methods!

•  Many methods are based on the spectroscopic 
information in an image	
•  although spatial information is ignored mathematically	
•  images are examined for spatial structure	

•  PCA (Principal Components Analysis)	
•  Exploratory analysis	

•  SIMCA (Soft Independent Method Class Analogy)	
•  Classification	
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Image PCA!

•  Matricizing	
•  PCA: scores, scores images, loadings	

•  unusual samples Q and T2	

•  score-score plots, density plots	
•  linking scores and image plane(s)	
•  contrast enhancement	
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PCA Math Summary!
•  For a data matrix X with M samples and N variables 

(generally assumed to be mean centered and properly 
scaled), the PCA decomposition is	

Where R ≤ min{M,N}, and the tkpk
T pairs are ordered by the 

amount of variance captured.	
•  Generally, the model is truncated to K PCs, leaving some 

small amount of variance in a residual matrix E:	

•  where T is MxK and P is NxK.	
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X = t1p1
T + t2p2

T +…+ tKpK
T +…+ tRpR

T

X = t1p1
T + t2p2

T +…+ tKpK
T +E = TPT +E

Matricizing (a.k.a. Unfolding)!
•  PCA works on X (MxN) but the image is 

MxxMyxN 	
•  reshape by matricizing such that each pixel is a row in a 

new MxMyxN  matrix	

…	

…	

Original Image	
MxxMyxN	

Matricized Image	
MxMyxN	

y	

…
	

…
	

…
	

ν
x	

ν
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Properties of PCA!

•  tk,pk ordered by amount of variance captured	
•  λk are the eigenvalues of    XTX → XTXpk = λkpk  	
•  λk are ∝ variance captured	

•  tk (scores) form an orthogonal set TK (MxK)	
•  describe relationship between samples → pixels (M = MxMy)	

•  pk (loadings) form an orthonormal set PK (NxK)	
•  describe relationship between variables	

=	 t1	

p1
T	

+	 t2	

p2
T	

+..+	 tK	

pK
T	

+	X	 E	

64	

0 
2 

4 
6 

0 
2 

4 
6 
0 

2 

4 

6 

8 

PC 1 

Variable 1 
Variable 2 

Va
ria

bl
e 

3 

Mean Vector 

PC 2 

PCA Graphically!

65	

Reshape Scores To Images!
•  PCA gives scores T (MxK) which is reshaped to 

scores images (MxxMyxK)	
•  each score vector is a MxxMy scores image	

…	

…	

Original Scores!
MxMyxK	

Scores Images!
MxxMyxK	

y	

…
	

…
	

…
	

x	
k	
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•  scores and loadings plots are interpreted in pairs	
•  plot tk vs sample number	

•  find relationship between samples → pixels	
•  each MxMyx1 score vector is reshaped to a MxxMy matrix that 

can be visualized as a "scores image" showing spatial 
relationships between pixels	

•  pk vs variable number	
•  relationship between variables responsible for observations in 

samples	

•  it is useful to plot tk+1 vs. tk and pk+1 vs. pk 	
•  examine image and score / score plots	

Plots / Images for PCA!
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TOF-SIMS of PMMA and 
Deuterated Polystyrene!

•  Time of flight secondary ion 
mass spectroscopy used for 
surface analysis	

•  Mass spectrum for each pixel	
•  Thanks to Physical Electronics for 

the data	
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Variable

•  Data is positive SIMS spectrum at each pixel (point) on a 
64x64 grid	

•  64x64x301 mass channels (AMU)	

Example Data!

M.R. Keenan, "Multivariate Analysis of Spectral Images Composed of Count Data," in Techniques 
and Applications of Hyperspectral Image Analysis, H. F. Grahn and P. Geladi, eds. (John Wiley & 
Sons, West Sussex, England), 89-126, 2007.	

Variance is expected to follow a Poisson 
distribution such that the variance is equal to the 
mean of the data.	
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Poisson scaling, and mean-centering	
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Image of Scores on PC 1 (6.17%)
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Image of Scores on PC 3 (1.25%)
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Scores images show islands of polystyrene in 
PMMA and two sources of unusual variance	
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PCA Statistics!

•  Limits can be set for	
•  Q residual: lack of fit statistic 	

•  for a row of E, em, and a row of X, xm, m = 1, …, M	

•  Hotelling’s T2 statistic	
•  for a row of TK, tm, and KxK diagonal matrix 	

•  and also for individual columns:	
•  scores, tmk	
•  residuals emk	

Q     ( - )T T T
m m m m K K m= =e e x I P P x

2 1 1T T T T
m m m m K K mλ λ− −= =t t x P P x
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Image of Scores on PC 1 (6.17%)
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Image of Scores on PC 3 (1.25%)
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Image of Q Residuals (88.62%)
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…\MIAData	
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Image of Scores on PC 1 (46.67%)
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Creating Color Images!

•  Images are made of three colors:	
	red, green and blue	

•  e.g., scaled to integers 0-255 for 8-bit color	
•  Scores can be used to define the colors	

•  PC 1 = red, PC 2 = green, PC 3 = blue	

79	



Image of Scores on PC 1 (46.67%) & Scores on PC 2 (41.72%) & Scores on PC 3 (4.94%)
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Loadings	
View:Labels:Set 1	

Scores	
View:Auto Contrast	
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pixels with high Q and T2 have been selected	
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Bivariate Scores Plots!

•  Plotting tk+1 vs. tk (score / score plots)	
•  Problem: lot's of points	

•  512*512 = 262144 points with lot's of them falling on 
top of each other (big blobs)	

•  Density plots	
•  count the number of points that lie on top of each other 

(have same score / score value)	
•  color code according to density	
•  use log to allow easy comparison between large and 

small number densities	
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Scores and Loadings!
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Variables/Loadings Plot for New Image DataSet
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selecting an area w/in 
the image plane 
shows where it lies in 
the scores space	

85	

selecting an area w/in the  
scores space shows where 
it lies in the image plane	
	
images can be explored to 
find similarities and 
differences w/in an image	
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SIMCA!

•  Supervised pattern recognition / classification 
technique	
•  the model is a collection of PCA models	
•  each "class" is a separate PCA model	
•  new samples are compared to all of the PCA models 

and scores, T2 and Q are compared to statistical limits 
on each model	

•  samples can belong to one, none or more than one class	
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A SIMCA Model!
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Class 1 	
3 PCs	

Class 2 	
1 PC	

Class 3 	
2 PCs	

x	1	

x	2	

x	3	

SIMCA Example!
For SIMCA, classes need to be defined.	
Use the selection tool to select regions in the image that are 
expected to be similar and to be modeled as a single class.	

89	

•  Use the Tool to change the selection tool.	
•  Hold shift to select multiple regions.	

selected with 
a box	

selected with 
a polygon	

Edit > Set Class of Selection	
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SIMCA Example!

Image of Scores on PC 1 (46.68%)
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•  Repeat to select different regions.	
•  Set a new class.	
•  Note that View:Classes is 'on'	
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SIMCA Example!



SIMCA Model Builder!

•  SIMCA requires a selection of classes to be 
modeled and then assembles the model	
•  Analysis:SIMCA	
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Model of Each Class!

•  Each class is modeled using PCA	
•  highlight a class and then "fit model"	
•  select the number of PCs, etc., then "add model"	
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•  The SIMCA model consists of 
two PCA models	

•  Data from the entire image will be 
projected onto each PCA model.	

•  Scores, Q and T2 are calculated for 
each model and it is determined 
which model the data is closest to.	

•  Click the scores button to examine 
the images.	
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SIMCA Example!
•  "Class Measured" = where the classes were selected.	
•  "Reduced" means that the statistic was normalized by 

the limit of the corresponding statistic (e.g., to the 
95% CL).	
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SIMCA Model Predictions!



•  Model 1 (w/in set limits for both Q and T2)	
•  Reduced Q on Model 1 (dark is low)	
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Model 1 Predictions!
•  Model 2 (w/in set limits for both Q and T2)	
•  Reduced Q on Model 2 (dark is low)	
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Model 2 Predictions!

•  Outside of both models (left)	
•  Inside either model (right)	
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In Model and Not-In-Any Model! "Strict" Class Predictions!
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Land	

Water	

Neither	

•  Strict predictions require probability of 50% or greater for one class only	
•  (Note: turn off classes to view)	



Image PCA Conclusions!

•  Image PCA is a useful unsupervised pattern 
recognition technique for exploring images	
•  scores and loadings are useful for determining what 

original variables are responsible for differences 
observed in an image	

•  score-score plots and linked score plots 	
•  contrast enhancement might be needed to see small changes	

•  Image SIMCA is a useful supervised pattern 
recognition technique	
•  find similar / dissimilar portions of an image very 

quickly	
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PLSDA Model Builder!
•  PLS discriminant analysis requires a selection of 

classes to be modeled	
•  Analysis:PLSDA	
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PLSDA Maximizes Class 
Separation on a PLS Model!

•  PLS (selection of factors, cross-validation, etc.)	
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Image of Y Predicted 1 (water)

100 200 300 400 500

100

200

300

400

500

Image of Y Predicted 2 (land)

100 200 300 400 500

100

200

300

400

500

Image of Y Predicted 2 (land)

 

 

100 200 300 400 500

100

200

300

400

500

Image of Y Predicted 1 (water)

 

 

100 200 300 400 500

100

200

300

400

500 -1

-0.5

0

0.5

1

1.5

-0.5

0

0.5

1

1.5

2

• Data from the entire 
image are projected onto 
the PLSDA model.	

• Light shows high 
predictions on each class.	

• Click the scores button to 
examine the images.	

• View:Classes (uncheck 
Set 1)	
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Image of Q Residuals (49.46%)
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Image of Hotelling T 2̂ (50.54%)
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8 • Inspect T2 and Q	
• Regression vector suggests that green and red 
increase relative to IR channels for water 
relative to land 	

1 2 3 4 5 6 7
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Variable

Re
g 

Ve
ct

or
 fo

r Y
 1

 blue

 green
 red

 NIR
 SWIR-1

 SWIR-2

 thermal

Variables/Loadings Plot for New Image DataSet
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Cluster Analysis!
•  Analysis:Cluster	
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Results for 3 and 5 Clusters!
Sample Correlation Map (3 clusters)
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Image PLSDA and Clustering 
Conclusions!

•  If classes (regions) are known, PLSDA is a useful 
supervised pattern recognition technique for 
exploring images	
•  can often bring out more contrast than PCA	

•  Image clustering is a useful unsupervised pattern 
recognition technique (guess number of clusters)	
•  find similar / dissimilar portions of an image very 

quickly	
•  Results of all analysis methods must be consistent	
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Comments on Presenting Images!

•  Images are representations of spatial and chemical 
information, …	

•  but they can be mis-used.	
•  users can control colors and contrasting and select 

channels or PCs (or rotations thereof)	
•  as a result some things can be highlighted while others 

can be hidden	
•  It is important to report how images were 

constructed	
•  the work must be reproducible	

108	
109	

MCR Objective!
•  With a minimum of a priori information, decompose 

a data matrix into chemically meaningful factors	
•  “pure analyte” spectra (in contrast to loadings and weights)	
•  “pure analyte” concentrations (in contrast to scores)	

•  Easy to interpret	
•  can be used for process monitoring, QC, ...	
•  improving model performance (e.g., regression)	

•  can include constraints on predicted concentrations for greater user 
control	

Anna de Juan and Romà Tauler, “Multivariate Curve Resolution (MCR) 
from 2000: Progress in Concepts and Applications,” Crit. Rev. Anal. 
Chem., 36:163-176 2006.	
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Curve Resolution – Motivation 

Use observed correlations among samples and 
variables from multiple measurements to determine:	
•  The number of components in the system	

•  using knowledge of chemistry and physics and also	
•  rank analysis with PCA and evolving factor analysis	

•  The chemical / physical characteristics of the 
components / factors (e.g., spectral shape)	

•  The quantity of the components in each sample	
•  Also need to know when the objective cannot be met 

and the source of potential ambguities	
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Classical Least Squares!
•  Classical Least Squares (CLS)	

•  commonly used with spectra	
	 	 	X = CST + E	

•  Useful for estimating C when all K analyte spectra 
are known	
•  XMxN are measured spectra	

•  X can be an “unfolded” image where M is the total number of 
pixels and N is the number of channels	

•  CMxK are concentrations	
•  SNxK are pure analyte spectra	
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Classical Least Squares for C!
•  Given S (spectra), the C (concentrations) are found by 

minimizing:	
	 	EET = (X-CST)(X-CST)T	
	with respect to C resulting in	
	 	C = XS(STS)-1                                 >> c = x/s;	

•  Can also use non-negativity constraints �
(i.e., negative concentrations are not allowed)	

       
   >> c = fasternnls(s',x’)';	
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Classical Least Squares for S!
•  Given C (concentrations), the S (spectra) are found by 

minimizing:	
	 	ETE = (X-CST)T(X-CST)	
	with respect to S resulting in	
	 	S = (CTC)-1CTX                                >> s = c\x;	

•  Can also use non-negativity constraints	
   (i.e., negative intensities are not allowed)	
       

   >> s = fasternnls(c,x); 
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Alternating Least Squares (ALS)!
•  What if we don’t know S or C?	
•  Given initial guess S0 (or C0)...	
	 	Ci = XSi-1(Si-1

TSi-1)-1	
	 	Si = (Ci

TCi)-1Ci
T X	

•  Iterate until convergence	
•  Usually non-negatively constrained (C>0 and S>0)	
•  and each sk

Tsk=1 (i.e., unit length S vectors)	
•  Most popular method for multivariate curve resolution 

(MCR) �
a.k.a. self-modeling curve resolution, self-modeling mixture analysis, end-
member extraction	

MCR Model Estimation!
Geometrical Approaches	

•  purity, SIMPLSMA, DISTSLCT	
•  simple, fast	

•  useful for quick qualitative interpretation	

•  can find small factors	
•  useful for outlier detection	
•  but adversely affected by outliers	

•  doesn’t typically apply constraints	
•  selectivity is necessary for a good soln	
•  some solutions not physically meaningful 

and the spectral basis may not be useful 
for application to future data	

•  minimize the Frobenius norm (may 
not iterate to the final solution)	

•  often used as a good first guess for 
least squares approaches	

Least Squares	
•  constrained alternating least squares, 

positive matrix factorization	
•  mathematically rigorous, slow	
•  small factors can be “lost in the 

variance”	
•  less affected by outliers	

•  applies physically meaningful 
constraints	

•  can be difficult to id proper constraints	
•  basis often useful for future application	
•  can be modified to be quantitative	

•  typically minimizes the Frobenius 
norm subject to constraints	
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Preprocessing for MCR!

•  Although mean centering is almost always done in other 
multivariate methods, it is almost never done in MCR.	
•  Zero has importance in many MCR models (as it does with CLS)	
•  Non-negativity constraint can not be used if mean-centering is done 

(by definition, some data is below zero after mean-centering so some 
spectra or concentrations would have to be negative!)	

•  An offset (e.g. baseline) can be fit as a separate factor.	
•  mean-centering may be useful for non-spectra data	

•  Because many MCR methods utilize least-squares step(s), 
adjustment of scales may be critical.	
•  Normalization of samples (e.g., normalize, SNV, MSC)	
•  Normalization of variables (e.g., Poisson (sqrt mean scale), autoscale)	
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•  Overall Goal: Remove distraction	
•  For example, exclude “bad” variables/samples.	

•  usually perform an exploratory analysis prior to attempting MCR	

•  Sample normalization	
Questions:	
•  Does response scale matter to discrimination?	
•  Are there other interferences which may affect normalization?	

•  Other Preprocessing	
•  Derivatives? Not with non-negativity, constraint must be relaxed.	

•  Makes interpretation harder but might provide more interpretable results in other 
mode.	

•  Background subtraction, baselining? ! May be questionable.	
•  Can use fixed component and allow least-squares to solve subtraction (ala 

Extended Least Squares – see also constraints later in this section)	

Preprocessing for MCR!

•  For an invertible, non-diagonal square matrix A all 
solutions have the same fitness E:	

  this is a rotational ambiguity	
•  Two solutions with equivalent fit (error)	
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Rotational Ambiguity!

( )( )1T T−= + = +X CS E CA A S E

Tauler, R., “Calculation of maximum and minimum band boundaries of feasible solutions 
for species profiles obtained by multivariate curve resolution”, J. Chemo., 15, 627-646, 
2001. 

   CaSa
T +E = CbSb

T +E   where : Sa ≠ Sb

Rotational Ambiguity!
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How Many Components, K?!

•  ALS-based methods can be quite sensitive to the number 
of components K selected.	

•  Too many will cause degeneracy of a component	
•  degeneracy is when one factor splits into two or more factors	

•  Good estimate for K comes from a conservative PCA 
model estimate.	
•  Look for significance of eigenvalues and structure in loadings and 

scores.	
•  Slowly increase the number components and evaluate all 

recovered components in the model.	

121	

Imaging Mass Spec!

•  Image is 256x256x90	
• The mass spectrum was 

41945 mass channels 
selected and binned 
into 93 channels 	

•  Image of total ion 
count	
•  false color	
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MCR on Images (via Unfolding)!
•  MCR works on X (MxN) but the image is MxxMyxN 	
•  Reshape by “matricizing” such that each pixel is a row in 

a new MxMyxN matrix	

…	

…	

Original Image	
MxxMyxN	

Matricized Image	
MxMyxN	

Spatial y	

…
	

…
	

…
	

ν
Spatial x	

ν
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Mx	 N	

MxMy	

My	

N	
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PCA Score Image!

Coating	
Active	

Excipient	
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MCR (ALS) on TOF-SIMS Image!

•  Non-negative constraints on both C and S	
•  Initialize with pure/extreme samples (i.e., pixels)	
•  Recover 6 interpretable spectra and concentration 

profiles (matricized “scores” or “contributions”) 	
•  Show score  Images	

•  image was matricized for MCR decomposition	
•  scores are rearranged back to form contribution images	

•  result is chemical imaging	

Gallagher, N.B., Shaver, J.M., Martin, E.B., Morris, J., Wise, B.M. and 
Windig, W., “Curve resolution for images with applications to TOF-
SIMS and Raman”, Chemometr. Intell. Lab., 73(1), 105–117 (2003).	

125	

0 100 200 300 400 500 600 0 

0.2 

0.4 

0.6 

0.8 

1 

589: Prednisolone + Na+ 

C21H31NaO9S 

365: Lactose + Na+ 

C12H22O11 

50 100 150 200 250 

50 

100 

150 

200 

250 0 

50 

100 

150 

200 

250 
0 100 200 300 400 500 600 0 

0.2 

0.4 

0.6 

0.8 

1 
23: Na+ 

50 100 150 200 250 

50 

100 

150 

200 

250 0 

50 

100 

150 

200 

250 

only 3 of 6 factors 
extracted are shown 

126	

0 100 200 300 400 500 600 0 

0.2 

0.4 

0.6 

0.8 

1 
29: CH2CH3

+ & 

59: CH2OCH2CH3
+ 

 Surelease (bead coating) 

50 100 150 200 250 

50 

100 

150 

200 

250 0 

50 

100 

150 

200 

250 

50 100 150 200 250 

50 

100 

150 

200 

250 

Red: Surelease (bead coating) 
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RGB “Chemical” Image	 Example: MCR on Excedrin!
•  Excedrin is a mixture of aspirin, 

acetaminophen, caffeine and 
microcrystalline cellulose	

•  Tablet imaged with tunable laser 
from 800 to 1800 cm-1 over ~2mm	

•  Thanks to Agilent for data!	
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Perform MCR on Excedrin!

•  Load Excedrin_sm into Analysis in MCR mode	
•  Set preprocessing to “none”	
•  Set number of components to 5	
•  Select “auto contrast” for score images	
•  Chemical species can be assigned to components 

based on known features	
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legend('Acetaminophen','Asprin','Cellulose-1','Caffeine','Cellulose-2')!

MCR on Excedrin Results!
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Further possibilites!

•  Export score images to particle analysis	
•  Determine particle size distributions of ingredients	
•  Check formulation for composition	

•  Convert MCR model to CLS model	
•  Extract loadings from MCR model	
•  Load as CLS model	
•  Assign component names	
•  Use on new images 	
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Other Ways of Focusing on 
Variance of Interest!

•  Maximum Autocorrelation Factors – find variance 
with spatial correlation	

•  Maximum Difference Factors – find variance with 
spatial transitions (multivariate edge detection)	

•  Generalized Least Squares Weighting – ignore 
variance from specified regions 	
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Maximum Autocorrelation 
Factors for Multivariate Images!

•  For MAF, the clutter is the first spatial difference	
•  the first difference should be high on edges and just noise 

w/in clusters	
•  For MNF, the clutter is intra-class variance	

•  the result is the same generalized eigenvector problem as 
MAF with different clutter ΣC	

T.A. Blake, J.F. Kelly, N.B. Gallagher, P.L. Gassman and T.J. Johnson, "Passive detection of 
solid explosives in Mid-IR hyperspectral images," Anal Bioanal Chem, 395, 337-348, 2009.	
N.B. Gallagher, J.F. Kelly, T.A. Blake, "Passive infrared hyperspectral imaging for standoff 
detection of tetryl explosive residue on a steel surface," Whispers 2010, June 14-16, 
Reykjavik, Iceland	
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MAF on SIMS Image of PVA!

PCA	 MAF	

Clutter Filters!
•  Define areas where only variance is due to 

noise or other unwanted variation 	
•  Develop filter to minimize this variance	

– Generalized Least Squares (GLS) Weighting	
•   Inverse square root of clutter covariance	

– External Parameter Orthogonalization (EPO)	
•  Project out first PCs of clutter covariance	

Define Clutter Areas!

Only variation in marked 
areas is due to “noise”	
	
Center each area to its 
own mean, then combine 
areas	
	
Develop GLS weighting 
from combined areas	



GLS Filtered PVA!

PCA	 PCA with GLS	

Mulitvariate Image Regression !

•  Inverse least squares models	
•  PCR, PLS	
•  Similar to PCA for X-block	

•  matricizing, scores, scores images, loadings, unusual samples 
Q and T2, score-score plots, density plots, linking scores and 
image plane(s), contrast enhancement	

•  Add predictions of a y-block	
•  y = Xb	
•  predict a property	
•  used for PLS-descriminant analysis	
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Banana Ripeness by PLS!
•  Goal: Develop an automated (objective) method to assess banana 

ripeness	
•  X-Block RGB Images of Bananas at various stages of ripeness (Tiled)	
•  Y-Block Ripeness index for each tile	

Data Courtesy Kim Esbensen	
University of Ålborg, Denmark 	
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Two-Dimensional Calibration Data !

X-block	

Y-block	

Image-based calibration takes 
advantage of high sampling rate 
of imaging (40 thousand 
samples for each tile!)	

Y-block assumes a constant 
reference value for each image.	

Unfold blocks before PLS	

Note: Does not inherently take 
spatial correlation into account.	

139	



Banana Predictions!
Predicted Ripeness Residuals	Predicted Ripeness	

Autocontrasted image of last tile only	
 
plotgui(bananas.imagedata(401:end,601:end,:)) 
%select   plot:slabs   and  view:autocontrast 

Raw Data (RGB)	
-50	
-40	
-30	
-20	
-10	
0	
10	
20	
30	
40	
50	

special colormap:	
>>rkb 
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Banana Scores and Q Residuals!

Auto-contrasted Q-Residuals of Banana Images	Scores Plot of Banana Images	

Scores on LV 1 (97.67%)	
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Conclusions!

•  Anything that can be done with 2-way data tables 
can also be done with images	

•  Plus many other tools, e.g. particle analysis	
•  Special tools available to take advantage of spatial 

correlation	
•  Visually appealing! 	
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