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•  Software and Data Sets 
•  Preprocessing Objective 
•  Motivation: Simple Example with Mean Centering ??? 
•  Review: Mean Centering and Autoscaling 
•  Baseline Removal 
•  Standard Normal Variate, Normalization, Scatter Correction (MSC) 
•  Smoothing and Filtering, Savitzky-Golay 
•  Derivatives 
•  Scaling: Autoscaling with Offset, Poisson, Exponential Decay 
•  Orthogonalization Filters: OSC, O-PLS, GLS 
•  Linearizing, Matrix Rank and the Bilinear Model 
•  The Extended Mixture Model (ELS) 

•  Target Detection, Classical Least Squares, MSC and Extended Multiplicative Scatter 
Correction, Extended Least Squares in Curve Resolution, Generalized Least Squares 

•  Scaling for Multi-block data 
•  Preprocessing order 

Outline!
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… \PLS_Toolbox\dems\arch.mat	
… \MIA_Toolbox\dems\avicel.mat	
… \PLS_Toolbox\dems\FTIR_microscopy.mat	
… \PLS_Toolbox\dems\OliveOilData.mat	
… \PLS_Toolbox\dems\raman_dust_particles.mat	

Data Sets for This Class!
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Why Preprocess?!

•  What's the objective of the analysis? 
•  Simple example: Compare new measurements to a 

model of a system or process 
•  The system might be characterized as the mean and 

variance about the mean  
•  multivariate statistical process control 
•  anomaly detection 

•  In this case, the data are centered to the mean of 
•  normal process data 
•  null / non-anomaly data 

4 
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Mean-Centering!
•  Detection was relative to the mean … 
•  Mean-centering is used to 

•  allow PCA models to capture variance about the mean 
•  exploratory analysis 
•  MSPC (assumed stationary, as in the detection models) 
•  SIMCA (classification based on distance from cluster mean) 
•  other models … 

•  calibration (normal, null) data are centered to it's mean 
and new (test) data are centered to that mean 

•  assumes stationary process 
•  avoid numerical problems 

Seasholtz, M.B., and Kowalski, B.R., "The Effect of Mean Centering on 
Prediction in Multivariate Calibration", J. Chemometr., 6, 103-111 (1992).  
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Centering is an Axis Translation!

•  Geometry for 2 variables 

Variable 1 
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Did centering change the rank 
for this example?	
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Centering (general)!

Can center the data to something other than the mean 

   

I − 1
M 11T( )X

I − 1
1T w

1wT( )X, 1wT ≠ 0

X −1wT

Xmedcn = X −1xmedian
T

mean-centering 

weighted mean-centering 

general center 

median center 

   

X M×N      and     xT = 1
M 1T X

X −1xT = X − 1
M 11T X = I − 1

M 11T( )X

Centering as a projection 
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Projection vs Subtraction!

•  example shows projection and subtraction give 
identical results 

>> x = randn(10,4); 
>> pm = eye(10)-ones(10,10)/10; % I – 11'/M 
>> x1 = x-ones(10,1)*mean(x)    % x – 1x' 
x1 = 
  -0.4338  -0.4177   0.2691  -0.7587 
  -1.6669   0.4948  -1.3615   0.3312 
   0.1241  -0.8193   0.6890   0.4568 
   0.2864   1.9522   1.5983   0.3531 
  -1.1477  -0.3673  -0.7171   0.9314 
   1.1896  -0.1170   0.8327   0.3098 
   1.1879   0.8358   1.2287   0.8320 
  -0.0389  -0.1717  -1.6190  -1.5613 
   0.3260  -0.3266  -1.4662  -0.3786 
   0.1734  -1.0633   0.5459  -0.5156 

>> x2 = pm*x 
x2 = 
  -0.4338  -0.4177   0.2691  -0.7587 
  -1.6669   0.4948  -1.3615   0.3312 
   0.1241  -0.8193   0.6890   0.4568 
   0.2864   1.9522   1.5983   0.3531 
  -1.1477  -0.3673  -0.7171   0.9314 
   1.1896  -0.1170   0.8327   0.3098 
   1.1879   0.8358   1.2287   0.8320 
  -0.0389  -0.1717  -1.6190  -1.5613 
   0.3260  -0.3266  -1.4662  -0.3786 
   0.1734  -1.0633   0.5459  -0.5156 
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Centering Summary!
•  no offsets: 
•  mean-centering: 
•  offset across mode 1: 
•  offset across mode 2: 
•  offset across both modes: 

T=X TP

T T= +X TP 1µ
T T= +X TP µ1
T Tµ= +X TP 11

T T= +X TP 1x

( ) ( )1 1 1 1 1 1 2 2
T T T T T− ≥ − + ≥ − +X t p X t p 1x X t p t p

The mean isn't the only, nor necessarily the best, factor to center 
to. The best depends on the objective and how the data manifest. 
 
Centering increases fit to data, but probably not as much as an 
entirely unconstrained additional component. 
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Example w/ 
Olive Oil!
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Click "P" to select 
preprocessing	

Select “Mean Center”	
Click “Add !”	
Click “OK”	
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Quick view of preprocessed data	
Click “Show”	
Click “Show Excluded”	

14 
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In Analysis: Preprocess: Plot Preprocessed 
Data: Calibration: X-block	
Plot: Rows	
Hold shift key and highlight all rows	
   zoom in on areas of interest	

In Analysis: Click "X": Plot Data	
Plot: Rows	
View: Excluded	
Hold shift key and highlight all rows	

Plot the data	 Plot the preprocessed data	
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Missing Data!

•  Many methods to replace missing data 
•  the method used should not increase rank! 
•  interpolation and other ad hoc procedures often work 

~ok, but can increase rank 

•  Data can be replaced with values consistent with 
the overall data structure 
•  often PCA is used (replaced entries have zero residual) 
•  problem is knowing the number of factors 
•  works if missing data are random (not systematic) and 

not too much missing (~<10%) 
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Centering and Missing!

Centering and missing 
centering first and then fill in 
missing ~works if only a few 
missing, otherwise it adds rank 

X is rank 1 
 even after centering, but not if 
data have missing values 

Alternative, fit the model 
  ||X-TPT-1µT|| directly and 

replace with values consistent 
with the model mdcheck.m 
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CLS Offsets (centering)!
•  Offsets for Classical Least Squares models 

•  if offset is the same "spectrum" at different magnitudes it 
can be fit explicitly (and estimated using MCR) 
  fit the model  ||X-CST-1µT|| directly 

•  if offset is different for each spectrum it must be removed 
using sample-specific pre-processing 

•  baselining, other baseline.m, baselinew.m, wlsbaseline.m 

S X 
= C* 

µbaseline 	
+

18 



5 

4	
	
3	
	
2	
	
1	
	
0	
	
-1	

Raw FTIR Spectra	

4000             3500            3000             2500            2000             1500            1000              500	
                                                                 Wavenumbers	
                                                              Baseline Close Up	

0.15	
	
0.1	
	
0.05	
	
0	
	
-0.05	

4000             3500            3000             2500            2000             1500            1000              500	
                                                                 Wavenumbers	

Sample-to-Sample Baseline!
Baselines / backgrounds can 
manifest as offsets, sloping 
background, polynomial, or more 
complicated functions.	
	
In the example, the offset is larger 
than the absorbance features of 
interest.	
	
This type of clutter can inhibit 
predictive capability and make 
extraction of chemical information 
(e.g., via multivariate curve 
resolution) difficult.	
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Background Subtraction!
Removal of broad (low-frequency) interferences while 
retaining higher-frequency features. Only low-order 
polynomials are used to model the background. 
• Detrend: fit polynomial to entire spectrum  
•  Selected-Points baselining: fit polynomial to selected points in 

spectrum 
• Weighted Least-squares (a.k.a. asymmetric) baselining: fit to 

automatically selected points on the bottom of the spectrum 
• Windowed: Rolling Ball, Median, Minimum, etc. 

Additional methods do baseline removal “within” the model (later…) 
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Detrend!
•  Fit polynomial to entire spectrum 

•  easy, but highly-influenced by non-baseline features 

600	 800	 1000	 1200	 1400	 1600	 1800	0	
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3	

4	

5	x 10	5	

Raman Shift (cm-1)	

zero-order (= mean) 

1st order 

2nd order 

3rd order 
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Detrend Example!
•  Raman Spectra of scattering sample 

•  detrending good for exploratory analysis and can help with 
PLS models, but processed spectra can 'look funny' 

600	 800	 1000	 1200	 1400	 1600	 1800	0	

1	

2	
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4	
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Raman Shift (1/cm)	

D
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600	 800	 1000	 1200	 1400	 1600	 1800	-5	

0	
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Raman Shift (1/cm)	

D
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After 2nd order detrend 
most differences appear to 
be non-baseline effects 
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Detrend Settings!

0 (offset), 1, 2, … higher order 
polynomials	

23 

Selected-Points Baseline!
•  Detrend based on points in spectrum known to be 

only baseline. Subtract the result from all channels. 
•  good when zero points are known a priori 
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fit a polynomial to 
selected baseline points	

26 
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1. Click to select regions.	
“+” is like holding shift key 
while selecting	

2. Increase polynomial order 
to fit to baseline points	
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click “Show” to inspect 
the results	

rank dropped from 
five to four	

no preprocessing	

baseline 
preprocessing	
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Weighted Least-Squares Baselining!
•  Automatic selection of baseline points by fitting polynomial to 

the “bottom” (or “top”) of the spectrum ! asymmetric fit. 
•  Starts with a fit to all points then de-weights points above the baseline (those with large positive 

residuals). 
•  Iterates until only points w/in a defined tolerance on the residuals are kept. (Need to define tolerance 

on the residuals.) 
•  Easy approach for simple baselines (e.g., polynomials). 
•  Can also include known baseline functions. 

2003004005006007008009001000
Raman Shift (cm-1)

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

M
ea

n

29 

results similar to 
previous example	

help for 
highlighted option	

30 
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Rolling Ball Background 
Subtraction!

yL	 yR	

yC	

y	

x	

yC,new = yC /((yL+yR)/2)	

ynew	

x	

31 

2R = 101	 2R = 401	

Rolling Ball Example!
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Other Background Subtraction 
Strategies!

These appear to have fewer “peak 
artifacts” but there are still artifacts in 
the slope. Did it result in a drop in 
rank?	
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Savitzky-Golay and Filtering!
•  Derivatives wrt λ can be used to 

remove offsets/slopes 
•  Savitzky-Golay smoothing and 

derivatives 
•  piece-wise fit of polynomials to 

each spectrum 
•  use fit directly for smoothing 
•  use derivative in each window for 

estimate of derivative wrt λ 800 900 1000 1100 1200 1300 1400 1500 1600
0

0.5

1

1.5
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2.5

Wavelength, λ

A
bs

or
ba

nc
e

with offset and slope 

with offset 

original spectrum 

load nir_data 
x  = spec1.data(1,:); 
x1 = spec1.data(1,:)+0.1; 
x2 = spec1.data(1,:)+0.4+0.001*mncn(spec1.axisscale{2}')'; 

34 
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Savitzky-Golay and Filtering!

T=x cS

d d
d d

T T

T

α

λ λ

= +

=

x cS 1
x Sc

800 900 1000 1100 1200 1300 1400 1500 1600
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0.08

0.1

Wavelength, λ

dA
/d
λ

filter window width 

polynomial order 

derivative 

multicomponent Beer’s Law 

first derivative removes the offset 

dx  = savgol(x, 15,2,1); 
dx1 = savgol(x1,15,2,1); 
dx2 = savgol(x2,15,2,1); 

with offset and slope 

with offset 

original spectrum 
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Savitzky-Golay and Filtering!

dx  = savgol(x, 15,2,2); 
dx1 = savgol(x1,15,2,2); 
dx2 = savgol(x2,15,2,2); 

T=x cS

2 2

2 2

d d
d d
d d
d d

T T

T

T

α β

β
λ λ

λ λ

= + +

= +

=

x cS 1 λ
x Sc

x Sc

multicomponent Beer’s Law 

second derivative remove the 
offset and slope 

filter window width 

polynomial order 

derivative 

with offset and slope 

with offset 

original spectrum 
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End-Effects in SavGol!

Principal     Eigenvalue     % Variance     % Variance 
Component         of          Captured       Captured 
 Number         Cov(X)        This  PC        Total 
---------     ----------     ----------     ---------- 
savgol(x,25,2,2,struct('tails','traditional')) 
     1         2.74e+02         84.58          84.58 
     2         5.01e+00          1.55          86.12 
     3         2.76e+00          0.85          86.98 
savgol(x,25,2,2,struct('tails','polyinterp')) 
     1         2.73e+02         78.76          78.76 
     2         1.67e+01          4.83          83.59 
     3         4.83e+00          1.40          84.98 
savgol(x.data(i0,:),25,2,2,struct('tails','weighted')) 
     1         2.73e+02         82.89          82.89 
     2         7.50e+00          2.28          85.17 
     3         2.97e+00          0.90          86.07 

'tails','weighted’ 

'tails','polyinterp’ 

'tails','traditional’ 
NIR of wheat gluten	
>40,000 spectra	

Data courtesy of Opotek, Inc., Carlsbad, CA, www.opotek.com	
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click 'Show' to 
inspect the results	

The rank dropped from 
five (w/o SavGol) to four.	
	
The first and last 7 points 
were excluded.	

Try SavGol on Raman_Dust_particles	

38 
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Least Squares Analysis!
•  Variables far from the origin have more influence on the model 

–  numerically larger variables appear more important 
–  mean centering can be used to reduce this effect but moves the model origin 
–  if a force fit through zero is desired (e.g., often used with CLS-like models) 

it is important to remove offsets that add rank 
»  offset might not correspond to the mean of the data 

•  Variables with large deviations have more influence on the model 
–  variance (squared deviations) is associated with "importance" 
–  autoscaling - divide each (mean centered) variable by its standard deviation, 

result is variables with unit variance 
–  other weighting and centering strategies might be more useful 

»  e.g., can use a priori information, such as noise level 
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Autoscaling!
•  Autoscaling: subtracts the column mean from each 

column and scales to unit variance 
•  each variable converted to a T-statistic 
•  result is that each variable has the same variance 
•  not typically used with spectra 
•  often used with engineering variables (different units) 

•  offset used to avoid “divide by zero” 
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Centering and Autoscaling 
Math!

•  Mean-centering 
•  Autoscaling 

•  with an offset 

mncn(data) 
T

mncn = −X X 1x
auto(data) ( )./T T

auto x= −X X 1x 1σ

( ) ( )./T T
auto x α= − +X X 1x 1 σ

( ) 1
21 =

where  is a diagonal matrix
with variance as the entries

T
auto M

−−X I 11 XW

W
( ) ( ) 1

221 =

the offset  can be viewed as a
ridging or regularization of 

T
auto M α

α

−

− +X I 11 X W I

W

41 

Weighting!

•  Auto-scaling can be viewed as a weighted 
approach where the weighting is the standard 
deviation of the variables 

•  Other weighting can be used 
•  weight by noise in the variables with W diagonal 

•  each variable has same S/N 

•  W doesn't have to be diagonal 
•  this will lead to generalized least squares approaches 

42 



11 

Poisson Scaling!

•  For count data, the variance is expected to follow 
a Poisson distribution such that the variance is 
equal to the mean of the data. 
•  often used in mass spectroscopy 
•  in this case W is diagonal and equal to sqrt(mean(data)) 
•  M.R. Keenan, "Multivariate Analysis of Spectral Images Composed of 

Count Data," in Techniques and Applications of Hyperspectral Image 
Analysis, H. F. Grahn and P. Geladi, eds. (John Wiley & Sons, West 
Sussex, England), 89-126, 2007. 

•  poissonscale.m 
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Removing the Row Magnitude!

•  Previous examples removed an offset. How is 
variance due to changing magnitude removed? 
•  variable source or lighting magnitude 
•  scattering effects 

•  Standard Normal Variate (SNV): subtracts the row 
mean from each row and scales to unit variance 
•  Autoscaling of the rows 

•  Row Normalization: removes magnitude 
•  Be aware that this can “blow up” noisy samples to 

have more variance  
44 

SNV! rank dropped from 
five to four, but 
baseline still looks 
important	

see snv.m 
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Example w/ 
Olive Oil!

…\EVRIHW\OliveOilData.mat	
xtest	
	
	
1.  Try mean-centering only and plot 

PC 2 vs PC 1.	

2.  Try SNV, then mean-centering.	
use “up” and/or “down” in the 
“preprocess” interface to ensure 
the correct ordering	

Click “X" to 
load test data	

46 
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Normalization!

•  Row normalization is used to remove magnitude 
information from each sample 
•  column normalization was used to put variables on 

similar scales (autoscaling, other scaling) 
•  there are many ways to normalize 
•  often used with spectra to remove scattering/pathlength 

differences observed in the measurements 

•  Standard normal variate (SNV) 
•  autoscales rows (centering and scaling ~similar to 

centering and 2-norm) 

see normaliz.m 
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Normalization!
•  Normalize each row / spectrum  
•  Order of normalization (p-norm) 

•  1-norm : normalize to unit AREA (area = 1) 
•  2-norm : normalize to unit LENGTH 

(vector length = 1) 
•  inf-norm : normalize to unit MAXIMUM 

(max value = 1) 

1/

1

p
N

p

j
j
x

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑x x

p-norm 
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Normalization!
•  Normalize each row / spectrum (which p?) 

3 norm 
1/

1

p
N

p

j
j
x

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑x x

2 norm: 
constrains rows to a 
spherical surface  

1/2 norm 

Channel 1 

C
ha

nn
el

 2
 

1 norm: constrains rows to a plane 

p norm 

Gallagher, NB, Shaver, JM, Martin, EB, Morris, J, Wise, BM, Windig, W, 
“Curve resolution for images with applications to TOF-SIMS and Raman”, 
Chemometr. Intell. Lab., 73(1), 105–117 (2003). See Section 3.3.	49 

Example of using 1-Norm with Olive Oil	
	
Choose Include Range (variables to use 
in the normalization).	

Add to Included Range.	
Subtract from Included Range.	

Accept the range and close.	

50 
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1 Norm!
•  Mean centering the 1 norm spectrum drops the rank 

•  samples with small norm not used 
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What Happens with Noise?!
•  Remove samples with norm <0.5 

•  or add a small offset 
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1/

1

p
N

p

j
j
x α

=

⎡ ⎤⎛ ⎞
⎢ ⎥= +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
∑x x
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1 Norm + Mean-Center → 
Endmember Extraction!

•  Points at the vertices of the polygon correspond to 
the most “pure” samples (or variables) 
•  if selectivity is high enough the vertices correspond to 

pure analyte contributions (or spectra) 
•  this is a good visualization tool and initial guess for 

self-modeling mixture analysis (a.k.a. multivariate 
curve resolution or endmember extraction)   
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E.g., FTIR microscopy of three-
layer polymer laminate!

700 800 900 1000 1100 1200 1300 1400 1500 1600
0

0.5

1

1.5

Spectral Channel

800
1000

1200
1400

1600

5

10

15

0

0.5

1

Section
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•  Polyetheylene, isophtalic polyester (presence originally 
unknown) and polyethylene terephthalate. 

• Laminate is 240 µm thick with inner IPE layer 2-3 µm 
< the 10 µm spatial resolution 

•  middle layer has contributions from all three analytes 
•  Scanned at seventeen points across the layers 

…/PLS_Toolbox/dems/
FTIR_microscopy.mat	

54 
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FTIR_Microscopy Results!
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results of selecting vertices of the rows 
(“purest” spectra) 

DISTSLCT, PURITY, ALS, MCR 

results after using non-negatively 
constrained alternating least squares 

J. Guilment, S. Markel, W. Windig, Infrared chemical micro-imaging assisted by interactive self-
modeling  multivariate analysis, Appl. Spectr., 48, 1994, 320-326.                                                                              
W. Windig, S. Markel, Simple-to-use interactive self-modeling mixture analysis of FTIR microscopy 
data, J. Molecular Structure, 292, 1993, 161-170.   
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Scatter / Signal Correction!

•  Multiplicative Scatter Correction (MSC) 
•  Attempts to remove offset and row magnitude 

variability 

•  Result is less signal related to scattering artifacts 
and more signal related to analyte(s) of interest 

•  based on classical least squares (CLS) model 
•  Geladi P, MacDougall D, Martens H., Appl. Spectrosc., 39(3), 491‑500 (1985) 
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Scattering Effects in Reflectance!

•  Particle size (mean & distribution) 
•  Sample opacity 
•  Sampling packing density 
•  Sample placement 

Baseline offset changes 

Pathlength (peak 
amplitude) variations 

sp
ec

ul
ar

 

Sample 1 Sample 2 

diffuse 

Scattering effects can be caused  
by variations in: 

Scattering effects can manifest in 
the measurements as: 
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Why is MSC Necessary?!

2 

4 

6 

8 
League Soil: Uncorrected 
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-ln reflected intensity for League Soil only 

soil + dibutyl phosphate (DBP)  

H2O CO2 
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5 

DBP 10 to 600 mM 

scatter signal large 
compared to analyte 
signal 
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Multiplicative Scatter 
Correction (MSC)!

MSC models scatter 
with an offset and 
slope correction 

This is a classical least 
squares (CLS) model 

2

1 2where 

TT
ref

x

⎡ ⎤= ⎣ ⎦s c s 1

c
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MSC!
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−

⎡ ⎤= ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= −

s c s 1

c s s 1 s 1 s 1

s s 1

Regress new measured spectrum s2,Nx1 onto reference 
spectrum sref,Nx1 (often the mean spectrum of a data set). 
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try with the olive oil data	
	
after adding MSC (mean) and 
Mean Center	
use “up” and/or “down” to ensure 
the correct ordering	
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Pre-process Summary to Now!

•  Centering 
•  May be more complicated than simple mean-centering 
•  Did it add or remove rank? Usually want to remove rank. 

•  Baselining 
•  detrend, selected points, asymmetric least squares 
•  SavGol  

–  didn't remove relevant signal some preprocessing will (beware!) 

•  Column scaling (autoscaling) 
•  Row scaling (SNV, normalization) 

•  Column and Row scaling introduces the concept of general 
centering and weighting … 

•  MSC attempts to remove offset and row magnitude 
variability 
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Why Pre-process?!

•  Pre-processing depends on the analysis objective and data type. 
•  The objective of data pre-processing is to remove artifacts, 

interferences and non-linearity in the data. 
•  Sensor systems often include measurement artifacts that hinder 

analysis and negatively impact the quality of the results. 
•  Math is cheaper than physics but it a'int magic. 
•  Preprocessing isn't a silver bullet for bad data. 
•  Knowledge of the opportunities and limitations of the math 

leads to better data through instrument design and data 
acquisition methodology … 

•  and better results in the subsequent data analysis and fulfilling 
the analysis objective. 
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Data Analysis Objectives!
•  Be clear on the data analysis objective 

•  exploratory 
•  how do measurements vary and why? 
•  how data are preprocessed tells how results should be interpreted 

•  process monitoring/control, quality control 
•  multivariate statistical process control typically monitors how data 

vary wrt a mean (or moving mean) 
•  detection 

•  is new signal present? relative to 0 or clutter mean? 
•  classification 

•  some variables are better at discriminating some classes better than 
others (utilize different scaling for discriminating variables?) 

•  quantification 
•  mean-center allows an offset, otherwise it’s a force fit through zero 

64 

Physics and Chemistry!
•  How and why preprocessing depends on the physics and 

chemistry of the system 
•  … and how the data manifest 

•  is it noisy, non-linear, stationary, cluttered, multi-block, multi-
way? 

•  Data analysis is not a limited access highway. It is more 
like a worn path in the dirt. What is learned at each step 
may cause us to return to the beginning to test our 
hypotheses. 
•  Preprocess any way you want but you must interpret your results 

accordingly … 
•  and ask if you achieved your overall objective 
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Measured Signal!

•  Clutter is present in all measurements 
•  X-block, Y-block 

 
•  Use physics to create a linear relationship 

•  non-linearity w/in X-block adds factors 
•  non-linearity between X- and Y-blocks adds error 

Measured Signal 
Target Signal 

Clutter Signal 

Interference 
Signal 

Noise 
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Sources of Clutter!
•  Systematic background variability 

•  Clutter: sensor noise and the confounding effects of interferences  
•  Radar Clutter Definition: (DOD, NATO) Unwanted signals, echoes, or 

images on the face of the display tube, which interfere with observation of 
desired signals. 

•  in the system being sensed 
•  e.g., T, P changes, variable sample matrix,  "dark current" 
•  use pre-processing or different sensing strategies 

•  due to physics of instrument 
•  e.g., drift, instrument changes, variable baseline or gain 
•  try pre-processing but good instrument design and operational 

practices preferable 

•  Non-systematic random noise 
•  homoscedastic, heteroscedastic 
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Matrix Rank!

•  Matrix rank is an important concept 
•  pre-processing generally tries to reduce rank associated 

with clutter while retaining rank associated with signal 
•  … quick review of rank via the PCA model 
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PCA Math Summary!
•  For a data matrix X with M samples and N variables 

(generally assumed to be mean centered and properly 
scaled), the PCA decomposition is 

Where R ≤ min{M,N}, and the tkpk
T pairs are ordered by the 

amount of variance captured. 
•  Generally, the model is truncated to K PCs that capture the 

systematic variance in the data set, leaving some small 
amount of variance in a residual matrix E: 

•  where T is MxK and P is NxK. 
    X = t1p1

T + t2p2
T +…+ t KpK

T +E = TPT +E

1 1 2 2
T T T T

K K R R= + + + + +X t p t p t p t pK K

PCAENGINE, PCA 
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Matrix Rank and the  
Bilinear Model!

=	 t1	

p1
T	

+	 t2	

p2
T	

+..+	 tK	

pK
T	

+	X	 E	

•  Sources of matrix rank 
•  chemical signal (signal of interest; often called the 

pseudo-rank) 
•  clutter (interference signal not of interest and noise) 

•  interference that inhibits the ability to detect, classify, quantify 
•  want to remove clutter-based rank and keep the chemical 

source of rank 
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Clutter Example (peak shift)!

900 1000 1100 1200 1300 1400 1500 0 

0.05 

0.1 

0.15 

0.2 

0.25 

Shift (cm-1) 

Peak instability (i.e., shift in 
peak location) increases the rank 
of the data. 

This additional rank is “clutter”. 

Wavelength calibration can 
eliminate this type of clutter. 

Other methods attempt to model 
the shifts as a part of the 
decomposition (e.g., MCR). 
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Peak Shift Example!

0 2 4 6 8 10 
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Factor 
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   S T

 S /
( M

 -1
) Aligned spectra have less 

“clutter” and lower rank. 

Additional “clutter” rank often 
results in a loss of net analyte 
signal and can degrade the 
performance of regression 
models " inhibits detection, 
classification, and 
quantification. 

eigenvalues for 
miss-aligned spectra 

true pseudo-
rank is 3 

eigenvalues for 
aligned spectra 
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Data Transformation!
•  Within an X-block 

•  PCA assumes relationships between variables are linear 
•  Between and X- and Y-block 

•  PCR, PLS assume relationship is linear 
•  If possible, non-linear data should be converted to 

a linear form (e.g., use known physics of the system) 
•  Examples: 

•  I/I0, transform with log 
•  reaction rates a e-1/T, transform with log 
•  pipe flow a ΔP4/7 (turbulent flow) 
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PCA Linear vs 
Non-Linear!
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100

X1

X
2

Orignial Variables

 % Variance Captured by PCA Model 
  PC     Eigenvalue  % Variance  % Variance 
             of       Captured    Captured 
Number     Cov(X)     This  PC     Total 
-------- ----------  ----------  ---------- 
Linear system 
   1      1.72e+002     100.00      100.00 
 
Non-linear system 
-------  ----------  ---------- ---------- 
   1      2.10e+003      98.39      98.39 
   2      3.43e+001       1.61     100.00 

2 12x x=

2
2 1x x=

x  = 
[-10:0.2:10]'; 
x1 = [x, x*2]; 

x  = [-10:0.2:10]'; 
x2 = [x, x.^2]; 
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Linear vs Non-Linear!

•  Non-linearity between the variables adds rank 
•  For signal-to-noise > 1 (signal-to-clutter > 1) 

•  The signal of interest is primarily in the big Principal 
Components PCs (1,2,…,K) 

•  The clutter is primarily in the smaller Principal 
Components (R-K+1, R-K+2…, R) 

•  More on PCA shortly 

•  Linearization has the potential of bringing redundant 
signal “closer to the top” (into the big PCs) 

•  better signal averaging 
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CLS vs. PCA  
(Bilinear Models)!

•  Classical Least Squares 
 X = CST + E 
 XMxN 

 CMxK ; oblique, chemically 
meaningful 

 SMxK  ; oblique, chemically 
meaningful 

 EMxN 

•  multi-component Beer’s 
Law model , E ~not 
minimized (e.g., due to 
constraints) 

•  PCA 
 X = TPT + E 
 XMxN 

 TMxK ; orthogonal, ~not 
chemically meaningful 

 PMxK  ; orthogonal, ~not 
chemically meaningful 

 EMxN 
•  captures maximum 

variance, E minimized 
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Why is Clutter Bad?!

•  Show with CLS: multi-component Beer’s law 

X = c1s1
T+ c2s2

T+... cKsK
T = CST 

X  M by N data matrix (noise-free) 

ci  M by 1 vector (concentration) 

si  N by 1 vector (spectrum) 

K number of chemical analytes present i = 1,…,K 
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Clutter Reduces  
Net Analyte Signal!

If the measured signal is x = cTST + eT then define the Net 
Analyte Signal Vector, NAS at unit concentration as	

     NAS = [I- S-i(S-i
TS-i) S-i

T]si 

where S-i is S with the ith column removed. 

NAS is the portion of spectrum si unique to analyte i and 
orthogonal to all other factors in S-i, and S/N ~ |NAS| 

Adding clutter tends to add something in S-i that is parallel to 
si thus lowering NAS (and increasing the estimation error). 
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NAS wrt Clutter!

plane defined by 
clutter spectra 

x1 

x2 x3 

target spectrum 

NAS 

Every time an interference is added (new clutter) there is a risk of reducing NAS.	
Estimation error ~1/|NAS|	
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Example of NAS Decreasing!
•  Imagine there are five potential analytes and the 

first is the target of interest. NAS is a vector. 

>> load nir_data 
>> whos 
  Name         Size              Bytes  Class 
 
  conc        30x5                7408  dataset               
  readme       7x67                938  char                  
  spec1       30x401            109008  dataset               
  spec2       30x401            109008  dataset    
>> pspec = conc.data\spec1.data;  % S 
>> plot(spec1.axisscale{2},pspec) 

( )
    is the  column of 

  is  with the  column removed

T T
i i i i i

th
i

th
i

NAS

i
i

− − − −

−

= −I S S S S s

s S
S S
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Interferences Decrease NAS!
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NAS vs Number of 
interferences	

NAS w/ increasing 
number of interferences	

>> snas = pspec;	
>> for i=2:5, snas(i,:) = pspec(1,:)-(pspec(1,:)/pspec(2:i,:))*pspec(2:i,:); end	
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How to Account for Clutter?!

•  Follow through with the CLS example and show 
how we might deal with clutter using the extended 
mixture model (ELS). 
•  Target detection example 

•  Extended multiplicative scatter correction (EMSC) 
•  Combines the extended mixture model and 

multiplicative scatter correction 
•  Introduce, multiplicative scatter correction (MSC) first 
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Target Detection 
for a Single Target!

Measured signals > decision limit  in 
the direction of the target is 
considered a detection event. 
 
The measured signal is modeled as a 
linear multiple of the target signal. 

 x = cs + e 
 c > clim    is a detection 

 
This is the CLS model. 

• Detection on the target is often based on a non-negativity constraints. 
•  Present model assumes only a single target. 
• What to do with signal from interferences and / or other targets? 

x1 

x2 

s is the spectrum 
of the target	

decision 
limit clim  
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Target Detection 
with an Unknown Interference !

Interferences signal that overlaps the 
target spectrum results in a positive 
projection on the target. 
 
This would be a false alarm, but 
typically more information is available. 
(assuming the interference isn't exactly 
parallel to the target) 

•  Presence of an unknown interference can result in false alarms. 

decision 
limit  

x1 

x2 

Target	

Interference	
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Target Detection 
with an Unknown Interference !

• Unknown interference typically 
results in "no-calls". 

x1 

x2 

Target	

Interference	

e 

The difference between the interference 
signal and the target spectrum provides 
information about the signal. 

 e = x – cs 
 Q = eTe 

If the measured signal looks like target Q 
is small and there is good confidence in 
the detection. 
If the measured signal does not look like 
target, Q is large and there is poor 
confidence in the detection i.e., this is a 
"no-call”. 
How can interferences be accounted for 
so that detection can be made with high 
confidence? 
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Target Detection 
Accounting for an Interference 

with the Extended Mixture Model!
Including an interference explicitly in 
the model allows the detector to 
account for  interference signal. 

 e = x – cS 
 e = x – [c1 c2][s1 s2] 

where s1 is the target spectrum and  s2 
is the interference spectrum 

 c1> clim,1    is a detection 
This is the extended mixture model 
(Extended Least Squares). 
 

• Multiple targets and interferences can be accounted for (but there's a limit). 
• Non-negativity forces the signal to lie on, or between, the target and interference. 
• Detection statistics for targets are treated independently from interferences . 

x1 

x2 

Target	

Interference	
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Target Detection (summary)!
• The model for target detection is based on a Linear Mixture 
model	

• Non-negativity incorporates a priori knowledge of the 
physics.	

• Projections onto the target vectors	
1. provides the contribution of each target to the measured 

signal where contributions determine the mix of targets 
(can be used for classification)	

2.  the combined distance along the targets (T2) provides a 
measure of distance from the null 	

• New measurements that lie within the plane of the targets are 
considered nominal signals.	

• New measurements that lie off the plane of the targets are 
considered unusual signals. Unusual signals occur due to 
sensor problems or interferences – and correspond to no-
calls. These signals are defined by limits on Q (sum-squared-
residuals).	

x2	

x1	

x3	

Target	

Interference	

87 

Extended and Inverse MSC!
•  Extended multiplicative scatter correction (EMSC) 

•  based on CLS and the extended mixture model 
•  Inverse SC and Extended Inverse SC 

•  based on inverse least squares (ILS) model 
•  Martens H, Stark E., Journal of Pharmaceutical and Biomedical 

Analysis, 9, 625–635 (1991). 
•  Helland IS, Naes T, Isaksson T., Chemom. Intell. Lab. Syst., 29, 

233–241 (1995). 
•  Martens H, Nielsen JP, Engelsen SB., Anal. Chem., 75(3), 394–

404 (2003). 
•  Gallagher NB, Blake TA, Gassman PL, J. Chemometr., 19(5-7), 

271-281 (2005). 
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Objective!

•  Remove 
•  scattering artifacts 
•  atmosphere analytes (H2O and CO2) 

•  Retain 
•  reference soil signal 
•  analyte signal [dibutyl phosphate (DBP) –  

organophosphorous] 
•  However, scattering and atms are more 

complicated than simple offset and gain 
•  extended least squares model 
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Windowed Scatter Correction!
•  Scatter correction is typically applied to entire 

frequency range, BUT…. 
•  Windowing (piece-wise) correction is possible! 

•  Requires more parameters, but is more flexible 
•  If offset/multiplicative factors are NOT constant with 

wavelength 

•  Isaksson T, Kowalski B., Appl. Spectrosc., 47(7), 
702‑709 (1993). 

•  Blank TB, Sum ST, Brown SD, Monfre, SL., Anal. 
Chem., 68(17), 2987–2995 (1996). 
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Extended MSC!

•  EMSC attempts to correct for scatter that 
manifests in forms other than just linear using the 
extended mixture model 

   

s2 = sref ν2 ν 1⎡
⎣⎢

⎤
⎦⎥

c1

cP

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

c = ZT Z( )−1
ZTs2

s2,corrected = s2 − PcP( ) c1
   

PNxK = ν2 ν 1⎡
⎣⎢

⎤
⎦⎥

ZNx(1+K ) = s2 P⎡
⎣

⎤
⎦

c =
c1

cP

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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EMSC!

( )
( )

2

1

2

2, 2 1

ref

T T

corrected P Q c

−

⎡ ⎤= ⎣ ⎦

=

= − −

s s S P Q c

c Z Z Z s

s s Pc Qc
    

PNxK = ! ν2 ν 1⎡
⎣⎢

⎤
⎦⎥

ZNx(1+J+K+L) = sref SA P Q⎡
⎣⎢

⎤
⎦⎥

cT = c1 cS
T cP

T cQ
T⎡

⎣⎢
⎤
⎦⎥1x(1+J+K+L)

can add spectra of known target analyte SA,NxJ 
polynomial can be of order K-1 
can add spectra of known interference QNxL. 
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“Reality Check”: How to get Q?!

•  Q is a sub-space that spans scatter 
•  Q spans the clutter 
•  measure multiple reflectance spectra of soil samples 

that do not contain analyte ! XQ 
•  define reference spectra as mean of XQ! sref 
•  center XQ to sref ! XQm 
•  perform PCA on centered data ! XQm=TQT + E 

•  use the big eigenvalues to get Q 

•  use the loadings QNxL to characterize scatter 
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Extended MSC Weighted!

If we do nothing the 
target spectra will bias the 
regression and provide 
poor correction. 
 
Weighted least squares 
can be used to de-weight 
these channels in the 
MSC regression step. 2500 3000 3500 0 

  
1 
  
2 
  
3 
  

Frequency (cm-1) 

A
bs

or
ba

nc
e known bands of 

target analytes 

What if we know channels that should have target 
analytes but we don’t have their spectra SNxJ? 
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Weighted EMSC!

•  use a diagonal weighting matrix WNxN to de-
weight channels where analyte is present 
•  weights are 0 where analyte is expected to be present 

 
 

( )
( )

2

1

2

2, 2 1

ref

T T

corrected P Q c

−

⎡ ⎤= ⎣ ⎦

=

= − −

s s S P Q c

c Z WZ Z Ws

s s Pc Qc

95 

2500 3000 3500 0 
  
1 
  
2 
  
3 
  

Frequency (cm-1) 

A
bs

or
ba

nc
e known bands of 

target analytes 
unknown bands 
of target analytes 

Robust EMSC!

If we do nothing the 
target spectra will bias the 
regression and provide 
poor correction. 
 
Robust least squares 
(treats these points like 
“outliers”) can be used to 
de-weight these channels 
in the regression step. 

What if we don’t know all the channels that 
should have target analytes? 
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Soil/Analyte Samples!

•  League Soil (44% clay, 42% silt, 14% sand) 
•  Quincy Soil (7% clay, 17% silt, 76% sand) 
•  Analyte: Dibutyl phosphate in 2-Methyl Butane 

•  0, 10-600 mM dripped onto soil sample 
•  2 MB highly volatile, evaporates quickly 
•  measure spectra w/ and w/o dry-N2 purge 
•  sample (DBP concentration) randomized 
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Scatter on League Soil!
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Robust EISC for League Soil!
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League Soil: REISC Corrected 
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scatter signal much 
smaller compared to 
analyte signal 

H2O CO2 
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MCR w/ Clutter Example  
Using PCs for the ELS in MCR!

 
 

Where are the sugar and protein in a 
feed pellet?	

Embed a pellet in epoxy, section, and 
polish. Scratches are evident and are a 
source of significant clutter. Confounds 
the analysis so that chemical 
information is "smeared out" in the 
image.	

Thanks to Sean Smith and Janiece Hope of Cargill, Inc., Global Food 
Research, Scientific Resources for the image data.	

FTIR reflection image ~400 microns square	
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PCA!
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Scores on PC 1: 83.1%	 Scores on PC 2: 10.3%	

PCA Scores for mean-centered data. Not directly chemically meaningful, 
so let's try multivariate curve resolution.	
How to deal with signal from scratches?	
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Initial Estimates for Spectra!

Step 1: isolate the clutter 

regions used with 2nd derivative 
spectra to estimate spatial 
contributions of scratch features 

can this information about the 
scratches be used to improve 
estimates of chemical 
contributions to the image in 
MCR? 
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Example of Dealing w/ Clutter!
•  MIA Example: Multivariate Curve Resolution (MCR) 

•  Perform EMSC magnitude and slope correction (more later …) 
–  reference is an estimate of the resin spectrum with robust fitting 
–  allow glucose, lysine, CaSO4 spectra to pass the filter 
–  Gallagher, Blake, Gassman, J. Chemometr., 19(5-7), 271-281 (2005). 

•  Step 2: Account for scratches using spatial constraints: 
•  Scores from a PCA of region 2778 to 1790 cm-1 w/ 2nd derivative 

preprocessing capture variability due to scratch features 
•  Equality constraints on C: components 4 to 11"the scratches 

–  Soft equality Constraints on S: components 1 to 3 
»  Factor 1: resin, Factor 2: lysine (w/~ CaSO4), Factor 3: glucose 

•  "linear mixture model referred to as an extended mixture 
model 

[ ][ ]T= +X C T S P E
desired factors 	 interferences	
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MCR Factor 1: Resin!
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C for Factors [1 2 3] = RGB 

R = resin, G = lysine, B = sucrose 

C for Factors [2 1 3] = RGB 

R = lysine, G = resin, B = sucrose 

Contributions → RGB!
C for Factors 1:3: 1-Norm Preprocessing 
KNN Cluster Analysis of the MCR 
Contributions C 

Sample Correlation Map (5 clusters)
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Pei, L. Guilin, J., Davis, R.C., Shaver, J.M., Smentkowski, V.S., Asplund, M.C., 
Linford, M.R., Applied Surface Science, 253(12), 5375-5386 (2007). 
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ELS and EMSC Summary!

•  The extended mixture model can be used to 
account for complicated scatter 
•  Best to have many analyte-free measurements to 

characterize clutter 

•  Weighted and Robust regression are useful for 
estimating EMSC model coefficients 

•  EISC and EMSC show promise 
•  based in ILS and CLS respectively 
•  spectra interpretable, relevant/predictive variance 

brought to top (scatter artifacts removed) 
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External Parameter 
Orthogonaliziation!

•  EPO: form of the extended mixture model that can be used as 
a pre-processing by orthogonalizing to the clutter. 
•  need a model of the clutter / interferences 

•  e.g., spectra (as seen above) or PCA loadings 

[ ][ ]
[ ] [ ] [ ]( ) 1ˆˆ

T

T −

= +

⎡ ⎤ =⎣ ⎦

x c t S P e

c t x S P S P S P

desired factors 	 interferences	

CLS model using the 
extended mixture model	

( )Tepo = −X X I PP

e.g., use a PCA model of 
intra-class variance to 
characterize the clutter	
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OliveOilData.mat 	
Four classes	
Selected wavenumbers	
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Set EPO to be based on 1 PC 
of intra-class variance	
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EPO Results!
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try it with the test data too….	
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Why 1 PC for EPO Model?!
How would the number of EPO PCs be determined?	
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Preprocessing as Part of the Model!

•  Generally, preprocessing is applied prior to the modeling step 
(e.g., PCA, PLS) 

•  Some models include preprocessing as part of the model e.g., 
•  Maximum / Minimum Noise Fractions (MNF) 

•  Green AA, Berman M, Switzer P, Craig MD (1988) IEEE Trans Geosci 
Remote Sens 26:65–74 

•  Maximum Autocorrelation Factors (MAF) 
•  same model as MNF, but clutter is defined differently 

•  Generalized Least Squares (GLS) 
•  Aitken, A., "On Least Squares and Linear Combinations of 

Observations", Proceedings of the Royal Society of Edinburgh, 
1935, 55, 42-48 
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Generalized Least Squares (GLS)!
•  Generalized least squares (GLS) is a weighted 

version of the classical least squares (CLS) model 
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CLS vs. GLS!
•  Comparison of CLS and GLS models 

( ) 1ˆ
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x xW
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c x S S S
Weighting by the inverse square root of the clutter covariance reduces the 
GLS model to CLS with weighted measurements and spectra i.e., it is a 
preprocessing step! The weighting can be viewed as a preprocessing step 
i.e., a pre-whitening. 

                                can be used w/ PCA and ILS models (PLS, PCR) 
N.B. Gallagher, "Detection, Classification and Quantification in Hyperspectral Images using Classical 
Least Squares Models," in Techniques and Applications of Hyperspectral Image Analysis, H. F. 
Grahn and P. Geladi, eds. (John Wiley & Sons, West Sussex, England), 181-201, 2007.	
H. Martens, M. Høy, B.M. Wise, R. Bro and P.B. Brockhoff, "Pre-whitening of data by covariance-
weighted pre-processing," J. Chemo., 17(3), 153-165 (2003).  

1/ 2
w c

−=X XW
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How the Whitening Works: 
Target Projected onto Clutter 

Directions!

Channel 1 

C
ha

nn
el

 2
 

target response 

PCA of (correlated) clutter 
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Scale Target by Clutter!

Channel 1 

C
ha

nn
el

 2
 

target response 

PCA of (correlated) clutter 
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Whitened Signal!

Channel 1 

C
ha

nn
el

 2
 

target response 

PCA of (correlated) clutter 
clutter now is "white" all directions have 
similar variance	

the "whitened" signal is shorter 
(lower magnitude) ! loss of target 
signal	

127 

The large eigenvalues are associated with directions that 
will be de-weighted. 
 
Don't want to include variance associated with target 
of interest because this variance will be de-weighted 
resulting in loss of target signal. 
 
This whitening process is referred to as "multiplying by 
the sqrt of the inverse clutter covariance". 

Olive Oil Clutter!
Eigenvalue distribution of the within class variance. 

Try PCA with whitening: GLS weighting ! GLSW 
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OliveOilData.mat w/ GLSW (default 
declutter parameter) and mean-centering	
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GLSW Results!
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Inverse Clutter Covariance!
•  The SVD can be used to obtain the inverse of the clutter covariance 
•  Interpreting the inverse isn’t necessarily intuitive 
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Regularization!
•  If an inverse doesn’t exist or is ill-conditioned 

regularization is necessary. 
•  ridging 
•  D diagonal 
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OliveOilData.mat w/ SNV, GLSW and 
mean-centering	

SNV is designed to remove 
magnitude information	
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EPO & GLS Weighting Results!

•  EPO and GLS weighting can be viewed as 
complimentary approaches 
•  both are designed to account for clutter / interferences 

•  EPO is a strict orthogonalization - directions associated with 
clutter PCs are completely removed from the data 

•  GLS de-weights the clutter directions 
–  clutter PCs with very large eigenvalue compared to the rest are 

effectively removed 
–  directions associated with medium eigenvalues remain but are 

de-weighted 

•  neither is designed to account for magnitude differences 
that might make a class cluster spread out 
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Comparison Between 
EPO and GLSW!

GLSW doesn’t throw out eigenvalues. 
Directions associated with big clutter 
eigenvalues are down-weighted.	
If all were ==, there’s no down-weighting.	

EPO throws out biggest 
eigenvalues. Others set to 1.	

EPO	

GLSW	

inv(sqrt(Ev))	
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Maximum Noise Fractions  
Minimum Noise Factors!

•  MNF attempts find directions in the data that 
maximize the signal-to-clutter. 

measured data with mean 
clutter matrix with mean , cc M xNX , 1c Nxx

xM xNX

( ) ( ) ( )1
1C

TT T
C c c c cM −= − −Σ X 1x X 1x

( ) ( ) ( )1
1X

TT T
X M −= − −Σ X 1x X 1x   signal covariance 

  clutter covariance 

0
max
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T
i C i
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v Σ v
v Σ v the objective function 

1xNx
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MNF Derivation!

The objective function is a 
scalar function. 
Taking the derivative wrt v, 
and setting to 0 gives: 

0
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T
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T
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1
C X i i iλ− =Σ Σ v v

generalized 
eigenvector problem 

eigenvector problem 
with non-symmetric 
matrix (there is a trick to 
convert to a symmetric 
eigenvector problem) 

Rearranging results in the 
MNF eigenvector solutions.  
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MNF vs PCA!
                                          PCA                                   MNF 
 
objective function 
 
 
eigen-problem 
 
with clutter 
(GLSW) 
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Gallagher, N.B., Shaver, J.M., Bishop, R., Roginski, R.T., Wise, B.M., 
“Decompositions with Maximum Signal Factors,” J. Chemometr., 28(8), 
663-671 (2014), DOI: 10.1002/cem.2634. 	140 
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Example: ARCH!

•  10 Variables: metal concentration (ppm via XRF) 
•  75 Samples: 

•  63 obsidian samples from 4 quarries (known origin) 
•  used to calibrate the models 
•  center each cluster to own mean to estimate clutter 

•  12 artifacts (unknown origin) 
•  which of the 4 known quarries do they belong? 

•  Data Matrix X is 75 by 10 

arch.mat 141 

Example:	
PCA of the Arch data set	

…\PLS_Toolbox\dems\Arch.mat	
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Plot the Data!
Plot data	
Plot:Rows	
View:Classes:Quarry	
View:Labels:Element	
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Plot data	
Plot:Columns	
View:Classes:Quarry	
View:Labels:uncheck	
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Plot the Scores!

Plot scores	
Select PC 2 vs PC 1	
No Confidence Limit	
Insert Legend	
View:Spawn Static View	
	

-4 -3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

4

Scores on PC 1 (52.52%)

Sc
or

es
 o

n 
PC

 2
 (2

0.
78

%
)

Samples/Scores Plot of arch

 

 
Scores on PC 2 (20.78%)
Class 0
K
BL
SH
AN

145 

PCA of "whitened" data	
Clutter covariance based on intra-
class variance 	
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PCA vs PCA w/ Whitened Data!
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PCA vs MNF Scores!

PCA scores 
scores for calibration set are orthogonal 
loadings are orthogonal  

MNF scores 
scores for calibration set are oblique 
loadings are oblique 
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PCA pre-whitened vs MNF!

PCA scores after GLS weighting 
scores for calibration set are orthogonal 
loadings are orthogonal  

MNF scores 
scores for calibration set are oblique 
loadings are oblique 
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Maximum Autocorrelation 
Factors for Multivariate Images!

•  For MNF, the clutter was intra-class variance 
•  For MAF, the clutter is the first spatial difference 

•  the first difference should be high on edges and just noise 
w/in clusters 

•  the result is the same generalized eigenvector problem as 
MNF with different clutter ΣC 

T.A. Blake, J.F. Kelly, N.B. Gallagher, P.L. Gassman and T.J. Johnson, "Passive detection of solid explosives in Mid-IR 
hyperspectral images," Anal Bioanal Chem, 395, 337-348, 2009.	
N.B. Gallagher, J.F. Kelly, T.A. Blake, "Passive infrared hyperspectral imaging for standoff detection of tetryl 
explosive residue on a steel surface," Whispers 2010, June 14-16, Reykjavik, Iceland	

150 

TOF-SIMS of Time Release 
Drug Delivery System!

•  Multi-layer drug beads serve as a controlled-
release delivery system 

•  TOF-SIMS measurements of a drug bead 
embedded in epoxy and sliced to expose the bead 
cross-section 

•  Examine integrity of the layers and distribution of 
ingredients 

Thanks to Physical Electronics and Anna Belu for the data.	
A.M. Belu, M.C. Davies, J.M. Newton and N. Patel, “TOF-SIMS Characterization and Imaging 
of Controlled-Release Drug Delivery Systems," Anal. Chem., 72(22), 5625-5638, 2000	
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PCA	 MAF	

…\EVRIHW\Avicel.mat	
	
PCA used Poisson scaling 
and mean centering.	
MAF used no additional 
preprocessing.	
	
Both models have a sign 
ambiguity:	
   X = TP’ = (-T)(-P’)	
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PCA	 MAF	

RGB images after auto-contrasting	
	
MAF can be applied to time-series as well.	
Other models include principal autocorrelation factors, maximum difference factors.	
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General Centering and Scaling!

    
X = W−1 X −1µT( )Σ−1/2 general centering and scaling 

no scaling 
diagonal (autoscaling) 
GLS weighting 

 Σ = I

 Σ = σ2

  Σ = Wc

 µ = 0=W I
=W I  µ = x

=W I  µ = c

measured data 
sample weighting  

xM xNX

x xM xMW
  µNx1 center 

variable weighting NxNΣ

measured clutter matrix cM xNC
( ) ( ) ( )1

1C

T
C M −= − −Σ C 1c C 1c

clutter mean 1xNc

clutter covariance 
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mean-centering	
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PLS-DA on ARCH!

Under Analysis change the 
algorithm to PLSDA	
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PLS-DA on ARCH!

Click the 'bent arrow' to 
select class groups.	
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Data: Arch	
Analysis: PLSDA	
Preprocessing: 1-norm, 

GLSW, mean-center	
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PLS-DA 
on Arch!

•  It’s fairly easy to see which classes 
the samples might belong.	

•  Samples that don’t belong to any 
class have high Q (selected points).	
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NIR Shootout 2002!
•  Estimate assay value from NIR transmittance of 

tablets 600 to 1898 in 2 nm increments 
•  http://www.idrc-chambersburg.org/shootout_2002.htm 
•  Calibration (155 samples), Test (460 samples) 
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RMSEP on Validation Set!
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Summary up to now!
•  Centering and Offsets 

•  choose appropriate "center" for the objective 

•  Normalization (removes magnitude) 
•  SNV, MSC (removes magnitude and offset) 
•  Baselining, Savitzky-Golay (high pass filter) 
•  EMSC (filter plus removes magnitude and offset) 
•  Autoscaling and Weighting 

•  can be used to de-weight unusual variables, samples or directions 

•  ELS / EPO and GLS are complimentary procedures used to account for 
clutter 

•  clutter needs to be characterized 
•  not appropriate for everything - it does reduce net analyte signal 
•  get rid instrument related problems first (may be simple) and then account for sampling related 

problems 
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“Window” Methods - Filters!
•  Savitzky-Golay with derivative 

set to 0 is just a box-car average 
•  Box-car averages and other 

piece-wise (wavelength-
localized) methods are filters 

•  Many preprocessing methods 
can also be done in a 
“windowed”/piecewise manner! 
•  OSC, MSC, continuos 

wavelets,…. 
•  Many can be employed using 

convolution but some can not 
•  median, max, min, … 
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SavGol as an Operator!
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>> x2 = spec1.data(1,:)+0.4+0.001*mncn(spec1.axisscale{2}')'; 
>> [d1,d] = savgol(x2,11,2,2); 
>> pcolormap(fliplr(full(d))) 
>> d_201 = full(d(:,201))'; 
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d1 = x2*d; 

d is a banded 
diagonal	
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Derivatives via Convolution!

•  convolution 
•  f is the spectrum 
•  g is the point source function 

  for the derivative 
>> d = [d(201:end), d(2:201)]; 

•  h is the derivative 
•  F, G, H are respective Fouier tranforms 

( ) ( ) ( )

( ) ( ) ( )
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τ τ τ

υ υ υ
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Compare SavGol and FFT!
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SavGol 2nd D Spectrum
Convolution with 2nd D Operator

xf = line_filter(spec1(1,:),d); 

xfu = line_filter(xf,d,struct('conv','deconvolve','reg',1e-11)); 
plot(spec1.data(1,:)-mean(spec1.data(1,:),2)), hold on 
plot(xfu.data(1,:),'r--') 
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Filters!
•  Savitsky-Golay 

•  For derivatives OR smoothing (noise reduction) 
•  Fourier 

•  Remove high-frequency (noise) or low-frequency (baseline) 
components 

•  Typically- NOT “windowed” but can be 
•  Position (wavelength) information not considered 

•  Wavelets 
•  Extracting information by BOTH frequency and position 

•  Allows BOTH feature selection and pre-processing! 
•  filters that are based on window-size (scale) 

•  orthogonal and oblique basis functions can be used 

LINE_FILTER 
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Weakly Multi-Way Models!
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data from a single batch operation each process variable is a column 
of a data matrix 
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©Copyright  2005-2017!
Eigenvector Research, Inc.!
No part of this material may be 
photocopied or reproduced in any form 
without prior written consent from 
Eigenvector Research, Inc.!

170 



41 

Weakly Multi-Way Models!
data from multiple batches are 
logically arranged into a cube 

data can be rearranged to two-way arrays 
in different ways (two are shown) 

arrangement for Multi-way 
PCA (MPCA) 
each variable trajectory 
logically arranged in blocks 

K
I 

J
IxJxK IJxK 

Batches x Time x Variable Batches*Time x Variable 

Batches x Variable*Time 

IxJK 
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Weakly Multi-Way Models!
centering: centers to the overall 
variable mean 

autoscaling: scales to overall 
deviation about the overall mean 

centering: centers to the variable 
mean trajectory (mean at any time) 

autoscaling: scales to deviation at 
each process time 

IJxK 

IxJK 

each column is a 
single variable 

each IxJ block 
corresponds to a 
single variable’s 
trajectory 
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Block / Group Scaling!
• Autoscaling increases variance on irrelevant variables 

•  e.g., during overetch (T>70) where little of interest occurs 

• Scaling each of k=1,…,K blocks corresponding to a 
IxJ set of trajectories for an individual variable 

•  retains the relative variance within each variable’s block  
•  weighs each IxJ variable block equally 
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Block / Group Scaling!

•  With blocks of different variables, may want each 
block to have the same variance 
•  Example: data set with NIR spectra and GC data and a 

collection of engineering variables, T, pH, P, Q etc. 

•  Variables within each block may be autoscaled or 
just mean-centered 

•  Determines a factor to multiply each block by so 
that total sum of squares (variance) is the same for 
each block (each variable) 

see GSCALE 
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Overall Summary 1/2!
•  Centering used when entire data set has an offset 

•  Background subtraction is used when the offset varies sample-to-
sample 

•  Column scaling can be used to weight variables 
•  changes relative contribution to least-squares model 
•  autoscaling (includes centering), Poisson scaling 

•  Filters attempt to remove (or partition) variance 
into different signals 
•  want signal of interest to pass the filter 
•  Savitzky-Golay, FFT, wavelets, … 
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Overall Summary 2/2!
•  Modeling paradigm 

•  design experiments to find signal AND 
•  design experiment to characterize clutter 

•  When clutter can be characterized, then… 
•  replicate samples with target not varying 
•  off-target pixels in MIA 
•  variables selective for clutter 

•  Models can explicitly account for clutter 
•  Extended mixture model uses explicit interference factors 

•  used in EMSC, ELS and EPO 
•  Generalized least squares (GLS) weighted de-weights directions of 

high clutter (pre-whitening) 
•  Generalized eigenvector problems (e.g., MAF, MNF) 
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Perspectives on Preprocessing!
•  Order matters. The general approach is: 

1.  Background and offset removal 
2.  Normalization 
3.  Centering 
4.  Scaling 

•  Always keep in mind: “what is each preprocessing step 
supposed to be doing?....” 

•  Plot data after pre-preprocessing 
•  Always compare the effect of the pre-processing  

(RMSECV/RMSEP!) with the results from a model based 
on the raw data 
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Pre-processing will offer…!
•  Models with better predictive performance (lower 

RMSEP) and/or 
•  Simpler models that are more robust and/or more easy to 

interpret 
•  But there is a risk that you can remove useful information 

from data 
•  The preprocessing itself can be overfit 

•  Are the GLS weightings or interference factors relevant for future data? Use 
adaptive models for clutter? 

•  Pre-processing is seldom capable of saving a poor model 
but often makes a good model better 
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