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CLS Regression Methods  
(Building Interpretable Predictive Models)
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Outline

•  Linear Mixture Model 
•  Classical Least Squares (CLS) 
•  Extended Least Squares (ELS) 
•  Weighted Least Squares (WLS) 
•  Generalized Least Squares (GLS) 
•  Constraints 
•  Misc. 

2	

Course Materials 

•  These slides
•  PLS_Toolbox or Solo 7.9 or later
•  Data sets
•  From DEMS folder (installed with software)
•  Olive Oil Classification by FT-IR

– Advanced Examples: plsdata (SFCM) 

•  From EVRIHW folder (additional data sets)
•  EigenU_nir_data, SBRdata_EU

3 4 

Conventions & Notation 
•  Rows correspond to samples, 
•  Columns correspond to variables
•  Notation:

•  X = matrix of predictor variables
•  C or Y = matrix of predicted variables
•  M = number of samples (observations)
•  Nx, N = number of X variables, K, Nc = number of C variables
•  T = X-block scores matrix, t1, t2, ..., tK score vectors
•  P = X-block loads matrix, p1, p2, ..., pK loadings vectors
•  S = X-block signal matrix, s1, s2, ..., sK signal vectors
•  α = penalty parameter
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Linear Mixture Model

•  S is a matrix corresponding to measurements 
to individual stimuli at unit response 
•  spectra: multicomponent Beer’s Law 
•  from a library, estimated from the data (e.g., with MCR) 

•  process response(s) obtained using DOE 
•  linear mixture model 
•  source apportionment 

•  c is a vector of coefficients 
•  concentrations, contributions, coefficients, … 

Linear Mixture Model 5	

Linear Mixture Model
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x N×1 =  measurement [column vector 

            (it is a row of X M×N )]

cK×1 =  coefficients, contributions

SN×K =  unit responses

eN×1 =  residuals

x = Sc + e

6	 Linear Mixture Model 

   

X M×N =  measurements

CM×K =  coefficients

SN×K =  unit responses

EM×N =  residuals

X = CST +E

Advantages of Linear Mixture Model

•  Interpretability 
•  often the individual responses are interpretable 
•  spectra or other physics 

•  Easy to incorporate prior information 
•  useful constraints 
•  e.g., non-negativity, closure, penalties, others … 

•  Model updating 
•  can be fairly easy 
•  interpretability helps here too 

7	 Linear Mixture Model 

PCA is a Linear Mixture Model

•  PCA is a linear mixture model 

   

X M×N =  measurements

TM×K =  scores

PN×K =  loadings

EM×N =  residuals

X = TPT +E

  

for the calibration data...
T,P  are orthogonal
C,S  are generally oblique

In PCA, the scores and loadings are 
calculated to maximize capture of variance 
X not to make predictions for C. 
 
One way to obtain C and S is to use 
classical least squares (CLS). 

8	 Linear Mixture Model 
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The CLS Model 
•  Given known pure component spectra, how much 

of each does it take to make up the observed mth 
spectrum?

•  xm = cmST + em

•  m = 1,…,M
•  cm=[cm,1, cm,2, …, cm,K]
•  k = 1,…,K
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10	 Linear Mixture Model 
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CLS (cont.) 

•  Once S (the spectral “basis”) is known, c, the 
degree to which each component contributes to 
a new sample x, can be determined from
                       c = xS+

where S+ is the pseudo-inverse of S, defined in 
CLS as
                    S+ = S(STS)-1

•  Problem: How to get S?
•  library, estimate from calibration measurements

12 

Classical Least Squares 

X = CST + E
X = CST

XS = CSTS
XS(STS)-1 = C
S+ = S(STS)-1 

•  Note that STS is KxK (analytes by 
analytes) and square
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Estimating S 
•  Sometimes, S can be compiled a priori from a data 

base/spectral library, or from direct measurements of 
pure components
•  Problem: must account for all components that can 

contribute to X! 
•  S can also be estimated from mixtures, provided all 

C are known and enough samples are available:
ST = (CTC)-1CTX

•  Problem: The concentration of every analyte that 
contributes to X must be known!*

*Interferences and unknowns can be handled with GLS or ELS 
type models, but their basis must be estimated.

14 

CLS Example 
•  NIR data of pseudo-gasoline samples

•  absorbance at 401 channels 
•  30 samples
•  5 analytes

•  EigenU_nir_data.mat
•  Data broken into

•  25 calibration samples and
•  5 test samples
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>> load EigenU_nir_data 
>> whos 
  Name            Size          Bytes  Class 
  cal_conc       25x5           11002  dataset               
  cal_spec       25x401         96466  dataset               
  test_conc       5x5           10042  dataset               
  test_spec       5x401         32146  dataset 

Load Data Into Browser 

15 

Start CLS Interface 

16 

data	in	
workspace	

double-	
click	
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Data Loaded

17 

mouse	over	to	get	info	

darker	color	indicates	data	loaded	

Set Preprocessing to “none,” 
calculate model 

18 

Pure Component Spectra 

S, estimated from mixtures, 
using known concentrations 
of all 5 analytes

ST	=	(CTC)-1CTX	

19 

Click loadings “spectrum”     
icon, select all 5 components

20 

Fit to Calibration and Estimate for 
Validation Samples 
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Click scores “flask”    
icon to get fits and 
predictions (test set).

Check “Show Cal Data 
with Test”.

Calibration data (black)

Predicted test (red).

All analytes fit and 
predicted well.
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Model Performance Measures

•  Recall that root-mean square error is a measure 
of model performance 

•  Calibration 
•  k is analyte index 

•  Prediction 
•  test 

•  Cross-Validation 
•  for J subsets 

21	
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Calibration: Pseudo-Gasoline
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  RMSEC 
Heptane  0.6126    
Iso-Octane  0.3710 
Toluene   0.2093 
Xylene     0.3493 
Decane     0.4538 

fits for the calibration data 
RMSEC = root mean squared error 
of calibration 

22	 Classical Least Squares – NIR Gasoline Example 
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Prediction: Pseudo-Gasoline

     RMSEC     RMSEP   
   CLS  PLS2  PLS1  CLS  PLS2  PLS1 

Heptane  0.613  0.612  0.601  0.935  0.923  0.891 
Iso-Octane  0.371  0.369  0.339  0.826  0.840  0.764 
Toluene   0.209  0.208  0.225  0.392  0.399  0.430 
Xylene     0.349  0.347  0.382  0.843  0.866  0.904 
Decane     0.454  0.452  0.454  0.434  0.432  0.406  
  
PLS2 used 5 LVs. PLS1 used 5 LVs except for Xylene that used 4 
(as suggested by cross-validation, although 5 LVs worked better) 

LOO cross-validation to select LVs in PLS. 
 
Not surprisingly, results between methods 
are similar – data are from a good DOE. 

23	 Classical Least Squares – NIR Gasoline Example 
24 

CLS Problem 

•  What if the concentration of 1 analyte was 
unknown?

•  Repeat the CLS procedure using only the first 
4 (of 5) analytes

•  Attempt to predict concentrations of unused 
(test) samples
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Select only the first four 
analytes and repeat 

25 

click	‘cal	Y:	select	Y-columns’	

26 

CLS Solution with One Analyte 
“Missing” 

Click scores “flask” 
icon to get fits

Some analytes not fit 
(black) and not 
predicted (red) well, 
especially heptane

Spectra in “Two-Space”

27	

x1 

x2 

s1

s2

For two analytes measured at two 
spectral channels x1 and x2,  
the pure component spectra can be 
represented by s1 and s2. 
 
All measurements in this two-space 
can be represented as a linear 
combination of s1 and s2. 

Non-negativity in “Two-Space”

28	

x1 

x2 

s1

s2

feasible region 

Non-negativity forces all 
measurements to lie 
between s1 and s2. 
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CLS Problem in “Two-Space”

29	

x1 

x2 

s1

s2

If the model only uses s1 then 
contribution to the signal from s2. 
will have a projection onto s1 
resulting in poor predictions. 
 
 

The ‘Problem’ with CLS
•  The “concentration of all the chromophores” 

must be known to account for them. 
•  What to do? Is all lost? 
•  For ILS we say, “the concentrations need not all be 

known but must vary if the model is to be robust to 
them.” 
•  This is the same for CLS 

•  Implications for design of experiments … 
•  vary both the analyte of interest and the interferences 

–  useful for both ILS and CLS 
•  can outside information be used? (e.g., pure spectra from a 

library) 

30	 Classical Least Squares 

ALS for MCR  
(an aside)

•  The alternating least-squares algorithm is one 
of the most popular for multivariate curve 
resolution. given an initial guess C0

for i = 1: imax

   Si
T = Ci−1

T Ci−1( )−1
Ci−1

T X

   Ci = Si
TSi( )−1

Si
TX

end

often subjected to non-negativity constraints and 
normalization of the columns of S 

31	 MCR 

Extended Mixture Model
•  The extended mixture model models the interferences 

and the target analyte separately in a CLS model 
•  extended least squares, ELS 
•  in the spirit of “vary both the analyte of interest and the 

interferences” 
•  The interference “spectra” aren’t always used explicitly, 

however a basis that spans the interference variation is 
used. 

32	 Extended Least Squares 
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ELS / EMM in “Two-Space”

33	

x1 

x2 

s1

p2

The interference model can be a pure 
component spectrum s2 or a PC p2. 
 
P is intended to span the space of 
interferences, and be linearly 
independent of the known spectra S. 
Therefore P need not be PCs or 
spectra - these just tend to be 
convenient ways to capture 
interferences. 

Model of Interferences

•  Assume that measurements can be made so 
that the target analyte contribution to the signal 
does not vary. 

•  The measured differences/variance is then due 
to interferences. 

•  Clutter = Interferences + noise 
•  Clutter is all measured signal not related to the 

target of interest. 

34	 Extended Least Squares 

ELS Example

•  Build model on “spec1” from NIR pseudo-
gasoline data 

•  Predict from “spec2” 
•  Note that these are the same 30 samples measured 

on two different instruments 
•  Data set used for standardization method tests 

35	

CLS Model of Spec 1  
applied to Spec 2

36	

spec1 
spec2 

conc conc 

none 
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Results: not good!

37	
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What’s the Problem?

•  Measured spectra looks different on second 
instrument compared to first 

•  This difference can be considered “clutter”  
•  Need to get a model of clutter 
•  Mean difference 
•  PCA basis of remaining differences 

38	

Model of clutter

39	

>> mean_dif = mean(spec1.data)-mean(spec2.data);
>> dif = mncn(spec1.data)-mncn(spec2.data);
>> [u,s,v] = svd(dif);
>> clutter_basis = [mean_dif; v(:,1:2)'];

Extended Least Squares
•  ELS using a clutter basis 
•  Use PCA to get basis for clutter, P 
•  P can be any basis with linearly independent columns 

•  MCR could be used to obtain an interpretable basis 
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Load Clutter Model

41	

Results with ELS: Much Better!

42	

Hotelling T2
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ELS Results

•  Clutter basis allowed CLS model to account 
for the differences between original spectra 
(spec1) and new spectra (spec2)  

43	

Olive Oil Example

•  FTIR spectra of Olive and Corn oil 
•  3600-600 cm-1, fixed pathlength NaCl 
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Can adulteration of olive oil with 
corn oil be detected? 
 
DB Dahlberg, SM Lee, SJ Wenger, JA 
Vargo, "Classification of Vegetable Oils by 
FT-IR," Appl. Spectrosc., 51(8), 1118-1124 
(1997) 

blue = olive oil 
green = corn oil 

44	 Extended Least Squares-Olive Oil 



10/7/17	

12	

Olive Oil Example Details
•  load data into workspace 
•  Olive Oil Classification by FT-IR (OliveOilData) 

•  drag xcal to PCA and plot the spectra 

45	
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PCA of Olive and Corn Oil Spectra

•  1-norm, Mean-center 
•  1-PC = 92% 

•  PCA can separate the 
pure oils 
•  can it detect at low 

levels of corn oil? 
•  the clutter looks 

correlated 

clutter 

46	 Extended Least Squares-Olive Oil 

PCA of Olive and Corn Oil Spectra

  Xc = TcP
T +E

47	 Extended Least Squares-Olive Oil 
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Corn
Olive

•  1-Norm and Class-Center 
•  centers each class to its own 

mean 
•  Result is that the model is 

focused on intra-class variance 
•  this is the clutter for this 

example 
•  how many PCs to model the 

clutter? 
•  exploratory analysis of the 

clutter may lead to insights for 
problem of interest 

PCA of Olive and Corn Oil Spectra

48	 Extended Least Squares-Olive Oil 

•  1 PC ~ 80% 
•  One factor captures a 

large fraction of the 
clutter variance. 
•  PCs are orthogonal 
•  true clutter “spectra” 

are unknown 
•  Save the loads 
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49	 Extended Least Squares-Olive Oil 

•  Save the loads •  Save the 
preprocessed data 

These saved files will be used later … 

CLS For Discrimination of the Oils

•  The objective for this example is 
discrimination of the oils. Start by constructing 
a CLS model for each class. 

•  The model needs “concentrations” 
•  will create a variable ycal that has 1’s and 0’s 

indicating “present” or “not present” 

50	 Extended Least Squares-Olive Oil 

©Copyright  1996-2016
Eigenvector Research, Inc.
No part of this material may be 
photocopied or reproduced in any form 
without prior written consent from 
Eigenvector Research, Inc.

51	

36 rows by 2 columns 

recall that xcal has 36 rows even though only 
the first 24 are being used (corn and olive oil) 

Extended Least Squares-Olive Oil 52	

ycal

rows 1 to 9 correspond to corn 
rows 10 to 24 correspond to olive 

Extended Least Squares-Olive Oil 
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53	

load ycal as the y-block calibration

CLS 

Extended Least Squares-Olive Oil 54	 Extended Least Squares-Olive Oil 

using show cal with test and drawing boundaries 

Sample
10 20 30 40 50 60 70 80

Q
 R

es
id

ua
ls

#10-5

0

0.5

1

1.5

2

2.5

3
Samples/Scores Plot of Olive Oil Calibration,c & Oiltest

Corn
Olive
T5C
TAlmnd
TCMarg
TCorn
TOlive
TPeant
TSaffl
TSesme
T10C
T20C
T30C
T40C
Model-specific Q Limit
95% Confidence Level

TCMarg 

55	 Extended Least Squares-Olive Oil 
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CLS Results 
using show cal with test and drawing boundaries 
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TCorn 
(test) 

Corn 
(cal) 
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T 5% Corn 

TCMarg 
(high Q) 

CLSàELS

•  Learned that a large fraction (~80%) of the 
intra-class variance could be modeled with one 
principal component (1 PC) 
•  one-norm, plus class-centering 

•  Use what you know 
•  we know the classes for the calibration data 
•  allows a model of intra-class clutter 

56	 Extended Least Squares-Olive Oil 
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57	

1-norm 

Extended Least Squares-Olive Oil 58	

1.  click “x-block classes” 
2.  uncheck “Remove Mean on 

Apply” 
3.  Number of PCs = 1 
4.  ok 

Extended Least Squares-Olive Oil 
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59	 Extended Least Squares-Olive Oil 

using show cal with test and drawing boundaries 

TSaffl 
TCorn 
(test) 

Corn 
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T 10% Corn 
T 5% Corn 

TCMarg 
(high Q) 

Q Residuals for CLS & ELS
•  ELS Q residuals are similar to those for PCA 

•  The equation for a single measurement is 

•  Limits for Q can be obtained using same tools used for 
PCA: Jackson, J.E. and Mudholkar, G.S., “Control Procedures 
for Residuals Associated with Principal Component Analysis,” 
Technometrics, 21(3), 341–349 (1979).  

   

x = S P⎡⎣ ⎤⎦ c; t⎡
⎣

⎤
⎦ + e

e = x − S P⎡⎣ ⎤⎦ ĉ; t̂⎡
⎣

⎤
⎦

q = eT e

Extended Least Squares 

Q residual is a sum-of-squared residuals 

Q contributions is a row of E 

60	
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Limits for Scores
•  Control limits can be placed on individual 

contributions and scores, c and t just like in PCA 
•  Although they might not be normally distributed 

•  Limits might be set using statistical assumptions 
or engineering knowledge 
•  e.g., control limits 
 

Extended Least Squares 62	

Hotelling T2 for CLS & ELS
•  Hotelling T2 is similar to that for PCA 
•  The equation for a single measurement is 

 
•  Limits for T2 can be obtained using same tools used 

for PCA: Jackson, J.E., “A User’s Guide to Principal 
Components”, John Wiley & Sons, New York, NY (1991).  

   

T 2 = ĉ; t̂⎡
⎣

⎤
⎦

T
1

M−1 C T⎡⎣ ⎤⎦
T

C T⎡⎣ ⎤⎦{ }−1

ĉ; t̂⎡
⎣

⎤
⎦

C and T are for the calibration set

Extended Least Squares 63	

Comparison of CLS and ELS

•  Because the basis for the interferences are 
augmented to the spectra, the math for CLS and 
ELS are identical. 

•  Therefore, w/o loss of generality ELS and CLS 
can be discussed under the general heading of 
“CLS.” 

•  However, if we really need to split the pieces 
apart we can 
•  … and the ELS approach also can be treated as a 

“weighted” CLS model as shown below 

66	 Extended Least Squares 

Weighted Least Squares, WLS

67 

   

x = cST + e

eW−1eT = x − cST( )W−1 x − cST( )T

ĉ = xW−1S ST W−1S( )−1

Weighted least squares (WLS) model. 
 
The residuals, e are assumed to be mean 
zero and have different variances 
for each entry. The residuals are assumed to 
be statistically independent. 

    

e  N 0,σ2( )
eW

−1
2  N 0,σ 21( )

W = diag σ2( )

Weighted Least Squares 
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Generalized Least Squares, GLS

68 

   

x = cST + e

eWc
−1eT = x − cST( )Wc

−1 x − cST( )T

ĉ = xWc
−1S ST Wc

−1S( )−1

Generalized least squares (GLS) model. 
 
The residuals, e are assumed to be mean 
zero and have different variances 
for each entry. The residuals are not 
assumed to be statistically independent. 

    

V e( ) = Wc

eWc

−1
2  N 0,σ 21( )

Generalized Least Squares 

GLS in “Two-Space”

69	

x1 

x2 

s1

p2

GLS attempts to model the clutter in 
a weighting matrix. 
 
In the example shown here, the 
model might include both s1 and p2 
as “spectra,” as in ELS, while the 
fuzzy ball corresponds to the 
covariance of the clutter Wc. 
 
Choose the model structure 
appropriate for your data (learned 
from exploratory analysis). 

70	

1-norm 

Generalized Least Squares-Olive Oil 

GLS on Olive Oil 

71	

1.  click “x-block classes” 
2.  uncheck “Remove Mean on 

Apply” 
3.  ok 

Generalized Least Squares-Olive Oil 
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72	 Generalized Least Squares-Olive Oil 

using show cal with test and drawing boundaries 

TSaffl 

TCorn 
(test) 

Corn 
(cal) 

T 10% Corn 
T 5% Corn 

Plot Q and Y Predicted 2. Can change method options to 
use non-negative least squares. 

TCMarg 
(high Q) 

Classical Least Squares Comparison

73 

   

x = cST + e

ĉ = xW−1S ST W−1S( )−1

CLS 

WLS 

GLS 

ELS 

   

W =σ 2I
W = diag σ2( )
W = Wc

W−1 = I − P PT P( )−1
PT( )

Mean-centering can be 
used to keep e mean zero.  

   

x − x = cST + e

ĉ = x − x( )W−1S ST W−1S( )−1

Weighted Classical Least Squares in General 

Orthogonalization and 
Weighting Flitering

•  Comparison of CLS and Weighted CLS models 

   

X = CST

ĉ = STS( )−1
ST x

    

!x = W
−1

2x
!S = W

−1
2S

ĉ = !ST !S( )−1 !ST !x

Weighting by an inverse square root reduces the W-CLS model to CLS 
with weighted measurements and spectra i.e., the weighting can be viewed 
as a preprocessing step 

that can be used w/ PCA and ILS models (PLS, PCR).

This leads to External Parameter Orthogonalization and GLS Weighting 
methods 

   !X = XW
−1

2

75 
Weighted Classical Least Squares in General 

CLS Model Uses

•  CLS is used when noise in each of the N 
measurements is similar. 

•  WLS is used when noise is different for each 
of the N measurements. 

•  GLS and ELS is used when the noise is 
correlated e.g., due to interferences. 
•  Clutter = interferences + noise 
•  GLS is a true weighting while ELS orthogonalizes 

completely to clutter directions 

77	 Weighted Classical Least Squares 
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GLS for Target Detection

•  Target analyte has a stationary response 
•  target response s is available 
•  reference values y are not available (!) 

•  Backgrounds are highly variable 
•  severe and highly variable interference signal 
•  changes spatially (images) and/or temporarily 

(time-series) 
•  difficult to account for 

•  The clutter W can be updated 

78	 Target Detection 

   
ĉ = xW−1s sT W−1s( )−1

SERS Detection of DNT Vapor

•  Detect trace (ppb/ppt) quantities of 
explosives vapor 
•  “process” or “time-series” example 

•  Challenges 
•  background / interferences change every run 

•  difficult or impossible to span full background 
variability 

•  multiple interferences 
•  run-to-run and ubiquitous to every run 

NB Gallaghera, BD Piorekb ,SJ Leeb, CD Meinhartb, M Moskovitsb, BM Wisea, “Multivariate 
Curve Resolution Applied to SERS Measurements of 2,4-DNT,” APACT13 – 23-26 April, 2013 
aEigenvector Research, Inc.,  
bSpectraFluidics, Inc., 

79	 Target Detection– SERS Example 

Ag Nanoparticle Aggregates 
• Assemble around analyte molecules 
•  Provide SERS enhancement 
• True concentration unknown 

laser 

400 600 800 1000 1200 1400 1600 1800 2000
0

0.02

0.04

0.06

0.08
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0.14

0.16

Raman Shift (cm−1)

 

 

2,4-DNT 
target s analyte of interest 
•  similar run-to-run 

400 600 800 1000 1200 1400 1600 1800 2000
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

Raman Shift (cm−1)

 

 

Si background & 
citrate stabilizer P 
•  ubiquitous backgrounds 

The measured signal is a 
mixture from multiple sources 

400 600 800 1000 1200 1400 1600 1800 2000
0

0.02

0.04

0.06
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0.1

0.12

Raman Shift (cm−1)

 

 

DNT breakdown products & 
amorphous carbon W 
•  highly variable run-to-run 

& not reproducible! 

80	 Target Detection– SERS Example 

   
ĉ T⎡

⎣
⎤
⎦ = xW−1 s P⎡

⎣
⎤
⎦ s P⎡

⎣
⎤
⎦

T
W−1 s P⎡

⎣
⎤
⎦

⎛
⎝⎜

⎞
⎠⎟
−1

Powdered Raw Materials
•  Challenges – wheat gluten background 
•  scattering and particle size distributions changes sample-to-

sample 
•  same material from a wide variety of sources 
•  different powdered materials 

•  Calibration for typical ILS models difficult 
•  reference values unavailable 
•  unlikely to acquire a calibration data set that spans all the 

sample variation expected to be seen 
•  and if you do, the net analyte signal suffers 

•  unlikely to use one ILS model from a single material for 
multiple raw materials (other powders) 

Target Detection - Melamine in Wheat Gluten Example 81	
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unadulterated wheat gluten 

Signal from the unadulterated wheat gluten is highly variable and 
is much stronger than the adulterant. 

Target Detection - Melamine in Wheat Gluten Example 82	

median background can be used as p 

Eigenvalues for 200 ppm melamine in wheat gluten 
no preprocessing 

        Percent Variance Captured by PCA Model 
Principal    Eigenvalue    % Variance    % Variance 
Component        of         Captured      Captured 
 Number        Cov(X)       This  PC       Total 
---------    ----------    ----------    ---------- 
     1        2.48e+10     99.983438      99.983438 
     2        3.59e+06      0.014493      99.997931 
     3        4.03e+04      0.000162      99.998093 
     4        2.91e+04      0.000117      99.998210 
     5        1.51e+04      0.000061      99.998271 
     6        8.78e+03      0.000035      99.998307 
     7        7.14e+03      0.000029      99.998336 
     8        6.82e+03      0.000027      99.998363 
     9        6.08e+03      0.000025      99.998388 
    10        5.56e+03      0.000022      99.998410 

interference 
signal is strong 

target 

Target Detection - Melamine in Wheat Gluten Example 83	

Adulterants = Targets
•  Adulterant spectrum ~constant 

•  variants can be considered a different adulterant 
•  tend to appear with only a few at a time 

•  multiples can be handled if needed 
•  Interest is in low levels of adulterant 

•  however, higher levels likely present due to 
economics 

melamine target s 

Target Detection - Melamine in Wheat Gluten Example 84	

background contributions 

target contributions 

Q residuals 

background contributions 

target contributions 

Q residuals 

positive  
200 ppm 

example contributions 
for two images 

 
1) response is not linear 

with ppm (mass) 
because only particles 
on top are detected  

2) distributions are not 
normal 

3) response is not linear 
in a pixel due to 
~signal closure 

null 

Target Detection - Melamine in Wheat Gluten Example 85	



10/7/17	

21	

GLS = Adaptive Matched Filter

•  The GLS estimator is used for target detection 
in remote /standoff sensing and is referred to 
as “the matched filter.” 
•  ground truth is rarely know well 
•  interferences vary most every measurement 

•  More recently as “the adaptive matched filter” 
because the clutter is updated. 

•  Understanding the source of clutter and how to 
account for mathematically is important 

86	 Generalized Least Squares 

GLS and Clutter
•  The clutter covariance is estimated from target-free 

measurements or measurements where the target 
contributions do not change.* 

•  Sensor noise and signal due to interferences 
•  (DOD, NATO) Unwanted signals, echoes, or images on 

the face of the display tube, which interfere with 
observation of desired signals. 

•  It’s measured signal unrelated to the target 
•  it can be correlated or not 

( ) ( )1
1c

TT T
c c c c cM −= − −W X 1x X 1x

For clutter that has a constant (stationary) 
mean, the clutter covariance is estimated from 

*Typical use. Often target is also present – makes 
detection thresholds difficult to quantify 

Generalized Least Squares 87	

Clutter Covariance Model

•  How many PCs? •  In PCA, the big eigenvalues are kept to 
model the signal of interest in the data. 

•  When the data set corresponds to 
clutter, the big eigenvalues correspond 
to interference signal that has to be 
accounted for. 

•  In GLS, these are the directions that 
are down-weighted the most. 

•  In ELS, these are the directions that are 
“thrown away”. 

Eigenvalue distribution of a 
clutter covariance matrix, Wc. 

interferences

noise

91	 Clutter 

Compare ELS and GLS

   

Wc = PScP
T

Wc

−1
2 = PSc

−1
2PT

Eigenvalue distribution of 
inverse sqrt of the clutter 
covariance matrix, Wc. 

GLS: take 
inverse of Wc. 

ELS: remove 
p1-5 of Wc. 

   
WELS

−1
2 = I − PPT( ) Eigenvalue distribution of inv sqrt WELS. 

92	 Clutter 

eigenvalues of the clutter covariance 
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Compare ELS and GLS
•  ELS is a hard cutoff while GLS is a “soft” cutoff. 
•  GLS doesn’t throw away intermediate clutter eigenvalues 

•  ELS assumes that the clutter eigenvalues of the kept 
subspace are all the same. 
•  ELS assumes statistically independent residuals of similar 

magnitude 
•  a diagonal matrix with all entries the same value has a flat 

eigenvalue distribution 
•  if truly statistically independent, the eigenvalues are std(X)2 

•  If the eigenvalue distribution of the clutter covariance is 
flat, GLS will not de-weight any directions 
•  estimated covariance matrices rarely have a flat eigenvalue 

distribution 

93	 Clutter 

Constraints

•  Constraints and penalties add control over the 
estimator 

•  The advantage for CLS is that  
•  the objective function is based on estimating 

contributions or concentrations c,  
•  not on estimating the regression vector b as with 

ILS methods 

98	 Penalties and other Constraints 

Non-negativity
•  Physics and chemistry often dictate the contributions 

must be non-negative. This can be added as a constraint to 
the least-squares solution 

•  force    to be ≥ 0 
•  or ≥ a small tolerance (e.g., slightly <0 due to noise) 

•  not all contributions need be non-negative 
e.g., non-negativity for ELS 
contributions on P might be relaxed 

  ̂c

   

ĉ = xW−1S ST W−1S( )−1

ĉ t̂⎡⎣ ⎤⎦ = x S P⎡⎣ ⎤⎦ S P⎡⎣ ⎤⎦
T

S P⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟
−1

99	 Penalties and other Constraints 

Non-negativity in “Two-Space”

100	

x1 

x2 

s1

s2

feasible region 

Non-negativity forces all 
measurements to lie 
between s1 and s2. 
 
Can also set a tolerance 
allowing the signal to be 
slightly outside the feasible 
region. 
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101	Extended Least Squares-Olive Oil 

using show cal with test and drawing boundaries 

TSaffl 
(high Q) 

TCorn 
(test) 

Corn 
(cal) 

T 10% Corn 
T 5% Corn 

TCMarg 
(high Q) 

change method options to use non-negative least squares 
manually set nconst = [1 1 0] 

Closure

•  Physics and chemistry often dictate the contributions 
must sum to one (i.e., obey closure). This can be 
added as a constraint to the least-squares solution 

•  forces 
  
•  Is used in combination with non-negativity 
•  not all contributions need obey closure 
•  e.g., closure for ELS contributions on P might be 

relaxed 

  
ci

k=1

K

∑ = 1

102	Penalties and other Constraints 

Closure in “Two-Space”

103	

x1 

x2 

s1

s2

feasible solution 

Closure implies non-
negativity and forces all 
measurements to lie on a 
line between s1 and s2. 
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105	Generalized Least Squares-Olive Oil 

TSaffl 
(high Q) 

TCorn 
(test) 

Corn 
(cal) 

T 10% Corn 
T 5% Corn 

TCMarg 
(not high Q) 

change method options to use non-negative least squares 
manual application of closure 

TPeant 
(high Q) 
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CLS w/ a Prior + Smooth

106	

   

x = Sc + e

O c( ) = x − Sc( )T
W−1 x − Sc( ) +α1 c − c0( )T

A−1 c − c0( ) +α 2c
T DT Dc

weighted residuals 
penalty function to introduce a prior 
penalty function to introduce smoothing 
 
A is a covariance for c, and D might be a 2nd derivative operator to introduce 
a penalty on roughness (it introduces smoothness). As α2 gets large c gets 
more smooth. 
 
 
 
note that D need not be continuously banded 

   
ĉ = STS+α1A

−1 +α 2D
T D( )−1

ST x +α1A
−1c0( )

Penalties and other Constraints 

CLS w/ Basis Functions

109	

   

c = Bb   ;   ĉ = Bb̂
x = Sc + e

O c( ) = x − Sc( )T
W−1 x − Sc( ) +α1c

T A−1c

O b( ) = x − SBb( )T
W−1 x − SBb( ) +α1b

TBT A−1Bb

b̂ = BTST W−1SB +α1B
T A−1B( )−1

BTST x

ĉ = B BTST W−1SB +α1B
T A−1B( )−1

BTST x

•  Assume c = Bb where B is a set of basis functions known a priori (e.g., 
splines, spectra, PCs or other) and b is the set of coefficients to identify. 
•  It is typical that the number of basis functions in B is smaller than the 

number of spectra in S. 
•  Approach can be used to employ smoothing. 
•  Development formalization can be used to derive PCR. 

Penalties and other Constraints 

Net Analyte Signal

•  Net analyte signal (NAS) 
•  The portion of signal unique to each analyte 
•  it is the part of sk orthogonal to interferences 

•  For a generality, NAS is defined for an ELS 
model as 

110	

A. Lorber, B. Kowalski, “The Effect of interferences and Calibration Design on Accuracy:  
Implications for Sensor and Sample Selection,” J. Chemom., 2, 67-79 (1988) 

   

ĉ = xW−1S ST W−1S( )−1

ĉ t̂⎡⎣ ⎤⎦ = x S P⎡⎣ ⎤⎦ S P⎡⎣ ⎤⎦
T

S P⎡⎣ ⎤⎦
⎛
⎝

⎞
⎠

−1

ĉ t̂⎡⎣ ⎤⎦ = xZ ZT Z( )−1

Net Analyte Signal 

ELS model: 

NAS in “Two-Space”

112	

NAS is the portion of the 
signal unique to each 
analyte. NAS1 is the portion 
of s1 parallel to s1 and 
orthogonal to s2. 

x1 

x2 

s1

s2

NAS2

NAS1
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Outline / Summary
•  Linear Mixture Model 

•  Classical Least Squares (CLS), Weighted Least Squares (WLS), 
Extended Least Squares (ELS), Generalized Least Squares (GLS) 
•  all can be contained in a WLS framework 
•  orthogonalization and weighting filters 
•  models are interpretable 

•  Target Detection 
•  used when target spectrum available but no reference values 

•  Concept of Clutter 
•  accounting for interferences in the data (use what you know) 
•  models are easy to update 

•  Constraints 
•  constraints on what is estimated, c (not on a regression vector) 
•  added control over modeling (use what you know) 

•  Net Analyte Signal 

©Copyright  1996-2016
Eigenvector Research, Inc.
No part of this material may be 
photocopied or reproduced in any form 
without prior written consent from 
Eigenvector Research, Inc.

113	

Keep in mind that…

 "The detection, classification and/or quantification system being 
considered is the 1) sensor that provides the measurements, 2) the 
scenario in which it is to be deployed and 3) the algorithm used to 

extract the desired information. 
 

These must be developed concurrently for the greatest chance at 
success because what is learned during data analysis and algorithm 
development often feeds back directly to instrument design in an 

effort to maximize 
signal-to-clutter not just signal-to-noise." 

CLS Regression Methods  
(Building Interpretable Predictive Models)

Appendix 
Advanced Examples and 

Additional Concepts 

116	

How to use MCR to get P?

•  When less is known a about the data… 
•  Given known X and C, how can we estimate 

S, P and T from a calibration set? 
•  S and P can be used to make estimates for C 

(and T) from a test set. 

  
X = C T⎡⎣ ⎤⎦ S P⎡⎣ ⎤⎦

T
+E

target factors interferences

117	Extended Least Squares 
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Caustic Data Example

•  Estimate concentrations of NaCl and NaOH in 
aqueous caustic brine solutions using SW-NIR
•  measured 12 solutions of NaCl and NaOH in water

•  peaks shift with changes in NaCl, NaOH and temperature, T

•  Since T will vary in the application, T variation 
must be included in the calibration set
•  although T need not be known, it must vary in the 

calibration set for the model to be robust to T changes

118	Extended Least Squares-Caustic 

Typical SW-NIR Spectrum of 
Caustic Brine Solution
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ba

nc
e 

Spectrum made up of overlapping 
overtone and combination O-H 
stretching and bending peaks. 

2 nsym str + nunsym str 

119	Extended Least Squares-Caustic 

DOE for Calibration
•  NaOH, NaCl and T varied in a designed experiment. 
•  Split the data into calibration and test (are they independent sets?) 

•  71 calibration spectra (red) 
•  24 test spectra (blue) 

What is the anticipated rank of the calibration set? 
120	Extended Least Squares-Caustic 

Preprocessing

•  Second Derivative (15,5,2) 
•  Mean-center 
•  often with spectra no centering is used 

•  no centering is a force fit through zero 

•  mean-centering is used to introduce an offset 
•  often used with ILS models 

•  Use same preprocessing for ELS and PLS so a 
fair comparison can be made 

121	Extended Least Squares-Caustic 
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X = C T⎡⎣ ⎤⎦ S P⎡⎣ ⎤⎦

T
+E

Problem Summary

X, measured spectra calibration set 
C, concentration of NaCl and NaOH 

S, spectra of NaCl and NaOH 
T, interference “contributions” or scores 
P, basis for interferences but can be estimated - use 

data for constant NaCl and NaOH and varying temp 
E, residuals 

known 

unknown 

122	Extended Least Squares-Caustic 

  
X = C T⎡⎣ ⎤⎦ S P⎡⎣ ⎤⎦

T
+E

MCR to Estimate the ELS Model

C, concentration of 
NaCl and NaOH, 
constrained “softly” 

S, spectra of NaCl and NaOH unconstrained 
T, interference contributions unconstrained 

known 

unknown 

recall derivatives and mean-centering means 
that contributions and spectra can be negative 

P, estimated from samples at 
constant c and changing T, 
constrained “softly” 

123	Extended Least Squares-Caustic 

Soft Constraints for C and S

•  Augment to X “adds weight” to the “knowns” 
•  large weight tends to “hard” constrain 
•  cross-validate over the weight λ 
•  cross-validate over the number of factors in P 

   

X Cλ⎡⎣ ⎤⎦ = C T⎡⎣ ⎤⎦ !S !P⎡⎣ ⎤⎦
T
+E

X
Pλ

⎡

⎣
⎢

⎤

⎦
⎥ = !C !T⎡⎣ ⎤⎦ S P⎡⎣ ⎤⎦

T
+E

124	MCR 

Results
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ELS cross-validation 

λ	

3 factors for PLS and ELS (λ=500) 
    NaCl    NaOH 

(wt%)   PLS  ELS  PLS  ELS 
RMSEC   0.080  0.083  0.031  0.032 
RMSECV  0.103  0.097  0.041  0.038 
RMSEP   0.099  0.099  0.032  0.034 

5 factors for PLS and ELS (λ=500) 
    NaCl    NaOH 

(wt%)   PLS  ELS  PLS  ELS 
RMSEC   0.039  0.075  0.026  0.029 
RMSECV  0.096  0.100  0.037  0.040 
RMSEP   0.068  0.095  0.029  0.034 
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Examine two different models: 
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126	Extended Least Squares-Caustic 

Summary: Caustic
•  PLS performed ~slightly better than ELS 
•  statistically significant? 
•  algorithms for ELS not fully optimized and not clear 

how to do cross-validation 
•  e.g., for soft constraints 
•  SLOW! mostly due to ALS algorithm 

•  data were from a good DOE so results were expected 
to be similar 
•  not yet shown how to account for confounding in the 

measurements, but … 
•  we have shown that a CLS model can be used even 

when the spectrum of the interferent was unknown 

127	Extended Least Squares-Caustic 

SFCM Data Example
•  Estimate level in a slurry fed ceramic melter
•  measurements are not spectra 

128	Extended Least Squares-SFCM 

•  measured 20 
temperatures 
(thermocouples) in 
two vertical thermal 
wells 

•  thermocouples near 
the surface vary 
with level
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Results
Demonstration of CLS for engineering variables. 
3 factors for PLS and ELS (λ=0.001) 

      Level (in)   
           PLS  ELS 
RMSEC   0.106  0.114 
RMSECV  0.113  0.118 
RMSEP   0.138  0.145 
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Extended Least Squares-SFCM 
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Start with the ELS model and show that the regression vector is the same as the 
EPO-based regression vector. 

Derivation of EPO Preprocessing

131	Extended Least Squares - Appendix 

Estimation Error for CLS

•  The easy derivation is also likely the most 
important in general. 
•  Assumes that the measurement error in x dominates 

error in S (or [S P] for ELS). 
•  neglects the leverage term 
•  describes error variance about the model origin 

–  useful for estimating detection thresholds 
•  often true when S estimated from high quality lab 

•  Not always true because S and P are often estimated 
directly from measurements 
•  library S not available or not exactly problem-relevant 

136	

Estimation Error

137 

   

d ĉ( ) = d x( )W−1S ST W−1S( )−1

V ĉ( ) = ST W−1S( )−1
ST W−1V x( )W−1S ST W−1S( )−1

   

VCLS (x) = W =σ 2I

VWLS (x) = W = diag σ2( )
VGLS (x) = W = Wc

VELS (x) =σ 2I

   

VCLS ĉ( ) =σ 2 STS( )−1

VWLS ĉ( ) = ST W−1S( )−1

VGLS ĉ( ) = ST Wc
−1S( )−1

VELS ĉ t̂⎡⎣ ⎤⎦( ) =σ 2 ZT Z( )−1

   where    Z = S P⎡⎣ ⎤⎦
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NAS Compared to Estimation Error

139	Net Analyte Signal - Appendix 

is the the scalar diagonal element for the kth analyte of 
that shows that the longer the NAS, the smaller the error because 
the estimation error is 

   
ZT Z( )−1

NAS 

   
σ 2 ZT Z( )−1


