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Course Materials

* These slides
* PLS Toolbox or Solo 7.9 or later

* Data sets

* From DEMS folder (installed with software)
* Olive Oil Classification by FT-IR
— Advanced Examples: plsdata (SFCM)
* From EVRIHW folder (additional data sets)
* EigenU_nir_data, SBRdata_EU
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Outline

* Linear Mixture Model

* Classical Least Squares (CLS)

» Extended Least Squares (ELS)

* Weighted Least Squares (WLS)

* Generalized Least Squares (GLS)
* Constraints

* Misc.
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Conventions & Notation

* Rows correspond to samples,
e Columns correspond to variables
* Notation:
* X = matrix of predictor variables
* CorY = matrix of predicted variables
* M = number of samples (observations)
* N,, N=number of X variables, K, N, = number of C variables
* T =X-block scores matrix, t;, t,, ..., t; score vectors
* P =X-block loads matrix, p, p,, ..., Px loadings vectors
* S =X-block signal matrix, s,, s, ..., S signal vectors
* o = penalty parameter
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Linear Mixture Model

* S is a matrix corresponding to measurements
to individual stimuli at unit response

* spectra: multicomponent Beer’s Law
* from a library, estimated from the data (e.g., with MCR)

* process response(s) obtained using DOE
* linear mixture model
¢ source apportionment
* ¢ is a vector of coefficients
 concentrations, contributions, coefficients, ...

Linear Mixture Model

Advantages of Linear Mixture Model

* Interpretability
* often the individual responses are interpretable
* spectra or other physics
* Easy to incorporate prior information
* useful constraints
* e.g., non-negativity, closure, penalties, others ...
* Model updating

* can be fairly easy
* interpretability helps here too

Linear Mixture Model
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Linear Mixture Model

¢
G
X=¢S,+68,+..tcS.+e=| s s, .. S 2 |+e
CK
x=Sc+e X=CS"+E
X, . = measurement [column vector _
Nx X,y = measurements
it is a row of X .
( ) C,,. . = coefficients
¢, = coefficients, contributions .
Kl S,k = unit responses
S . = unit responses .
NxK P E,, , = residuals
e = residuals
Nx1 [}
* #EIGENVECTOR
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> Linear Mixture Model

PCA is a Linear Mixture Model

e PCA is a linear mixture model

X=TP' +E for the calibration data...
T,P are orthogonal
X,y = measurements .
! C,S are generally oblique
T, . = scores
PNX K= loadings In PCA, the scores and loadings are
E - residuals calculated to maximize capture of variance
MxN X not to make predictions for C.

One way to obtain C and S is to use
classical least squares (CLS).
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Linear Mixture Model
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© x,=¢,S+e, 16
e m=1,...M
¢ =len s Cnas e Cud
e k=1,..K

The CLS Model

Given known pure component spectra, how much
of each does it take to make up the observed m™
spectrum? 8
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CLS (cont.)

* Once S (the spectral “basis”) is known, ¢, the
degree to which each component contributes to
a new sample X, can be determined from

c=xS"
where S*is the pseudo-inverse of S, defined in
CLS as
S+ =S(STS)!
* Problem: How to get S?
* library, estimate from calibration measurements
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measured response

=10.32s, +10.22s, +45.77s; +12 39s4 +20. 74s5 -

1ap

2t individual responses  10.32s,

20.74s,
12.39s,
10.22s,
10.32s,

Absorbance

) [ )
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Wavelength
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Linear Mixture Model

Classical Least Squares

X=CST+E
X =CST
XS =CS™S
XS(STS)'=C
S+ =S(STS)’!
* Note that STS is KxK (analytes by
analytes) and square
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Estimating S CLS Example

* Sometimes, S can be compiled a priori from a data * NIR data of pseudo-gasoline samples
base/spectral library, or from direct measurements of * absorbance at 401 channels "Z
1.4
pure components * 30 samples .
* 5 analytes ’
 Problem: must account for all components that can . vie 12}
contribute to X! * EigenU_nir_data.mat il
. . . . 1 s
* S can also be estimated from mixtures, provided all Dat;br(;_l;en. mnto ccand o
: * calibration samples an 0.6
C are known and enough samples are available: S test samol P o
M est samples -
ST= (CTC)'ICTX 02
* Problem: The concentration of every analyte that °
contributes to X must be known!” = iﬁig BigenU_nir data 0800960 7000 7100 1200 7300 7400 7500 1600
*“Interferences and unknowns can be handled with GLS or ELS Name Size Bytes Class Variables
type models, but their basis must be estimated. Z:?zg:z ;2}(201 ;2222 i:t:z:t
x
r tes;_conc 5x5 10042 dataset
s ElGENVECTOR 4 Testospee 5x401 32146 dataset ElGENVECTOR
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Data Loaded

800 Analysis.

1, conc

File Edit Preprocess Analysis Tools Help FigBrowser

- & 8 %N

Test / Validation

darker color indicates data loaded

mouse over to get info

tuzed by CLS Model

Fit
Cumulative 060

Do S e wewed and oched oy cakans o e X o

Data has boen oaded but o mogel xists. Sothe peproceser
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Pure Component Spectra

Click loadings “spectrum” 2\

S, estimated from mixtures,

icon, select all 5 components

© O O Plot Controls
File Edit View Plot FigBrowse

Fig 2: VarablesiLoadings - CLS 50... %

Corp, 3
Fotoing 172 6.59%)

] Undo Proprocessing

using known concentrations
of all 5 analytes

Varables!Loadings Plotforspec

0025
Comp. T1(12.15%)
——Camp.2(13.18%)
Camp.3(62.76%)
002 Comp.4(3.22%)
Comp. 5(8.65%)
0015
001
0.005
LA
. /
ST =(CTC)'C™X
OG5 wn  woo 100 120 10 We5 iS00 1800

Varisble
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Set Preprocessing to “none,”
calculate model

800 Analyss - CLS (No Model) - specl. conc 800 i = CLS (No Mode) - specl, conc
File Edit Analysis_Tools Help _FigBrowser File Ednlﬁkna\yﬂs Tools Help FigBrowser
N » [ ¢ X-block »

2 V-block > Mean Center Y block y

“ Autoscale s Caner

Load Preprocessing > Load Preprocessing ¥
Save Preprocessing > | Custom.
Plot Preprocessed Data » | Set Current As Default 93|

X
Save Preprocessing [/ Autoscale
Cus.
Plot Preprocessed Data » )

Set Current As Default

|

s = 155 comp = spects cone
Anslysis_Tools _Help_Figbrowser

800
File Edit_Preproce:
X

Validation

T Setthe pmorovsei and owrcotore fom e |
i & Moo (CAb Al DU, e Gah CanB6.

2 Do ol
Took marts) and ca
v s st P 0t s

T el boen clbmied Tom 7 calbrion s rd sppies b e s vakaon
data Revlew 1o oIcion suts s e Toobars butons he umberf comoorens.
SRt o, o o a0 moaled o ikt ool T
e e 4 odtad Fom e £k o

Fit to Calibration and Estimate for
Validation Samples

E jo Click scores “flask” &
"o . ; " icon to get fits and
‘ 5 Al'\ R ) predictions (test set).
Check “Show Cal Data
i g with Test”.
§ L Calibration data (black)
TR TEEET predicted test (red).
All analytes fit and
I predicted well.
(—— - — 2
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Model Performance Measures

Calibration

* k is analyte index

e Prediction
¢ test

* Cross-Validation

 for J subsets

RMSEC, = {#Z(ck ~Co )2} Z

Recall that root-mean square error is a measure
of model performance

J%
M 7

m=1

M,

%
RMSEP, = {Mﬁz (Cos=Cos )2}

RMSECY, = {

Heptane
Iso-Octane

Toluene
" Known C‘Xy]ene
Decane

>

j=

|

m=1

I
Mear ) %
1 - _A
My ((/m.k Cmvk)
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LOO cross-validation to select LVs in PLS.

Not surprisingly, results between methods
are similar — data are from a good DOE.

RMSEC RMSEP
CLS PLS2 PLS1 CLS PLS2 PLS1
0.613  0.612 0.601 0.935 0923 0.891
0371 0369 0339 0.826 0.840 0.764
0.209 0.208 0225 0.392 0399 0.430
0.349 0347 0382 0.843 0.866 0.904
0.454 0452 0454 0434 0432 0.406

PLS2 used 5 LVs. PLS1 used 5 LVs except for Xylene that used 4
(as suggested by cross-validation, although 5 LVs worked better)

23
27 Classical Least Squares — NIR Gasoline Example
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22 Classical Least Squares — NIR Gasoline Example

Calibration: Pseudo-Gasoline

00000

£
iy RMSEC
e Heptane 0.6126
Z Iso-Octane 0.3710
. £ Toluene 0.2093
| Xylene 0.3493
R/ ¢ Decane

0.4538

R

o w0 000 Tio0 20 0 T 1500 wo 0 5 )
Known Concentration

fits for the calibration data
RMSEC = root mean squared error
of calibration

the estimated pure spectra are
highly overlapped

IGENVECTOR
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CLS Problem

What if the concentration of 1 analyte was
unknown?

Repeat the CLS procedure using only the first
4 (of 5) analytes

Attempt to predict concentrations of unused
(test) samples

L]

% EIGENVECTOR
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Select only the first four
analytes and repeat

800 Analysis - CLS 4 comp - specl, conc

File Edit Preprocess Analysls Tools Help FigBrowser

A 5 @ M

mm%»
us W Apply/Validate |

Load Data
Vew [ Import Data >
Mmberorcoms  Edit Data
Plot Data
Clear Data
Save Data

Fit

Cumulative (%X)
1 189 Transform > 1891

2 603 CreateYFromX Columns 8818

3 433 Splitinto Calibration / Validation 9253

4 7.40_ Augment with Validation 99.92

Select Y-Columns

Load X and Y
Clear X and Y

click ‘cal Y: select Y-columns’

©® O O Select Y-Columns

Select Y-Columns 10 use

Iso-Octane2
Tolene 3
yiene
Decane 5
Select al
oK Cancel |

Spectra in “Two-Space”

For two analytes measured at two

spectral channels x, and x,,

x the pure component spectra can be

represented by s, and s,.

s, All measurements in this two-space
can be represented as a linear
combination of s, and s,.

EIGENVECTOR
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CLS Solution with One Analyte
“Missing”

4 10’ 60
i ERIIL S Click scores “flask
o e E : icon to get fits

0 ERE R o 0 7 E

Hnle\hnﬂ’2 YMeasured | Heptane SOIIIC analytes not ﬁt

40 50

. s e (black) and not

» £ L predicted (red) well,

H .

" i especially heptane

: ° mz 30 40 H
VsswessTone
2 —
oz

5 e

o o

do
= /’

s EIGENVECTOR

VMeasured 4 Xylene.

Non-negativity in

feasible region

Sy

L&\ RESEARCH INCORPORATED

“Two-Space”

Non-negativity forces all
measurements to lie
between s, and s,.

EIGENVECTOR
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CLS Problem in “Two-Space”

If the model only uses s, then
contribution to the signal from s,.
% will have a projection onto s,
resulting in poor predictions.

s, >

E EEIGENVECTOR
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ALS for MCR
(an aside)

* The alternating least-squares algorithm is one
of the most popular for multivariate curve

resolution. . -
given an initial guess C,

fori=1:i,
SiT = (CLCH )_l CLX
C,=(sTs,) ' s'x

end

often subjected to non-negativity constraints and
normalization of the columns of S gzus EIGENVECTOR

/]
31 er LA\ RESEARCH INCORPORATED

“¢ Extended Least Squares

The ‘Problem’ with CLS

* The “concentration of all the chromophores”
must be known to account for them.

* What to do? Is all lost?

* For ILS we say, “the concentrations need not all be
known but must vary if the model is to be robust to
them.”

* This is the same for CLS
* Implications for design of experiments ...
« vary both the analyte of interest and the interferences
— useful for both ILS and CLS
* can outside information be used? (e.g., pure spectra from a
library)

# = EIGENVECTOR
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Extended Mixture Model

* The extended mixture model models the interferences
and the target analyte separately in a CLS model
 extended least squares, ELS
* in the spirit of “vary both the analyte of interest and the
interferences”
* The interference “spectra” aren’t always used explicitly,
hovxcllever a basis that spans the interference variation is
used.

known spectra .
spectra or basis that captures

\ /— interference signal

EEEEEIGENVECTOR
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ELS/EMM in “Two-Space”

The interference model can be a pure
component spectrum s, or a PC p,.

P is intended to span the space of
interferences, and be linearly
S, independent of the known spectra S.
Therefore P need not be PCs or
spectra - these just tend to be
convenient ways to capture
interferences.

ELS Example

* Build model on “specl” from NIR pseudo-
gasoline data
* Predict from “spec2”

* Note that these are the same 30 samples measured
on two different instruments

¢ Data set used for standardization method tests

% EIGENVECTOR
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Model of Interferences

* Assume that measurements can be made so
that the target analyte contribution to the signal
does not vary.

* The measured differences/variance is then due
to interferences.
* Clutter = Interferences + noise

* Clutter is all measured signal not related to the
target of interest.

#EIGENVECTOR
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“% Extended Least Squares

CLS Model of Spec 1
applied to Spec 2
\

[2) Analysis - CLS 5 comp - specl, conc - spec2
File Edit ®Preprocess Analysis Refine Tools Help FigBrowser ~

A B @ BNz

Validate

specl

Model
Calibrate

[ ssaroe | -
Namber of Compononts:| 5 conc

Pecen Variance Captured by CLS Model

conc

Fit Fit Fit

(®%Model) ©6X) Cumulative (%X)
11231 1231 12.31 0.81566
2 1240 12.39 24.70 0.5044
3 6214 62.13 86.83 0.27215
4
5

RMSECV.

3.58 3.58 90.40 0.52066
9.57 9.57 99.98 0.58216

% EIGENVECTOR
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Results: not good!

)
ov P &e o0
P RO ©

Y Predicted 1 Heptane
°
o\

0 5 10 15 20 25 5 10 15 20 25 30
Hotelling T2 Y Measured 1 Heptane

o-Octane  Q Residuals Reduced (p=0.950)

¥ Precicted 2 I50-Oct
T
|
|
I
@ |
]
& |
|
I

¥ Predicted 4 Xylene

20

Model of clutter

mean_dif = mean(specl.data)-mean(spec2.data);
dif = mncn(specl.data)-mncn(spec2.data);
[u,s,v] = svd(dif);

clutter_basis = [mean_dif; v(:,1:2)'];

EIGENVECTOR

5 RESEARCH INCORPORATED

40 Extended Least Squares

What’s the Problem?

* Measured spectra looks different on second
instrument compared to first
* This difference can be considered “clutter”
* Need to get a model of clutter
* Mean difference

* PCA basis of remaining differences

Extended Least Squares

* ELS using a clutter basis
» Use PCA to get basis for clutter, P

* P can be any basis with linearly independent columns
* MCR could be used to obtain an interpretable basis

define
spectra or basis that captures |: }
[

\ K—interference signal |: ¢t }E

known spectra

RESEARCH INCORPORATED
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Load Clutter Model

eo00 Declutter Settings
Clutter Source X
) automatc

y-block gradient
x-block classes.
xernal data

size:  3x401

Load | [ Edit

Algorithm

Brrocess Analysis  Refin

lgnore Clutter Mean
Remove Mean on Apply

O asw
002

. ,

@ EPO/EMM/ELS

Number of PCs: Inf

By EMMIELS (il Rark)

/ _ None (disable fiter)

ELS Results

* Clutter basis allowed CLS model to account
for the differences between original spectra
(specl) and new spectra (spec2)

% EIGENVECTOR
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Results with ELS: Much Better!

Zs o 40
o6 ° S30
H £
g4 » B
& ° ]
g2 05 %o 3"
- it a®bgse]| &
20 Q > 0
20 2 4 6 5 10 15 20 25 3
o Hotaling T2 Y Measured 1 Heptane
240 550
Q30 3
g 240
3% H
3 Sa0
s H
) > 20
s 10 15 20 25 30 25 a0 a5 40 4 50
Y Measured 2 so-Octane Y Measured 3 Toluene
Y o
2 §
z" 8 20
310
ke S % ol |
8 M
& &
>0 > 20
20 o 10 30 )

5 10 15
¥ Measured 4 Xylene

¥ Measured 5 Decane

Olive Oil Example

* FTIR spectra of Olive and Corn oil
* 3600-600 cm’!, fixed pathlength NaCl

Wavenumber

05, J
o

blue = olive oil
green = corn oil

3500 3000

4% Extended Least Squares-Olive Oil

2500 2000 1500
Wavenumber (1/cm)

1000

Can adulteration of olive oil with
corn oil be detected?

DB Dahlberg, SM Lee, ST Wenger, JA
Vargo, "Classification of Vegetable Oils by
FT-IR," Appl. Spectrosc., 51(8), 1118-1124
(1997)

7% EIGENVECTOR
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Olive Oil Example Details PCA of Olive and Corn Oil Spectra

* load data into workspace
. . . . . * l-norm, Mean-center
* Olive Oil Classification by FT-IR (OliveOilData)

* 1-PC =92%
» drag xcal to PCA and plot the spectr °
e e * PCA can separate the

Ho# =@ .
pure oils

x10” Samples/Scores Plot of Olive Oil Calibration

e can it detect at low
levels of corn 0il?

Scores on PC 2 (6.08%)

¢ the clutter looks
correlated

cecescseeseee

£ EIGENVECTOR

RESEARCH INCORPORATED
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46 Extended Least Squares-Olive Oil

PCA of Olive and Corn Oil Spectra PCA of Olive and Corn Oil Spectra

({0 Edit View Plot FigBrowser »

* exploratory analysis of the -
clutter may lead to insights for
problem of interest =

Load Data o 3]
Save Data B
Edit Data o

Open In... » =
ExportFigure  Ctrl+B »
Load Selected Indices

Save Selected Indices

48 Extended Least Squares-Olive Oil

X _ T PT . E ° 1 PC ~ 80% - VT:i::ljs/lmadinge Plot for Olive Oil Calibration
1-Norm and Class-Center 1 Samples/Scores Plot of Olive Ol Calibration ° lone f%?totr Capt?iﬁs a "
o 1- o 5 — arge fraction o e '
. ;:;grelrs each class to its own s [ clutter variance. %
* Result is that the model is g . ) * PCsare ortl‘l‘ogonal L Ew
focused on intra-class variance = o - . . * true clutter “spectra ,
* this is the clutter for this g op--- - Tt are unknown
example Z. : * Save the loads

* how many PCs to model the 3 ! . - " Wavenumber (1fem) |

clutter? & ! © © @ FiotContras

EIGENVECTOR

RESEARCH INCORPORATED

47 )
47 Extended Least Squares-Olive Oil
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PCA of Olive and Corn Oil Spectra

» Save the loads

Variables/Loadings Plot for Olive Oil Calibration

|
[

® 0 ® Pt Controls ‘
JE Edit View Plot FigBrowser w“

o1

Open In...
o “ I
Export Figure  Ctrl+B »

PC 1 (80.50%)

* Save the
preprocessed data

" Analysis - PCA 1 PCs - Olive Oil Calibr

File Edit IR Analysis Refine Tools Help FigBrov

B& & X-block >
Y-block > =
Clutter >

Load Preprocessing
Save Preprocessing >

Plot Preprocessed Data  »
Save Preprocessed Data »

/ Load Selected Indices | 4
op—— RS
Save Selected Indices kr ‘\ nt Variance Captured by PCA Model (*
I W |
00s /‘ “ Eigenvalue % Variance % Vari
| of CoviX) This PC Cumy
1 0 T o0 o o0 1 [1.18e-06 80.50 80.50
‘Wavenumber (1/cm) 2 1.24e-07 8.49 88.99
3 6.50e-08 4.44 93.42
4 2.84e-08 1.94 95.36
1 5 2.71e-08 1.85 97.21
These saved files will be used later ... ¢
49 Extended Least Squares-Olive Oil RESEARCH INCORPORATED
as Analysis Tools
ats Topics (double click to open)
15] we a2z ¥ 54 FAVORITES
b .9 -+ DataSet Editor @_—
1 L+ Getting Started
L& PCA - princpal Component Analysis
- & Trend Tol
gos o » X To0Ls
e v ‘8 DECOMPOSITION
S oo _AM___ _ae____ L Batch Maturity
H L MCR - Multivariate Curve Resolution
H LI az Lo MPCA - Multiway PCA
L . A az0 Lo PARAFAC - Parallel Factor Analysis
anr azyy L PCA - Principal Component Analysis
' sy, an L SMMA - Purity
.2 v " REGRESSION
File Edit Transform View FigBrowser >
| Name: 2
‘ Author: 36 rows by 2 columns N
Datainone
| Type:none History: 5
‘ CIQ;IME
Variables/] ed: ° feate New Dataset
Description: 7

PC 1 (80.50%)

| Datasor szo Entor as rows coumns savs..)

Intal Vaue (69,0, Na, rand, anarn)

(oK ) ((cancai)

recall that xcal has 36 rows even though only

the first 24 are being used (corn and olive oil)

51 Extended Least Squares-Olive Oil

EIGENVECTOR
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CLS For Discrimination of the Oils

* The objective for this example is
discrimination of the oils. Start by constructing
a CLS model for each class.

* The model needs “concentrations”

* will create a variable ycal that has 1’s and 0’s
indicating “present” or “not present”

©Copyright 1996-2016
Eigenvector Research, Inc.
No part of this material may be.
photocopied o reproduced in any form
without prior written consent from

... Eigenvector Research, Inc.

50 Extended Least Squares-Olive Oil

rows 1 to 9 correspond to corn

File Edit Transform| View FigBrowser

EIGENVECTOR
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rows 10 to 24 correspond to olive

/

Fl
.‘ﬁn Row Labeld | Column Labels

* 1
2 1
3 1
0 1
5 1
6 1
7 1
0 1
] 1
10 o
[ o
2 o
& o
1 o
1 o
16 o
7 o
18 o
19 o
20 o
Gl o
22 o
23 o
2 o
25 o

Extended Least Squares-Olive Oil

@ Archeology XRF (Arch)

W Aspirin and Polyethylene Imag
@ Aspirin and Polyethylene Rect
@ Avicel Drug Bead Image (TofS
@ Biscuit Dough NIR Analysis (bi
‘ Brain Scan (MRI 256x256x14
@ Brain Weight and Body Mass /
@ Bread 3-Way Sensory Evaluat
@ Cervical Cancer EEM Classifici
@ Cervical Cancer EEM and Refl
W Dorrit 4-component Fluoresct
@ Dupont Batch Statistical Proce
8 Echo Ridae Photo (IPEG 768x

_eo0e Save
Save DataSetas
— LookIn:
1 tems.
el
«test

ycal
ftem: o1
To File ” Refresh || Help | | Save || Cancel

Jan 7, 2015, 2:04 PM
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53 Extended Least Squares-Olive Ol

Extended Least Squares-Olive Oil

load ycal as the y-block calibration

eo0e Analysis - PCA 1 PCs - Olive Oil Calibration

File Edit Preprocess NEINIER Refine Tools Help FigBrowser ol

8¢ @ J % B| DECOMPOSITION =
V PCA - Principal C Analysis

Purity - SIMPLISMA

en s curenesoicon [N =
MPCA - Multiway PCA nz(;
Batch Maturity Q Apply / Validate zDE

| —c

ssaTak  CLUSTERING

lumber PCs: 1
tumber PG D PLS - Partial Least Squares (PLS/OPLS)
PCR - Principal Component Regression

Eigenvalae ELSSIEICATION > LWR - Locally Weighted Regression
of Cov) | STATISTICAL »  SVM-R - Support Vector Regression
1 [L18e-06 8§ MLR - Multiple Linear Regression
2 12se-07 ¢ MULTIFWAY 5
SBll6 50005 ET , AN - Artifical Neural Networks
4 2.84e-08 1 3.681e-05 CLS
5 2.71e-08 1 Analysis Methods Help 3.022e-05
6 1.26e-08 0.86 98.07 1.221e-05 3.063e-05
7 9.72e-09 0.66 98.73 9.895¢-06 2.527e-05
8  4.65e-09 0.32 99.05 8.568e-06 2.623e-05 (1}
9 4.13e-09 0.28 99.33 7.186e-06 2.462e-05
10 2.41e-09 0.16 99.49 6.243e-06 2.36-05
11 1.84e-09 0.13 99.62 5.413e-06 2.264e-05
12 1.23e-09 0.08 99.70 4.778e-06 2.257e-05

A model has been calibrated from the data. Review the model using the toolbar buton(s). save the model (File menu),or load tes,

EIGENVECTOR
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CLS Results
using show cal with test and drawing boundaries
es Plot of Olive Oil Calibration,c & Oiltes| a g?n'v"e
16 T T T T T T * 'S
M H A
b TSa & :
Corn TCorn e Y
2r
121 (cal) (test) 3
M
[ h'u T A
3
2 08t
1
ks
3
& 06
> TCMarg

GighQ N Ty
T 10% Corn
T 5% Corn
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54 Extended Least Squares-Olive Ol

56 Extended Least Squares-Olive Oil

using show cal with test and drawing boundaries

10 Samples/Scores Plot of Olive Oil Calibration,c & Oiltest
T T T T T T 0%

Com TCMarg

TAlmnd 1

POGO+4d DRSO PE
o
S

T40C 4
— — Model-specific Q Limit
— — 95% Confidence Level

Q Residuals

4% a *
e U L. U VI S e T
10 20 30 40 50 60 70 80

Sample

EIGENVECTOR

RESEARCH INCORPORATED

CLS->ELS

* Learned that a large fraction (~80%) of the
intra-class variance could be modeled with one
principal component (1 PC)

* one-norm, plus class-centering

* Use what you know
» we know the classes for the calibration data
* allows a model of intra-class clutter

L#\J RESEARCH INCORPORATED
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Avallable Methods

-~ Favomes -

alive (order; 2, Window: 15 1, talls: weiy
Normaize (1-Norm, Area = 1)
Normaize + Mean Center

- Transformations —
Absolte Value
Anthmetic Operation
Haar Transtom

09
Reference/Background Correction
Transmission to Absorbance (og(1/T))

~ Fitering

Baseline (Automatic Welghted Least Squares)
Baseiine (Automatic Wniltaker Fiter)
Baseline (Speciied points)
Column-wise Demvative

Denvative (SavGal)

Detrend

EEMFiltering e

EMSC (Extended Scatter Comection)
EMSC (Extended Scatter Correction)
EPO Fiter

Gap Segment Denvative

GLS Weighting

Kalser HoloReact Method

OSC (Orthoganal Signal Carrection)
Smoothing (SavGol)

Varable Algnment

— Normalzation —
MSC (mean)

MSC (median)
Normaize

57 Extended Least Squares-Olive Oil

59
°7 Extended Least Squares-Olive Oil

Selected Methods | Favorte || Load || Save

Nomalze (1-Norm, Area = 1)
Extended Mxture Model Fiter
<end>

<—— l-norm

) Declutter Settings /

3
Clutter Source: ~ X-Classes details

Algorithm
M Ignore Clutter Mean
v Remove Mean on Apply

() GLSW

(&) EPO/EMM/ELS

Number of PCs: 1

() None (disable filter)

ok || cancel Help

EIGENVECTOR

#\J RESEARCH INCORPORATED

using show cal with test and drawing boundaries

es Plot of Olive Oil Calibration,c & Oilt| 4 o
"4 " " G | 5 Tamw
Corn TCorn * ¢ o
2f *y A Tohe
2 (cal) (test) TSaffl 7
a [ * TS
e e § o
A T30C
— 08F
3
3
8
506
2
[-%
> o4l TCMarg
(high Q)
02F
______ e T 10% Corn
o — = A Lty s T 5% Corn
02 10 20 30 10 50
Sample

M\J RESEARCH INCORPORATED

[ ] Declutter Settings

Clutter Source [ hide

_) automatic
) y-block gradient

() x-block classes | oil D

) external data \

Load | [ Edit

Algorithm
(™ Ignore Clutter Mean

Remove Mean on Apply

D) GLSW \

(®) EPO/EMM/ELS

Number of PCs: 1

_) None (disable filter) \

oK Cancel ‘ [ Help ‘

58 Extended Least Squares-Olive Ol

1. click “x-block classes”

2. uncheck “Remove Mean on
Apply”

3. Number of PCs =1

4. ok

L#\J RESEARCH INCORPORATED

Q Residuals for CLS & ELS

* ELS Q residuals are similar to those for PCA

* The equation for a single measurement is

s eTe e
e=x—[s P][ & f}

g=e'e

Q contributions is a row of E

Q residual is a sum-of-squared residuals

* Limits for Q can be obtained using same tools used for

PCA: Jackson, J.E. and Mudholkar, G.S., “Control Procedures
for Residuals Associated with Principal Component Analysis,”

Technometrics, 21(3), 341-349 (1979).

60 Extended Least Squares

L#\7J RESEARCH INCORPORATED

10/7/17

15



10/7/17

Limits for Scores Hotelling T? for CLS & ELS

* Control limits can be placed on individual * Hotelling T? is similar to that for PCA
contributions and scores, ¢ and t just like in PCA * The equation for a single measurement is
* Although they might not be normally distributed i L
» Limits might be set using statistical assumptions r :[ &t Hﬁ[ cCT ]I [cT ]} [ & t }
or engineering knowledge C and T are for the calibration set

* e.g., control limits

* Limits for T? can be obtained using same tools used
for PCA: Jackson, J.E., “A User’s Guide to Principal
Components”, John Wiley & Sons, New York, NY (1991).

¥ EIGENVECTOR ¥ EIGENVECTOR
52 Extended Least Squares @\ RESEARCH INCORPORATED 63 Extonded Least Squares L@\Z RESEARCH INCORPORATED
Comparison of CLS and ELS Weighted Least Squares, WLS
* Because the basis for the interferences are . Weighted least squares (WLS) model.
augmented to the spectra, the math for CLS and x=cS +e }
. . 7 The residuals, e are assumed to be mean
ELS are identical. eW e/ = (x — cST)W’] (X - cST) zero and have differenF variances
* Therefore, w/o loss of generality ELS and CLS e et g‘;rsigff;;;‘;{{y Efe;zs,:j‘;ﬁtls are assumed to
can be discussed under the general heading of ¢=xW S(S WS
“CLS.” e~ N(0,0'z)
* However, if we really need to split the pieces eW' ~ N (0,021)
apart we can . )
W =d
* ... and the ELS approach also can be treated as a zag(c )

“weighted” CLS model as shown below

P EIGENVECTOR P EIGENVECTOR

66 Extended Least Squares 24 RESEARCH INCORPORATED 67 Weighted Leas Squares 24 RESEARCH INCORPORATED
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Generalized Least Squares, GLS

r Generalized least squares (GLS) model.
x=cS +e
7 The residuals, e are assumed to be mean
eW le! = (x —cST ) w! (X - cST) zero and have different variances
¢ ¢ for each entry. The residuals are not
assumed to be statistically independent.

¢=xW'S(s'W.'s)”

68 Generalized Least Squares

RESEARCH INCORPORATED

00 Preprocessing X-block

Selected Methods| Favorte || Load || Save

Normaize (1-Nom, Area = 1) €= |] -nOrm
1t De (Order: 2, WINJOW. 15 1, talls: wek (GLS Welaning (extemal;aipna 1e-05)

Normaize (1-Norm, Area = 1) <end>

Normaize + Mean Center

Avallable Methods

- Transformations —

Absolute Vaue

Anthmetic Operation

E‘?g:ﬂ' fanstom () Declutter Settings
Reference/Background Correction

Transmission to Absorbance (iog(1/T)) Clutter Source:  X-Classes [ details

— Filtering -

Baselne (Automatic Welghted Least Squares) Algorithm ‘

Baselne (Automatic Wnittaker Fiter)
Baselne (Specified points)
e 4 g [ Ignore Clutier Mean
Demvative (SavGol)
trend (") Remove Mean on Apply
EEM Fiitening
EMSC (Extended Scatter Correction)

EMSC (Extended Scatter Correction) @® GLsw

EPO Fiter

Gap Segment Dervatve Declutter Threshold:

GLS Weighting =

Kaiser HaloReact Metnod JRI I E—
OSC (Orthogonal Signal Carrection) e More

Smaothing (SavGol) ‘
Vaniable Algnment () EPO/EMM/ELS
ization

MSG (mean)
MSC (median)
Normaize
SNV

() None (disable filter)

oK H Cancel \ Help J

GLS on Olive Oil

EIGENVECTOR

70" Generalized Least Squares-Olive Ol L#\J RESEARCH INCORPORATED

GLS in “Two-Space”

GLS attempts to model the clutter in
a weighting matrix.

In the example shown here, the
model might include both s, and p,
s, as “spectra,” as in ELS, while the
fuzzy ball corresponds to the
covariance of the clutter W..

P,
Choose the model structure
appropriate for your data (learned
i from exploratory analysis).
EIGENVECTOR
69 RESEARCH INCORPORATED
[ ] Declutter Settings
Clutter Source [ hige |
() automatic

) y-block gradient

(®) x-block classes ‘\ il 3

() external data 1. click “x-block classes”
Load | ( Edit 2. uncheck “Remove Mean on
Agoritom Apply”
3. ok

(™ Ignore Clutter Mean

Remove Mean on Apply

“-

|| = esw
Declutier Threshold: | 0.001
[EEIKT — E—
| () EPO/EMM/ELS

None (disable filter)

L OK | { Cancel Help |

71 Generalized Least Squares-Olive Ol

L#\J RESEARCH INCORPORATED
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using show cal with test and drawing boundaries

ores Plot of Olive Oil Calibration,c & Oilf 4 oy
14 T T T T FH K * T5C
& o
B = TCom
12 * A TOlive
v Then
*  TSaffl
Tseme
'* Corn TCorn & Tioc
200
A T3C
_osh (cal) (test) TSaffl Ta0C
3
2
3
5 06
g
=%
> o4t TCMarg 4
(high Q) a Y
\ S eJ— T10% Com
o|= = = smnazas = == rmnagaa = =~ - #€==— T 5% Com
02 . . . . . .
10 20 30 40 50 60
Sample

Classical Least Squares Comparison

x=cS" +e x—x=cS" +e

¢=xWS(s'W's) é=(x-x)W's(s'Ws)’

W= 0_21 CLS Mean-centering can be
used to keep e mean zero.

W= diag(oz) WLS

W=W GLS

W= (1— p(PP)’ P’) ELS

10/7/17

Plot Q and Y Predicted 2. Can change method options to
use non-negative least squares. j
72 Generalized Least Squares-Olive Oil EIAEE RESEARCH INCORPORATED

£ EIGENVECTOR
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73 Weighted Classical Least Squares in General

Weighted Classical Least Squares in General

Orthogonalization and
Weighting Flitering
* Comparison of CLS and Weighted CLS models

X=W'x
X=CS’ S=wW’s
¢=(s"s) s'x ¢=(88) ' §'x

Weighting by an inverse square root reduces the W-CLS model to CLS
with weighted measurements and spectra i.e., the weighting can be viewed
as a preprocessing step X = XW%

that can be used w/ PCA and ILS models (PLS, PCR).

This leads to External Parameter Orthogonalization and GLS Weighting
methods

% EIGENVECTOR

N RESEARCH INCORPORATED

75

77" Weighted Classical Least Squares

CLS Model Uses

* CLS is used when noise in each of the N
measurements is similar.
* WLS is used when noise is different for each
of the N measurements.
* GLS and ELS is used when the noise is
correlated e.g., due to interferences.
¢ Clutter = interferences + noise

* GLS is a true weighting while ELS orthogonalizes
completely to clutter directions

% EIGENVECTOR

-4 RESEARCH INCORPORATED
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GLS for Target Detection

* Target analyte has a stationary response L
* target response § is available é= XW_IS(STW_'S)

* reference values y are not available (!)

* Backgrounds are highly variable
* severe and highly variable interference signal

* changes spatially (images) and/or temporarily
(time-series)
» difficult to account for

* The clutter W can be updated

s EIGENVECTOR

EIA‘LJ RESEARCH INCORPORATED

’® Target Detection

2,4-DNT
target s analyte of interest
* similar run-to-run

The measured signal is a

mixture from multiple sources

DNT breakdown products & f

amorphous carbon W

* highly variable run-to-run
& not reproducible!

|
m
(1A
i
!
M

I/

laser o sk ey ™
Si background & .
citrate stabilizer P i
« ubiquitous backgrounds | J}‘\‘

—1 35nm = Raman Shift ™)

Ag Nanoparticle Aggregates =
* Assemble around analyte molecules I: o }=XW7]|: s P :I(I: s P } w*ll: s P ])

* Provide SERS enhancement
# = EIGENVECTOR

« True concentration unknown
L@\ RESEARCH INCORPORATED

-1

80 Target Detection- SERS Example

" Target Detection- SERS Example

SERS Detection of DNT Vapor

* Detect trace (ppb/ppt) quantities of
explosives vapor
» “process” or “time-series” example

* Challenges

* background / interferences change every run
» difficult or impossible to span full background
variability
» multiple interferences
* run-to-run and ubiquitous to every run

NB Gallagher®, BD Piorek? SJ Lee?, CD Meinhart®, M Moskovits®, BM Wise?, “Multivariate
Curve ion Applied to SERS of 2.4-DNT,” APACTI3 — 23-26 April, 2013
*Eigenvector Research, Inc., ;

"SpectraFluidics, Inc.,

IGENVECTOR

ESEARCH INCORPORATED

Powdered Raw Materials

* Challenges — wheat gluten background
* scattering and particle size distributions changes sample-to-
sample
* same material from a wide variety of sources
* different powdered materials
* Calibration for typical ILS models difficult
* reference values unavailable
* unlikely to acquire a calibration data set that spans all the
sample variation expected to be seen
« and if you do, the net analyte signal suffers
* unlikely to use one ILS model from a single material for
multiple raw materials (other powders)

7% EIGENVECTOR

-4 RESEARCH INCORPORATED

81 Target Detection - Melamine in Wheat Gluten Example

10/7/17
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Signal from the unadulterated wheat gluten is highly variable and
is much stronger than the adulterant.

Reflectance

05 N n
1000 100 1200 1300 1500 1500 1600

Wavelength (nm)

unadulterated wheat gluten

median background can be used as p

EIGENVECTOR

L#\J RESEARCH INCORPORATED

Target Detection - Melamine in Wheat Gluten Example

Adulterants = Targets

* Adulterant spectrum ~constant
* variants can be considered a different adulterant
* tend to appear with only a few at a time ' '

« multiples can be handled if needed 05
* Interest is in low levels of adulterant
* however, higher levels likely present due to 04
economics

1000 1100 1200 1300 1400 1500 1600

melamine target s Wavelength (nm)
(A

EIGENVECTOR

L#\J RESEARCH INCORPORATED

Target Detection - Melamine in Wheat Gluten Example

Eigenvalues for 200 ppm melamine in wheat gluten
no preprocessing

fffffffffffff : Principal Eigenvalue % Variance
o : Component of Captured

! Number Cov (X) This PC

interference =~ —-------=  —--------- —-eooeoooo

? signal is strong 1 2.48e+10 99.983438

: 2 3.59e+06 0.014493

7 s le—>1 3 4.03e+04 0.000162
= : 4 2.91e+04 0.000117
g 4| i {5 1.51e+04 0.000061
o : 6 8.78e+03 0.000035
= i 7 7.14e+03 0.000029
S : 8 6.82e+03 0.000027
: 9 6.08e+03 0.000025

s | target 10 5.56e+03 0.000022

0 2 4 6 8 10 12 14 16 18 20

Principal Component Number

‘Target Detection - Melamine in Wheat Gluten Example

background contributions

null ‘ positive
‘ example contributi

for two images

on top are detected
2) distributions are not
normal

response is not linear
in a pixel due to
ignal closure

Q residuals

- 1) response is not linear
X with ppm (mas:
because only particles

i

tection - Melamine in Wheat Gluten Example

Percent Variance Captured by PCA Model

% Variance

Captured
Total

99.983438
99.997931
99.998093
99.998210
99.998271
99.998307
99.998336
99.998363
99.998388
99.998410

L#\J RESEARCH INCORPORATED

ound contributions

ontributions

als

*
i

10/7/17
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GLS = Adaptive Matched Filter

* The GLS estimator is used for target detection
in remote /standoff sensing and is referred to
as “the matched filter.”

* ground truth is rarely know well
* interferences vary most every measurement

* More recently as “the adaptive matched filter”

because the clutter is updated.

* Understanding the source of clutter and how to
account for mathematically is important

EE RESEARCH INCORPORATED

95 Generalized Least Squares

Clutter Covariance Model

* How many PCs? » InPCA, the big eigenvalues are kept to
model the signal of interest in the data.
When the data set corresponds to
clutter, the big eigenvalues correspond
to interference signal that has to be

s Eigenvalue distribution ofa ——
clutter covariance matrix, W.

\ accounted for.
g° . \ interferences * InGLS, thes<_3 are the directions that
Z are down-weighted the most.
g’ . ‘l « InELS, these are the directions that are
&, AN “thrown away”.
. noise
.
.
b .o

0 2 4 6 8 10 2 14 618 20

Principal Component Number

% EIGENVECTOR

N RESEARCH INCORPORATED

! Clutter

87 Generalized Least Squares

2 Clutter

GLS and Clutter

* The clutter covariance is estimated from target-free
measurements or measurements where the target
contributions do not change.”

For clutter that has a constant (stationary)
mean, the clutter covariance is estimated from

W, =i (X, - 1x7) (X, -1%7)

* Sensor noise and signal due to interferences
* (DOD, NATO) Unwanted signals, echoes, or images on
the face of the display tube, which interfere with
observation of desired signals.
 It’s measured signal unrelated to the target
* it can be correlated or not

*Typical use. Often target is also present — makes
detection thresholds difficult to quantify

EIGENVECTOR

-4 RESEARCH INCORPORATED

Compare ELS and GLS

ELS: remove
p,_‘of W, w;{s — (I _ PPT) 4 Eigenvalue distribution of inv sqrt W, .
cigenvalues of the clutter covariance \ ot
t R R R R
,,,,, " Eigenvalue distribution of
et ' inverse sqrt of the clutter
' T o o covariance matrix, W
GLS: take W =PSP" werrrrtloooo o

inverse of W_.

Principal Component Number

§:'= EIGENVECTOR

IL‘E RESEARCH INCORPORATED
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Compare ELS and GLS

» ELS is a hard cutoff while GLS is a “soft” cutoff.
* GLS doesn’t throw away intermediate clutter eigenvalues

» ELS assumes that the clutter eigenvalues of the kept
subspace are all the same.
» ELS assumes statistically independent residuals of similar
magnitude

* a diagonal matrix with all entries the same value has a flat
eigenvalue distribution

« if truly statistically independent, the eigenvalues are std(X)?
* If the eigenvalue distribution of the clutter covariance is
flat, GLS will not de-weight any directions

* estimated covariance matrices rarely have a flat eigenvalue
distribution

EEIGENVECTOR

M\J RESEARCH INCORPORATED

Non-negativity

* Physics and chemistry often dictate the contributions
must be non-negative. This can be added as a constraint to
the least-squares solution

+ force ¢tobe>0
*» or > a small tolerance (e.g., slightly <0 due to noise)

* not all contributions need be non-negative

e.g., non-negativity for ELS
contributions on P might be relaxed

¢=xWS(s'W's)
[¢ ¢ ]=x[s p}[[s p s PJ)

EIGENVECTOR

5 RESEARCH INCORPORATED

-1

Constraints

* Constraints and penalties add control over the
estimator
* The advantage for CLS is that

* the objective function is based on estimating
contributions or concentrations ¢,

* not on estimating the regression vector b as with
ILS methods

£ EIGENVECTOR

M\J RESEARCH INCORPORATED

® Penalties and other Constraints

Non-negativity in “Two-Space”

Non-negativity forces all
measurements to lie
between s, and s,.

feasible region

Can also set a tolerance
S| allowing the signal to be
slightly outside the feasible
s, region.

EIGENVECTOR

5 RESEARCH INCORPORATED
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using show cal with test and drawing boundaries

B
14 T T T T T 4
) Corn TCorn TSaffl ¢
| (cal) (test) (high Q) 4
| [nees,mm e B =g Hotokiokdek :
i
08
£
S 06
o
04 TCMarg
(high Q) N A v
oz o o
______ R i T 10% Corn
t Asadua Maanet VW WOV
0 - T 5% Corn
02 L L 1 1 n n
0 10 20 30 40 50 60
Sample

change method options to use non-negative least squares
manually set nconst =[1 1 0]

EIGENVECTOR

K.
H
L#\J RESEARCH INCORPORATED

102 Extended Least Squares-Olive Oil

Closure in “Two-Space”

Closure implies non-

negativity and forces all
= feasible solution measurements to lie on a
- line between s, and s,.
b ~
N
s, L
S,

EIGENVECTOR

RESEARCH INCORPORATED

Closure

10/7/17

* Physics and chemistry often dictate the contributions
must sum to one (i.e., obey closure). This can be
added as a constraint to the least-squares solution

K

¢ forces Zcle

k=1
* Is used in combination with non-negativity

* not all contributions need obey closure
* e.g., closure for ELS contributions on P might be

EIGENVECTOR

L&\ RESEARCH INCORPORATED

relaxed
102penalties and other Constraints
14
Corn
12r (Cal)
Jj se————
08|
g 06
S

04

02

02
0

change method options to use non-negative least squares
manual application of closure 14

TCorn TSaffl
(test) (high Q)
agueEEEmE Sefcfoiololdor
TCMarg

(not high Q) ~
4000

=R ek 0 2 Doy 2]

B TPeant
A Ve (ighQ)

¢ < T 10% Corn

S~ T 5% Corn

10

105Generalized Least Squares-Olive Ol
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CLS w/ a Prior + Smooth

x=Sc+e

O(c)=(x- Sc)T W (x-Sc)+a,(c—c, )T A'(e—c¢,)+a,c'D'De

weighted residuaI;\ \
penalty function to introduce a prior
penalty function to introduce smoothing

A is a covariance for ¢, and D might be a 2" derivative operator to introduce
a penalty on roughness (it introduces smoothness). As a, gets large ¢ gets
more smooth.

¢=(S'S+aA "+, D'D) (S'x+arAe,)

note that D need not be continuously banded

L&\ RESEARCH INCORPORATED

106penalties and other Constraints

Net Analyte Signal

* Net analyte signal (NAS)

* The portion of signal unique to each analyte
» it is the part of s, orthogonal to interferences

* For a generality, NAS is defined for an ELS

model as .
¢=xWS(S"W's)

ELS model: [ i]-x[s » ][[ sp][sp D.
[ & J=xz(z'z)

A. Lorber, B. Kowalski, “The Effect of interferences and Calibration Design on Accuracy:
Implications for Sensor and Sample Selection,” J. Chemon., 2, 67-79 (1988)

o>

# N EIGENVECTOR

n
110Net Analye Signal L#\7J RESEARCH INCORPORATED

CLS w/ Basis Functions

¢ Assume ¢ = Bb where B is a set of basis functions known a priori (e.g.,
splines, spectra, PCs or other) and b is the set of coefficients to identify.
« Itis typical that the number of basis functions in B is smaller than the
number of spectra in S.
¢ Approach can be used to employ smoothing.
*  Development formalization can be used to derive PCR.
¢=Bb ; ¢=Bb
x=Sc+e
O(c) = (x - Sc)T w (x - Sc)+ ac’Ae
0(b)=(x-SBb)" W' (x—SBb)+a,b"B"’A"'Bb
A - " .
b=(B’S"W'SB+aB’A"B) B'S'x

¢=B(B'S'W'SB+a,B’A'B) B'Sx

L&\ RESEARCH INCORPORATED

09,
10%enalties and other Constraints

NAS in “Two-Space”

NAS is the portion of the
signal unique to each
analyte. NAS, is the portion
of s, parallel to s, and
orthogonal to s,.

# N EIGENVECTOR

112 LIL‘E RESEARCH INCORPORATED
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‘without prior written consent from -
utline / Summary

» Linear Mixture Model
* Classical Least Squares (CLS), Weighted Least Squares (WLS),
Extended Least Squares (ELS), Generalized Least Squares (GLS)
« all can be contained in a WLS framework
« orthogonalization and weighting filters
* models are interpretable
* Target Detection
« used when target spectrum available but no reference values
* Concept of Clutter
« accounting for interferences in the data (use what you know)
* models are easy to update
* Constraints
 constraints on what is estimated, ¢ (not on a regression vector)
« added control over modeling (use what you know)

* Net Analyte Signal

#EIGENVECTOR

LE RESEARCH INCORPORATED

CLS Regression Methods

(Building Interpretable Predictive Models)

Appendix
Advanced Examples and

Additional Concepts

2 EIGENVECTOR

5 RESEARCH INCORPORATED

Keep in mind that...

"The detection, classification and/or quantification system being
considered is the 1) sensor that provides the measurements, 2) the
scenario in which it is to be deployed and 3) the algorithm used to

extract the desired information.

These must be developed concurrently for the greatest chance at
success because what is learned during data analysis and algorithm
development often feeds back directly to instrument design in an
effort to maximize

signal-to-clutter not just signal-to-noise."

EIGENVECTOR

RESEARCH INCORPORATED

How to use MCR to get P?

¢ When less is known a about the data...

* Given known X and C, how can we estimate
S, P and T from a calibration set?

¢ S and P can be used to make estimates for C
(and T) from a test set.

target factors interferences

EIGENVECTOR

RESEARCH INCORPORATED
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Caustic Data Example

» Estimate concentrations of NaCl and NaOH in
aqueous caustic brine solutions using SW-NIR
* measured 12 solutions of NaCl and NaOH in water
* peaks shift with changes in NaCl, NaOH and temperature, T
 Since T will vary in the application, T variation
must be included in the calibration set

* although T need not be known, it must vary in the
calibration set for the model to be robust to T changes

s EIGENVECTOR

EIA‘LJ RESEARCH INCORPORATED
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DOE for Calibration

* NaOH, NaCl and T varied in a designed experiment.

* Split the data into calibration and test (are they independent sets?)
¢ 71 calibration spectra (red)
* 24 test spectra (blue)

" . eenn 3

3 5 8 % " N s [ ' i
NaCl (wt%)

EIGENVECTOR
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iz W " s
NaCl (wi%)

What is the anticipated rank of the calibration set?

120 xtended Least Squares-Caustic

Typical SW-NIR Spectrum of
Caustic Brine Solution

.| Spectrum made up of overlapping
| overtone and combination O-H
stretching and bending peaks.

2n

sym str + Nunsym str

Absorbance

0.5
900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400

Wavelength, nm

e EIGENVECTOR
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Preprocessing

* Second Derivative (15,5,2)

* Mean-center
* often with spectra no centering is used
* no centering is a force fit through zero

* mean-centering is used to introduce an offset

* often used with ILS models

* Use same preprocessing for ELS and PLS so a
fair comparison can be made

# 2 EIGENVECTOR

L#\J RESEARCH INCORPORATED
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Problem Summary

known

X, measured spectra calibration set
C, concentration of NaCl and NaOH

\X=[\c T][s p]+E

unknown / 17 /

S, spectra of NaCl and NaOH

T, interference “contributions” or scores

P, basis for interferences but can be estimated - use
data for constant NaCl and NaOH and varying temp

E, residuals

$EIGENVECTOR

.
A
L#\J RESEARCH INCORPORATED

1225 tended Least Squares-Caustic

Soft Constraints for C and S

* Augment to X “adds weight” to the “knowns”
* large weight tends to “hard” constrain
* cross-validate over the weight A
* cross-validate over the number of factors in P

[x ca]=[c 1§ p]+E

e s el

2 EIGENVECTOR

5 RESEARCH INCORPORATED

2% cr

123§, tended Least Squares-Caustic

“I\ PLS cross-validation

RMSECYV (o), RMSEC (5)

10/7/17

MCR to Estimate the ELS Model

known

P, estimated from samples at
constant ¢ and changing T,
constrained “softly”

C, concentration of
NaCl and NaOH,
constrained “softly”’

x=[c 1]s p]+E

7/
unknown

S, spectra of NaCl and NaOH unconstrained
T, interference contributions unconstrained

recall derivatives and mean-centering means
that contributions and spectra can be negative E|GENVECTOR

RESEARCH INCORPORATED

Results

Examine two different models:

3 factors for PLS and ELS (A=500)

NaCl NaOH
(Wt%) PLS ELS PLS ELS
RMSEC 0.080  0.083  0.031  0.032

RMSECV 0.103  0.097  0.041 0.038
RMSEP 0.099  0.099 0.032  0.034

5 factors for PLS and ELS (A=500)
NaCl NaOH

—— o

— (Wt%) PLS ELS PLS  ELS
T  RMSEC 0039 0075 0026  0.029
RMSECV ~ 0.096 0.100 0.037  0.040

RMSEP 0.068  0.095 0.029 0.034

12 ﬁExlended Least Squares-Caustic
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126Extended Least Squares-Caustic ‘Wavenumber (1/cm)

SFCM Data Example

* Estimate level in a slurry fed ceramic melter

* measurements are not spectra

1200 - —

e measured 20 G e
temperatures & DA A A A A A LA
(thermocouples) in v T '
two vertical thermal =3 50 100 150 200 250 300

ARV Y

wells 215
21 S

* thermocouples near _
the surface vary c ]
Wlth leVel 1950 5‘U WE‘IU 150 200 25‘0 300

Sample Number (time)
F.
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Summary: Caustic

* PLS performed ~slightly better than ELS
* statistically significant?
* algorithms for ELS not fully optimized and not clear
how to do cross-validation
* e.g., for soft constraints
* SLOW! mostly due to ALS algorithm
* data were from a good DOE so results were expected
to be similar
* not yet shown how to account for confounding in the
measurements, but ...
* we have shown that a CLS model can be used even
when the spectrum of the interferent was unknown

r.

EIGENVECTOR
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T\ PLS cross-validation ==
\

Results

Demonstration of CLS for engineering variables.
3 factors for PLS and ELS (2=0.001)
Level (in)
PLS ELS
RMSEC 0.106  0.114
RMSECV 0.113  0.118
RMSEP 0.138  0.145

RMSEC

Level (in) predicted

EIGENVECTOR

RESEARCH INCORPORATED

Number of Factors.

12 (¢ Extended Least Squares-SFCM
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130k xtended Least Squares-SFCM

Estimation Error for CLS

* The easy derivation is also likely the most

important in general.
* Assumes that the measurement error in X dominates
error in S (or [S P] for ELS).
* neglects the leverage term
* describes error variance about the model origin
— useful for estimating detection thresholds
* often true when S estimated from high quality lab
* Not always true because S and P are often estimated
directly from measurements
* library S not available or not exactly problem-relevant

EIGENVECTOR

(AT
AT
LdL7J RESEARCH INCORPORATED
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Derivation of EPO Preprocessing

Start with the ELS model and show that the regression vector is the same as the
EPO-based regression vector.

x=[c tJ[S P}r+e

[ i]=x[s P}([s p s p})
p=[ B B, |-[s »][s»][s ]

-1

-1

(s e Tls vl 55 8n

IAEJ RESEARCH INCORPORATED
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Estimation Error

-1

d(¢)=d(x)W's(s"W™'s)
V(&)=(S"W'S) S"WV(x)W's(s'W's)

-1

V, (x)=W=0"I v
V,,5(X) = W = diag( o) v
V,(X)=W=W
vV, (x)=0’l

Vo[ & & ])=0° (zz)

[s P ]

Z =
P EIGENVECTOR
137 L@\ RESEARCH INCORPORATED
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139Net Analyte Signal - Appendix

NAS Compared to Estimation Error

b, = [1 —p(P'P)’ Pr}sk [s{ |:I —p(PP)’ Pr}sk )ﬁ NAS
bb, = (sf [I —p(P7R) P’ :|sk ) s [I —p(pp) P’ :isk (sf [I —p(P7R) P’ :|sk )

1
b, = (s[ [I —p(p) P’ ]sk)

-1
is the the scalar diagonal element for the A" analyte of (ZTZ)
that shows that the longer the NAS, the smaller the error because
the estimation error is & ( ZTZ)il
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