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‘Alcoholics Biological Data (alcohol)

Aminoacid Fiuorescence EEMs (aminoacids)
Archeology XRF (Arch)

Aspirin and Polyethylene Image (Raman 21x33x501)
Avicel Drug Bead Image (TOfSIMS 256x256x93)
Brain Scan (MRI 256x256x14)

Bread 3-Way Sensory Evaluation (bread)

Dorrit 4-component Fluorescence EEMs (dorrit)

Echo Ridge Photo (PEG 768x512x3)

FIA of Hydroxy-Benzaldehyde (3-way)

FTIR Microscopy of Polymer Laminate

Hald Portiand Cement Curing Data (halddata)

Mid IR Data

NIR of Pseudo-Gasolines (nir_data)

Near IR Data

Octane Rating by NIR Spectroscopy

Olive Ol Classification by FT-IR

PLS Data from Siurry-Fed Ceramic Melter (plsdata)
Raman Spectra of Microcrystals (Raman Dust Partcles)
Raman of Time Resolved Reaction

Rice Grain Mixture Photo (512x512)

Semiconductor Etch Batch Data (etchdata)

Slurry-fed Ceramic Melter Timeseries Data (pulsdata)
Star Temp and Intensity Non-linear Data

Sugar Quality by Fluorescence EEM

Swedish Knackerbrod Image (250x250x5)

Texture Photos (27 grayscale 128x128)

Wine, Beer, Liquor vs. Heart Disease

Outline

Software and Data Sets

Preprocessing Objective

Motivation: Simple Example with Mean Centering ???
Review: Mean Centering and Autoscaling

Baseline Removal

Standard Normal Variate, Normalization, Scatter Correction (MSC)
Smoothing and Filtering, Savitzky-Golay

Derivatives

Scaling: Autoscaling with Offset, Poisson, Exponential Decay
Orthogonalization Filters: OSC, O-PLS, GLS

Linearizing, Matrix Rank and the Bilinear Model

The Extended Mixture Model (ELS)

« Target Detection, Classical Least Squares, MSC and Extended Multiplicative Scatter
Correction, Extended Least Squares in Curve Resolution, Generalized Least Squares

Scaling for Multi-block data
EIGENVECTOR
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Why Preprocess?

What's the objective of the analysis?
» Simple example: Compare new measurements to a
model of a system or process
* The system might be characterized as the mean and
variance about the mean
« multivariate statistical process control
« anomaly detection
« In this case, the data are centered to the mean of
« normal process data

¢ null / non-anomaly data
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Mean-Centering Centering is an Axis Translation

* Detection was relative to the mean ...

* Mean-centering is used to
« allow PCA models to capture variance about the mean Did centering change the rank

for this example?

* Geometry for 2 variables

« exploratory analysis (o) O%
« MSPC (assumed stationary, as in the detection models) é Ocp o
« SIMCA (classification based on distance from cluster mean) ; o 000 E
 other models ... -?é, (@) (@) © §
« calibration (normal, null) data are centered to it's mean = S 5
and new (test) data are centered to that mean o)
« assumes stationary process Mean Vector
« avoid numerical problems ) .
Variable 1 Variable 1

Seasholtz, M.B., and Kowalski, B.R., "The Effect of Mean Centering on
Prediction in Multivariate Calibration", J. Chemometr., 6, 103-111 (1992).
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Centering (general) Projection vs Subtraction

Centering as a projection + example shows projection and subtraction give
. . . .
X, and ¥ =117X identical results
XN M
=T _ 1 T _ 1 T >> x = randn(10,4);
X-1x =X-411 X—(I—Hll )X >> pm = eye (10)-ones (10,10)/10; & I - 11'/M
>> x1 = x-ones(10,1)*mean (x) % x - 1x!' >> X2 = pm*x
: x1l = X2 =
Can center the data to something other than the mean -0.4338 -0.4177  0.2691 -0.7587 -0.4338 -0.4177  0.2691 =-0.7587
1 T - H -1.6669 0.4948 -1.3615 0.3312 -1.6669 0.4948 -1.3615 0.3312
(I—Hll )X mean-centering 0.1241 -0.8193  0.6890  0.4568 0.1241 -0.8193  0.6890  0.4568
0.2864 1.9522 1.5983  0.3531 0.2864 1.9522 1.5983  0.3531
_ 1 T T H - 1 -1.1477 -0.3673 -0.7171 0.9314 -1.1477 -0.3673 -0.7171 0.9314
(l lTwlw )X’ lw ¢0 Welghted mean Centerlng 1.1896 -0.1170 0.8327 0.3098 1.1896 -0.1170 0.8327 0.3098
T 1.1879  0.8358  1.2287  0.8320 1.1879  0.8358 1.2287  0.8320
X_lw -0.0389 -0.1717 -1.6190 -1.5613 -0.0389 -0.1717 -1.6190 =-1.5613
general center 0.3260 -0.3266 -1.4662 -0.3786 0.3260 -0.3266 -1.4662 -0.3786
X —X_1%" 0.1734 -1.0633 0.5459 -0.5156 0.1734 -1.0633  0.5459 -0.5156

medcn median median center

@  EIGENVECTOR 0
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Centering Summary

* no offsets:

* mean-centering:
» offset across mode 1:
» offset across mode 2:

X

=TP’
X =
X=
X=

TP +1xX"
TP  +1p”
TP +pul”

+ offset across both modes: X =TP’ + 111"

The mean isn't the only, nor necessarily the best, factor to center
to. The best depends on the objective and how the data manifest.

Centering increases fit to data, but probably not as much as an
entirely unconstrained additional component.

Xt =]x-(

[ Analysis - PCA (No Model) - Olive Oil Cali n r

[Eite Edit Preprocess Analysis Tools Help FigBrowser

[Humber PCs:

ERR [ [T T[]

oy +1% )| 2 [x -

(tp +t.p7 )|
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Auto Select
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800 xcal - DataSet Editor

File Edit Transform View FigBrowser
- I
[nfo] Data [Piot| Row Labels | Column Labals |

X7
> Gm

/| Name: Olive Ol Calibration
I Autnor: 0. Dativerg

Data: Ciass: double Sizo: [36x518] Included: [36x182)
data

v
Created: 11-Sap2008 13:40:09
Modified: 25-0c12010 14:45:37

Description:
Olve OF Clasaication cafaton dta
IR spectra - 1l these ol sing a e pabengeh NaCt e

. Vargo

cnéssmanonomgu‘me Gl by F-1R. Appl.Spectosc, 51, 11181124 1997

Gurant Foser | /Users /Neal

o0Ls
IAGE PROCESSNG

» Il EIGENGUIDE ONLINE VIDEOS,

]
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Ics Biological Data.
. Fluorescence EEMs
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Batch Daa
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o o
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ral UNEAGE View (* = Not Avalable)
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g;gu;g“i,fgggm; . || Quick view of preprocessed data
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Plot the preprocessed data

Plot the data
aca — aca e ———"
File Edit Preprocess Analysis Tools Help FigBrowser File Edit |I0II0IZ0] Analysis Tools Help Figrowser ] L]

P T S R — Missing Data
[ e N =b [ o ey,
v R
e Plot Preprocessed Data_» MKV . .
* Many methods to replace missing data

r ot Feomxcotames | Vaidtion .
] et a * the method used should not increase rank!
30| Cearxanay = B o o e— o v . .
< e ‘ * interpolation and other ad hoc procedures often work
s evenumber o2 anenumber ~ok, but can increase rank
[ In Analysis: Preprocess: Plot Preprocessed . . .
# In Analysis: Click "X Plot Dat 015 Data; Calibration: X-block ] + Data can be replaced with values consistent with
ysis: Click "X": Plot Data Plot: Rows
2 Plot: Rows o1l Hold shift key and highlight all rows | the overall data structure
gloel\:;s]:;ff: egnd highlight all rows zoom in on areas of interest . . :
1 yare e 005 + often PCA is used (replaced entries have zero residual)
T 0 % * problem is knowing the number of factors
0s J oosl. 4 » works if missing data are random (not systematic) and
o » not too much missing (~<10%)
-0‘555?}0 3000 245?30 2000 IEBO 1000 roEm
15 Wavenumber (1/cm) 015550 3000 2500 2000 1500 7000 16 =r =EIGENVECTOR
Wavenumber (1/cm) L@\ RESEARCH INCORPORATED

Centering and Missing CLS Offsets (centering)
» Offsets for Classical Least Squares models

Centering and missing No missing Missing , , . . .
+ if offset is the same "spectrum" at different magnitudes it

centering first and then fill in N N sa 1 L
missing ~works if only a few X 12 1 2] can be fit explicitly (and estimated using MCR)
missing, otherwise it adds rank 3 6] 3 6] fit the model HX-CST-I HTH directly
. 2 4| 2 4 . . .
X isrank 1 5 10 2 10 + if offset is different for each spectrum it must be removed
even after centering, but not if 9 18] ? 18] using sample-specific pre-processing
d L ; R - R _ * baselining, other baseline.m baselinew.m, wlsbaseline.m
ata have missing values y -3 _6 _1 -6
Alternative, fit the model ¢ |- —i (1) —i
i 2 - -4 Hoaseli
[X-TPT-1p7|| directly and [1 2 2 2 + puseine
replace with values consistent |5 10 L7 10

with the model mdcheck.m 1 . |
EIGENVECTOR
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Sample-to-Sample Baseline

Raw FTIR Spectra
4 T T T T

5L ] Baselines / backgrounds can

.1 manifest as offsets, sloping
background, polynomial, or more
complicated functions.

. . . . . . In the example, the offset is larger
4000 33003000 2 enumia? 1500 1000 % than the absorbance features of
Baseline Close Up interest.

) I“ .

This type of clutter can inhibit
predictive capability and make
extraction of chemical information
(e.g., via multivariate curve
resolution) difficult.

L n L L L L
4000 3500 3000 2500 2000 1500 1000 500
‘Wavenumbers

EIGENVECTOR
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Detrend

* Fit polynomial to entire spectrum
* easy, but highly-influenced by non-baseline features

zero-order (= mean)

600 800 1000 1200 1400 1600 1800
Raman Shift (cm)

., EIGENVECTOR
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Background Subtraction

Removal of broad (low-frequency) interferences while
retaining higher-frequency features. Only low-order
polynomials are used to model the background.

* Detrend: fit polynomial to entire spectrum

* Selected-Points baselining: fit polynomial to selected points in
spectrum

* Weighted Least-squares (a.k.a. asymmetric) baselining: fit to
automatically selected points on the bottom of the spectrum

* Windowed: Rolling Ball, Median, Minimum, etc.
Additional methods do baseline removal “within” the model (later...)

rum
2 EIGENVECTOR
RESEARCH INCORPORATED

Detrend Example

* Raman Spectra of scattering sample
« detrending good for exploratory analysis and can help with
AT PLS models, but processed specxtr%can 'look funny'
20

After 2" order detrend

15 most differences appear to
be non-baseline effects
10,
o)
©
fa}
5

. pot N

AVACA

077600 800 1000 1200 1400 1600 1800 0 600 800 1000 1200 1400 1600 1800
Raman Shift (1/cm) Raman Shift (1/cm)
[~ ]
” EIGENVECTOR
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Detrend Settings

800 X-block
‘avaliabi Motnods A [ selctea wnods o || 5aw |
~ Transiomatens Gtend
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Domvaive (SavGo!

sai
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EPO Fito!

GLS Woightng
Kasor Mooeact Mothod
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§roanng Savco)

Varabie Algnment

Nomaizaton
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Nomaizo

S

- Scalng and Contorng -
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Pareto (Sqn Sid) Scaing
Posson (gt oan) scaing
Varance (Std) Scaing
Image Fiers
imago - Background Subracton (Fatield)
Image - Cose (Diato+Erode)
image - Diato

0 (offset), 1, 2, ... higher order
polynomials

Polynomial Order:
OK Cancel

i
e e

Romove mean offse flom oach sample (ow)

(D))
» P EIGENVECTOR
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Mean

ze Help FigBrowser

Test/ Validation |

2200

2000

1800

1600

1400

1200

1000

Selected-Points Baseline

* Detrend based on points in spectrum known to be
only baseline. Subtract the result from all channels.

« good when zero points are known a priori

400 300 200

EIGENVECTOR
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|IDocuments waTAS Bos

[ Workspace

X Current Workspace Varisbies
- e vatue
ey §) raman_dust_particles <120x1025 dataset> 1017118400

Click to import validation X-block data

Auto Select

Percent Wiance Captured by PCA Model
Principal  Eigivalue % Variance % Variance
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[Baseline (Weighted Least Squares)
]

Model Cache
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No Cached ta Avaiable

A + 5 Demo data
bros "Aconoliclaiological Data @icohon
Aminoscl Fuarescence EEMs (amincacids)
| Ieheclol} XRF (vchy
Aspirin afl Polyethylene Image (Raman 21x33x501)
. ‘nvice Drfy Bead mage (TofSMS 256x256x93)
Bran ScallWR| 256x256%14)
sread 3-ffay Sensory Evaluaton (read)
16000 eews (orr)
Teas 129
Ao vy
1000 FTIR Mcrdlkopy of oymer Lamiate
Vald Pt aring Data halddara)
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NearRDi o §

10000

25
Asbitrary Scale
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1S Data frbm Slurry-Fed Ceramic Melter (plsdata)
[Raman Spectra of Microcrystals (Raman Dust Pariices)
Raman of Time Resolved Reaction
Rice Grain Mixture Photo (512x512)
Semiconductor Etch Batch Data (etchdata
Suury-fed Ceramic Melter Timeseries Data (puisdata)
Star Temp and Intensity Non-iinear Data
Sugar Qualiy by Fluorescence EEM
_— Swedish Knackerbrod Image (250x250x5)

Sy Texture Photos (27 grayscale 128x128)

etrer
EMSC (Extended Scatter Correction)

0SC (Orthogonal Signal Correction)

fit a polynomial to
selected baseline points

Add >

Show Excluded
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Bl evmiTip . ==

| Use e toobar o
select aseln pains
I * change baselne ider

1. Click to select regions. 2. Increase polynomial order

el oo conirue. (1 9 b shown ry once g “+” is like holding shift key to fit to baseline pOintS
[l Nover show agein. = while selecting
B Select Baseline Regions [ESIE==)

Tools Desktop Window Help FigBrowser PlotGUI ~

1 v

g 08/ =0

Eile Edit View Plot FigBrowse ¥

Il [setect Bassiine Regions = 4000
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X: Variables - [
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% o0
t f
g i
=
0 |
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|| e
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Continue o000

1000 900 800 700 60O 500 400 300 200
Variables
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Weighted Least-Squares Baselining

 Automatic selection of baseline points by fitting polynomial to
the “bottom” (or “top”) of the spectrum = asymmetric fit.

«  Starts with a fit to all points then de-weights points above the baseline (those with large positive
residuals).
Iterates until only points w/in a defined tolerance on the residuals are kept. (Need to define tolerance
on the residuals.)

« Easy approach for simple baselines (e.g., polynomials).

Can also includezlzcxown baseline functions.

2000

1800

1600

1400

Mean

1000 900 800 700 600 500 400 300 200

Raman Shift (cni")

73 EIGENVECTOR

2
o L&\ RESEARCH INCORPORATED

Available Methods.

- Transformations -—
Absolute Value

]
Transmission to Absorbance (log(1/T))

click “Show” to inspect
the results

Derivative (SavGol)
etrend

IS¢ (Extended Scater Comrection) - -
(Lada— J||[<-Remove w |[down| [ setiings. |

_ > ][ o |

X: Variables | ¥:[pata - lS\nwExclxisd]]

Raw Data Preprocessed Data

Eigenwvalues for raman_dust_particles

’\  no preprocessing

Iog(cigenvalucs)

.
Principal Component Number

rank dropped from

I five to four
i X
o ! baseline
: preprocessing
.
o
2
= L : .
= H
=
o an
@ @ w m I \
[Click and drag to zoom. Double-click to reset]
.
Pricipl Compones Mo
. EIGENVECTOR
LA\ RESEARCH INCORPORATED
Available Methods
[ » ||| Baseiine (Weighted Least Squares) . .
posace Ve = results similar to
o
[Transmission to Absorbance (log(1/T)) previous example
| Fitering
[Baseli (Si ified points
— L |
|® [ ) Options / Preferences
User Level ~
ry|
By B ==
v Algorithm
im 2
¥ Basis Filter
Mﬂ
weightmode 1
negw 1
power 2
tsglim 0.99
trbflag bottom
nonneg no
¥ End Criteria
delta le-09
maxiter 100
maxtime 600 help for
= L .
nﬂl;d::o' polynomial to fit to data. Used with filter = "basis". / hlghllghted Optlon
Factory Reset Reset Ok Cancel

30
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Rolling Ball Background
Subtraction

Ye

Yo YR Ynew

Yemew = Yo (YL +YR)/2)

3 L@\7J RESEARCH INCORPORATED

Other Background Subtraction
Strategies

. e ot These appear to have fewer “peak
—— Minimann Buckgrowd artifacts” but there are still artifacts in
7 o . .
the slope. Did it result in a drop in
rank?
o 500 00 1500
1 @\ EIGENVECTOR

LIEE RESEARCH INCORPORATED

Absorbance

Rolling Ball Example

2R =101 2R =401

32

Savitzky-Golay and Filtering

* Derivatives wrt A can be used to

2} with offset and slope remove offsets/slopes

. with offset * Savitzky-Golay smoothing and
original spectrum derivatives
i * piece-wise fit of polynomials to
each spectrum
03 * use fit directly for smoothing

* use derivative in each window for
estimate of derivative wrt A

800 900 1000 1100 1200 1300 1400 1500 1600
Wavelength, )

load nir data

x = specl.data(l,:);

x1l = specl.data(l,:)+0.1;

x2 = specl.data(l,:)+0.4+0.001*mncn (specl.axisscale{2}")"';
34



dA/d)L

-0.02

-0.04
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Savitzky-Golay and Filtering

with offset and slope
with offset

original spectrum

900 1000 1100 1200 1300 1400 1500 1600
‘Wavelength, 2,

dx = savgol (x, 15,2,1);
ax1 — savgol (x1,15.2-77

dx2 savgol (x2,15,2,1°

End-Effects in SavGol -

|
NIR of wheat gluten
>40,000 spectra

Tw Bw  Be Bw me ue
Wavelength (am)
Principal Eigenvalue % Variance % variance
Component of Captured Captured
Number Cov (X) This PC Total
savgol (x,25,2,2,struct ('tails', 'traditional’))
1 2.74e+02 84.58 84.58
2 5.01e+00 1.55 86.12
3 2.76e+00 0.85 86.98
savgol (x,25,2,2,struct ('tails', 'polyinterp'))
1 2.73e+02 78.76 78.76
2 1.67e+01 4.83 83.59
3 4.83e+00 1.40 84.98
savgol (x.data (0, :),25,2,2,struct ('tails’, 'weighted'))
1 2.73e+02 82.89 82.89
2 7.50e+00 2.28 85.17
3 2.97e+00 0.90 86.07

37

Data courtesy of Opotek, Inc., Carlsbad, CA, www.opotek.com

multicomponent Beer’ s Law
x=cS’

first derivative removes the offset
x=cS" +al’
dx ds”

—_—=Cc—
i d1

filter window width
polynomial order

derivative
[ A

EIGENVECTOR
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D

A |
,.:W&m Y

'tails', 'traditional’

Wanvelength (nm)
"tails', 'polyinterp’

Waveiength ()

d’A/d?
-

Savitzky-Golay and Filtering

0.015

0.005

with offset and slope
with offset

original spectrum

-0.01
-0.015
800 900 1000 1100 1200 1300 1400 1500 1600
Wavelength,
dx = savgol(x, 15,2,2);
dxl = savgol (x1,15.2 5 o
dx2 = savgol (x2,15,2, 257 derivative
36

B Preprocessing X-block

wl |

Available Methods

Selected Methods

== Transformations -—
Absolute Value

[}
Transmission to Absorbance (log(1/M)
- Fitering -

Baseine (Specified points)

Baseiine (Weighted Least Squares)

Detrend
EMSC (Extended Scatter Correction)

EPO Fiter
(GLS Weighting

Kaiser HoloReact Method

(0SC (Orthogonal Signal Correction)
Smoothing (SavGol)

- Normalization ---
MSC (mean)
Normaiize:

2

— Scaling and Centering —
Autoscale

| [l6roup Scale

Log Decay Scaling

Mutiway Scale

Pareto (Sqrt Std) Scaling
Paisson (Sart Mean) Scaling
\Variance (Std) Scaling

di da
x_
a2

multicomponent Beer’ s Law
T
x=cS

second derivative remove the
offset and slope

x=cS" +al” + B
dx ds”

+
a8’
BFYE

=C

filter window width

polynomial order

EIGENVECTOR

L@\ RESEARCH INCORPORATED

Try SavGol on Raman_Dust_particles

Fiter Widin: 1
Polynomal Order: |2
Dervative Order: |1
Use Excluded Data”

() Weighted Tals

avitsky-Golay Settings.

The rank dropped from
five (w/o SavGol) to four.

oo

The first and last 7 points
were excluded.

ot n subsequent modeing.

excluded reglons.

 Use 1/d window welghting. Helps recuce edge-affects a ends and

Ranpas Frpmceses s

T s s =

inspect the results

38
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Least Squares Analysis

e Variables far from the origin have more influence on the model
— numerically larger variables appear more important
— mean centering can be used to reduce this effect but moves the model origin

— if a force fit through zero is desired (e.g., often used with CLS-like models)
it is important to remove offsets that add rank

» offset might not correspond to the mean of the data
* Variables with large deviations have more influence on the model
— variance (squared deviations) is associated with "importance"

— autoscaling - divide each (mean centered) variable by its standard deviation,
result is variables with unit variance

— other weighting and centering strategies might be more useful
» e.g., can use a priori information, such as noise level

EIGENVECTOR

RESEARCH INCORPORATED

[~ 1]

Centering and Autoscaling
Math

* Mean-centering mnen (data) X, - =X-1X"
. — =T T
» Autoscaling auto(data) X —(X—lx )./lo‘x

¢ with an offset X, = (X—lir)./l(az +0£)

X, =(1-£117 )XW * X, =(1= 4117 )X (W +71)
where W is a diagonal matrix the offset o can be viewed as a
with variance as the entries ridging or regularization of W
@\ EIGENVECTOR
L@\ RESEARCH INCORPORATED

Autoscaling

* Autoscaling: subtracts the column mean from each
column and scales to unit variance

« each variable converted to a T-statistic

result is that each variable has the same variance

not typically used with spectra

often used with engineering variables (different units)

* offset used to avoid “divide by zero”

8nn Autoscale Settings

Scaing Offset: [0 (add 0 scaiing 10 av0d 0)
Bad Scalo Repiacemont T (use I pace of scang=0)

Scaing Thresnowt: [0

ot owar imi(s)
alowed for scaing)

Load

[0k | [camcel] [ rew

0 # s EIGENVECTOR

EIAEE RESEARCH INCORPORATED

Weighting

+ Auto-scaling can be viewed as a weighted
approach where the weighting is the standard
deviation of the variables

* Other weighting can be used

» weight by noise in the variables with W diagonal
« each variable has same S/N
* W doesn't have to be diagonal

« this will lead to generalized least squares approaches

EIGENVECTOR

42
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Poisson Scaling

» For count data, the variance is expected to follow
a Poisson distribution such that the variance is
equal to the mean of the data.

* often used in mass spectroscopy

* in this case W is diagonal and equal to sqrt(mean(data))

* M.R. Keenan, "Multivariate Analysis of Spectral Images Composed of
Count Data," in Techniques and Applications of Hyperspectral Image
Analysis, H. F. Grahn and P. Geladi, eds. (John Wiley & Sons, West
Sussex, England), 89-126, 2007.

¢ poissonscale.m

IGENVECTOR

RESEARCH INCORPORATED
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Eigenvalues for raman_dust_particles

A\ rank dropped from
af ™ five to four, but
g™ \\ baseline still looks
IE \ important

H D L

ER S I R TR TR TR
Principal Component Number

s455e snv.m EEIGENVECTOR

4 RESEARCH INCORPORATED

Removing the Row Magnitude

* Previous examples removed an offset. How is
variance due to changing magnitude removed?
* variable source or lighting magnitude
* scattering effects
+ Standard Normal Variate (SNV): subtracts the row
mean from each row and scales to unit variance
* Autoscaling of the rows
+ Row Normalization: removes magnitude

* Be aware that this can “blow up” noisy samples to
have more variance

EIGENVECTOR

F.
| |
“ z RESEARCH INCORPORATED

File Edit Preprocess Analysis Tools Help FigBrowser
> By B e M X

eIk |

Example w/

|[ —J Calibration 1 —J Testmj J Olive Oil

Click “X" to ...\EVRIHW\OliveOilData.mat
load test data Xtest
800 Load
Select VALIDATION_XBLOCK Data
Lookin: Wl [&le

1. Try mean-centering only and plot
PC2vsPC 1.

2. Try SNV, then mean-centering.
use “up” and/or “down” in the
“preprocess” interface to ensure
the correct ordering

- D A

From Workspace Open Load | Cancel 0>

-
46 EIGENVECTOR

RESEARCH INCORPORATED



Normalization

* Row normalization is used to remove magnitude
information from each sample

* column normalization was used to put variables on
similar scales (autoscaling, other scaling)

* there are many ways to normalize

« often used with spectra to remove scattering/pathlength
differences observed in the measurements

 Standard normal variate (SNV)

* autoscales rows (centering and scaling ~similar to
centering and 2-norm)

seenormaliz.n & EIGENVECTOR

L@\7J RESEARCH INCORPORATED

Normalization

* Normalize each row / spectrum (which p?)

p norm
N
::- 1/p
0.9 N
osl 3 norm X=X 2|x|j’
0.7} i=1
N el \"'-., ..~ | _2norm: /
g st “w”%| constrains rows to a
£ o4 \ spherical surface
“ot N\ AN
02| \ ~ 1 norm: constrains rows to a plane
0| «~— 1/2 norm
. 1
0 0 0.2 0.4 0.6 0.8 1
Channel 1
Gallagher, NB, Shaver, JM, Martin, EB, Morris, J, Wise, BM, Windig, W,
“C Iy for i ith applicati TOF-SIMS and R: 7,
w9 Chemomen el Lab. 7301, 105117 (2008). Sce Section 33, EIGENVECTOR

L&\ RESEARCH INCORPORATED

Normalization

» Normalize each row / spectrum
¢ Order of normalization (p-norm)

. . -norm
¢ l-norm : normalize to unit AREA (area = 1) p
. . 1/
* 2-norm : normalize to unit LENGTH N » ’
(vector length = 1) X=X Z|x| )
. . . J
* inf-norm : normalize to unit MAXIMUM J=1
(max value = 1)
800 Norm Settings |
[ Tyee: | 1-Nomarea=1) ﬁil
Window: [T N ‘
Select All Variables |
[ ok [ cancel
[
N ¥ EIGENVECTOR
L@L'Z RESEARCH INCORPORATED
B Preprocessing X-block - [E=E

Available Methods.

Lagio Choose Include Range (variables to use
in the normalization).

vz Add to Included Range.

Subtract from Included Range.

Accept the range and close.

Transmission to Absorbance (log(1/T))

- Fitering -

Baseine (Specified points)
Baseiine (Weighted Least Squares)
|| erivative (avGon

rend
EMSC (Extended Scatter Correction)
PO

I
s L ==
' eLsw Norm Settings

Type: 1-Norm (area = 1) -

s ol || Window: (EEIEECSER =
Normai Wavenumber
SNV -
utoee ¢ [ variabies
Group 25
Log De]
|

Median| — |
Multiws 2
Muttiway Scale
Sart Mean Scale

— 15+

i :
=
Show 1

X: -] ¥:

— 05 s

@ J
05 . . A . .
3500 3000 2500 2000 1500 1000

50 Wavenumber (1/cm)

Example of using 1-Norm with Olive Oil

12



1 Norm

* Mean centering the 1 norm spectrum drops the rank
» samples with small norm not used

1
0.4
0.8
~ ~ 02
o N\, o .
Q0.6 %, [5) ..
=] . <] .
| . S o s
< . < .,
5 o4 )
AN 0 \
02
0.4
% 02 04 06 08 1 04 02 0 02 04
Channel 1 Channel 1

51

1 Norm + Mean-Center —
Endmember Extraction

* Points at the vertices of the polygon correspond to
the most “pure” samples (or variables)

« if selectivity is high enough the vertices correspond to
pure analyte contributions (or spectra)

« this is a good visualization tool and initial guess for
self-modeling mixture analysis (a.k.a. multivariate
curve resolution or endmember extraction)

EIGENVECTOR
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What Happens with Noise?

* Remove samples with norm <0.5 N 1/
* or add a small offset X=X Z|x|f +o
Jj=1
1 1
‘ N\
0.5 \ \
S . gee ~
5 L g ‘s
5 . 5 04 N
05 N\
. 0.2 .
-1»1 -0.5 0 0.5 1 o0 0.2 0.4 0.6 0.8 1
Channel 1 Channel 1
[~ [ ]
52 & EIGENVECTOR
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E.g., FTIR microscopy of three-
layer polymer laminate

« Polyetheylene, isophtalic polyester (presence originally —w ceo ruge rnow urew rooxsexs)
W) FIA of Hydroxy-Benzaldehyde (3-way)

unknown) and polyethylene terephthalate. [ JFTR Microscopy of Polymer Laminate
« Laminate is 240 um thick with inner IPE layer 2-3 pm & mi ® paw

W) Hald Portland Cement Curing Data (halddata)

<the 10 pm spatial resolution @l NIR of Pseudo-Gasolines (nir data)
« middle layer has contributions from all three analytes -/ PLSf:TOOIbOX/ dems/
* Scanned at seventeen points across the layers FTIR_microscopy.mat
5

oA
N ST VAV
, A SN T . s
700 800 900 1000 1100 1200 1300 1400 1500 1600 1600 Section
Spectral Channel Spectral Channel

EIGENVECTOR

L&\ RESEARCH INCORPORATED
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FTIR_Microscopy Results

results of selecting vertices of the rows
(“purest” spectra)

results after using non-negatively
constrained alternating least squares

1 e

2 4 6 8§ 10 12 14 16 i 2 4 6 8 10 12 14 16 18
Contribution Profile Contribution Profile

04 A 04
MM ol
AV

02 0
700 800 900 1000 1100 1200 1300 1400 1500 1600 700 800 900 1000 1100 1200 1300 1400 1500 1
Spectral Profile Spectral Profile

J. Guilment, S. Markel, W. Windig, Infrared chemical micro-imaging assisted by interactive self-
modeling multivariate analysis, Appl. Spectr., 48, 1994, 320-326.

‘W. Windig, S. Markel, Simple-to-use interactive self-modeling mixture analysis of FTIR microscopy
data, J. Molecular Structure, 292, 1993, 161-170.

55DISTSLCT, PURITY, ALS, MCR

Scattering Effects in Reflectance

Scattering effects can be caused ~ Scattering effects can manifest in
by variations in:

» Particle size (mean & distribution)
*  Sample opacity

» Sampling packing density 12
* Sample placement

=
o
93
o
7]

the measurements as:

14

Pathlength (peak
amplitude) variations

log(Ro/R) : A2G, AZE

04 r\/\

;2/\/

Baseline offset changes

1200 1400 1600 1800 2000 2200
wavelength (nm)

& EIGENVECTOR
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Sample 1 Sample 2 -

57

Scatter / Signal Correction

» Multiplicative Scatter Correction (MSC)

56

2 . "
5000 4500 4000 3500 3000 2500 2000 1500 1000 &

58

+ Attempts to remove offset and row magnitude
variability

* Result is less signal related to scattering artifacts
and more signal related to analyte(s) of interest

* based on classical least squares (CLS) model
* Geladi P, MacDougall D, Martens H., Appl. Spectrosc., 39(3), 491-500 (1985)

RESEARCH INCORPORATED

Why is MSC Necessary?

League Soil: Uncorrected

H,0 \ Co,
-In reflected intensity for League Soil only

n s

3000 2900 2800 2700 2600 2500

DBP 10 to 600 mM

scatter signal large
compared to analyte

soil + dibutyl phosphate (DBP) signal

EIGENVECTOR

Frequency (cm™) RESEARCH INCORPORATED
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Multiplicative Scatter MSC
Correction ( MS C) Regress new measured spectrum s, ,, onto reference

spectrum s, (often the mean spectrum of a data set).

MSC models scatter 3
with an offset and ° 3 /
. Q
slope correction E g //
= o r T
r T 2 52 S, :c[s ; 1]
s, =¢|s, . 1 S "
2 [ ref ] < ﬁ . r -1
where € 1 & c=S§, [s"€f 1]([8,44 1] I:Sref 1])
1
This is a classical least S comearcd = (52 =2 1) /6,
squares (CLS) model 500 3000 500 J
Frequency (cm") % 1 5
St Absorbance
5 @S EIGENVECTOR 6 P EIGENVECTOR
L@\ RESEARCH INCORPORATED L@\ RESEARCH INCORPORATED

anon
b ] e try with the olive oil data

: atter adding MSC (mean) and Pre-process Summary to Now
Mean Center

use “up” and/or “down” to ensure . Centering
the correct ordering * May be more complicated than simple mean-centering
Wavenumber e g
- * Did it add or remove rank? Usually want to remove rank.

- Scaing and Genterng -
Ruiosca 9 013
e

» Baselining

o
N « detrend, selected points, asymmetric least squares
Jescmey - * SavGol | .
[ e T e e — didn't remove relevant signal some preprocessing will (beware!)
Coo ) Co ) Com) % ‘ v * Column scaling (autoscaling)
‘ * Row scaling (SNV, normalization)

* Column and Row scaling introduces the concept of general
centering and weighting ...

3000 2500 2000 1500 1000

Heremmbe (e ’ + MSC attempts to remove offset and row magnitude
variability
EIGENVECTOR A EIGENVECTOR
24\ RESEARCH INCORPORATED
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Why Pre-process?

* Pre-processing depends on the analysis objective and data type.

 The objective of data pre-processing is to remove artifacts,
interferences and non-linearity in the data.

Sensor systems often include measurement artifacts that hinder
analysis and negatively impact the quality of the results.

Math is cheaper than physics but it a'int magic.
Preprocessing isn't a silver bullet for bad data.

» Knowledge of the opportunities and limitations of the math
leads to better data through instrument design and data
acquisition methodology ...

and better results in the subsequent data analysis and fulfilling
the analysis objective.

6 # 8 EIGENVECTOR

ZILE RESEARCH INCORPORATED

Physics and Chemistry

* How and why preprocessing depends on the physics and
chemistry of the system

+ ... and how the data manifest

* is it noisy, non-linear, stationary, cluttered, multi-block, multi-
way?

» Data analysis is not a limited access highway. It is more
like a worn path in the dirt. What is learned at each step
may cause us to return to the beginning to test our
hypotheses.

« Preprocess any way you want but you must interpret your results
accordingly ...
« and ask if you achieved your overall objective
5

65 @\ EIGENVECTOR

L&\ RESEARCH INCORPORATED
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66

Data Analysis Objectives

* Be clear on the data analysis objective
 exploratory
* how do measurements vary and why?
* how data are preprocessed tells how results should be interpreted
* process monitoring/control, quality control

» multivariate statistical process control typically monitors how data
vary wrt a mean (or moving mean)

* detection
* is new signal present? relative to 0 or clutter mean?
* classification

* some variables are better at discriminating some classes better than
others (utilize different scaling for discriminating variables?)

* quantification
« mean-center allows an offset, otherwise it’ s a force fit through zero

# s EIGENVECTOR

LIALE RESEARCH INCORPORATED

Measured Signal

¢ Clutter is present in all measurements
e X-block, Y-block

Interference Target Signal ~
Signal N
Clutter Signal

Noise

‘ Measured Signal ‘

» Use physics to create a linear relationship
* non-linearity w/in X-block adds factors
 non-linearity between X- and Y-blocks adds error

16



Sources of Clutter Matrix Rank

» Systematic background variability ) ) )
* Clutter: sensor noise and the confounding effects of interferences * Matrix rank is an 1mp0rtant COl’lCGpt
« Radar Clutter Definition: (DOD, NATO) Unwanted signals, echoes, or . pre_processing general]y tries to reduce rank associated

i the face of the display tube, which interfere with observation of . . LT ) S
g::f:; z?gnaeis ace of fhe ispiay fube, wiieh tnieriere with obsetvation o with clutter while retaining rank associated with signal

« in the system being sensed * ... quick review of rank via the PCA model

¢ e.g., T, P changes, variable sample matrix, "dark current"
« use pre-processing or different sensing strategies

* due to physics of instrument
* e.g., drift, instrument changes, variable baseline or gain

* try pre-processing but good instrument design and operational
practices preferable

* Non-systematic random noise
* homoscedastic, heteroscedastic

IGENVECTOR o

o7 RESEARCH INCORPORATED

RESEARCH INCORPORATED

PCA Math Summary Matrix Rank and the

Bilinear Model
* For a data matrix X with M samples and N variables TT T T(T

(generally assumed to be mean centered and properly X |- |l ot || + | E
scaled), the PCA decomposition is ? X

X=tp! +t,p} +K +t,p +K +t,pk

Where R < min{M,N}, and the #,p,” pairs are ordered by the
amount of variance captured.

* Sources of matrix rank

« chemical signal (signal of interest; often called the

» Generally, the model is truncated to K PCs that capture the pseudo-rank)

systematic variance in the data set, leaving some small
amount of variance in a residual matrix E:
— T T T _ T
X=tp, +tp,+...+t,p, +tE=TP +E
» where T is MXK and P is NxK. PCAENGINE, PCA

@  EIGENVECTOR 70
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* clutter (interference signal not of interest and noise)
« interference that inhibits the ability to detect, classify, quantify

« want to remove clutter-based rank and keep the chemical
source of rank

EIGENVECTOR

69
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Clutter Example (peak shift)

0.25 Peak instability (i.e., shift in
peak location) increases the rank
of the data.

0.2
This additional rank is “clutter”.

0.15 Wavelength calibration can
eliminate this type of clutter.

0.1 Other methods attempt to model
the shifts as a part of the
decomposition (e.g., MCR).

0.05!

Pt . .
80 1000 1100 1200 1300 1400 1500
Shift (cm!)

[ A~ |

EIGENVECTOR
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Data Transformation

* Within an X-block
« PCA assumes relationships between variables are linear
* Between and X- and Y-block
* PCR, PLS assume relationship is linear
If possible, non-linear data should be converted to
a linear form (e.g., use known physics of the system)
* Examples:
 I/1;, transform with log
* reaction rates a e''/T, transform with log
* pipe flow a AP#7 (turbulent flow)

73

Peak Shift Example

1o eigenvalues for
-~ o miss-aligned spectra | Aligned spectra have less
E 10 1 “clutter” and lower rank.
eigenvalues for . “ ”

H% 16" l.g d t ] Additional “clutter” rank often
7] aligned spectra results in a loss of net analyte
3 10 ] signal and can degrade the
l:) performance of regression
g0 ) models =¥ inhibits detection,
§n classification, and
i 'l true pseudo- 1 quantification.

rank is 3 "
0 2 4 6 8 10
Factor
. # EIGENVECTOR
4 RESEARCH INCORPORATED
20
ot Xy =2x, PCA Linear vs
10
: Non-Linear
><F\‘ 0
5
0 % Variance Captured by PCA Model
-15 PC Eigenvalue % Variance % Variance
of Captured Captured
0 -5 0 H 10 Number Cov (X) This PC Total
X
> B ! ’ Linear system
wl X, =X $ 1 1.72e+002 100.00 100.00
50 000 C?O Non-linear system
nt Y g
ol % S 1 2.10e+003 98.39 98.39
S50 Q & 2 3.43e+001 1.61 100.00
# % ey
40 .'. -'.
% s
30 ‘.". :.-'
» % &
%, $
10
0
-10 10
H EIGENVECTOR

L&\ RESEARCH INCORPORATED
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Linear vs Non-Linear

* Non-linearity between the variables adds rank
* For signal-to-noise > 1 (signal-to-clutter > 1)
 The signal of interest is primarily in the big Principal
Components PCs (1,2,...,K)
* The clutter is primarily in the smaller Principal
Components (R-K+1, R-K+2..., R)
* More on PCA shortly

* Linearization has the potential of bringing redundant
signal “closer to the top” (into the big PCs)
* better signal averaging

758 EIGENVECTOR
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Why is Clutter Bad?

 Show with CLS: multi-component Beer’ s law
X =¢;8,T+ ¢,8, +... ¢85, = CST
X M by N data matrix (noise-free)
¢; M by 1 vector (concentration)
s; Nby 1 vector (spectrum)
K number of chemical analytes present i = 1,...,K

@  EIGENVECTOR

EILE RESEARCH INCORPORATED
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CLS vs. PCA
(Bilinear Models)

* Classical Least Squares * PCA

X=CST+E X=TPT+E

XMXN XMXN

C,x ; oblique, chemically T,k ; orthogonal, ~not
meaningful chemically meaningful

S,k ; oblique, chemically P,,.x ; orthogonal, ~not

meaningful chemically meaningful
E\nn Ejnn
+ multi-component Beer’ s e captures maximum

Law model , E ~not variance, E minimized

minimized (e.g., due to

constraints) EEE EIGENVECTOR

L@\ RESEARCH INCORPORATED

Clutter Reduces
Net Analyte Signal

If the measured signal is x = ¢TST + €T then define the Net
Analyte Signal Vector, NAS at unit concentration as

NAS =[I- S (S.'S.) S_Is,
where S, is S with the i column removed.

NAS is the portion of spectrum s, unique to analyte i and
orthogonal to all other factors in S, and S/N ~ [NAS|

Adding clutter tends to add something in S, that is parallel to
s, thus lowering NAS (and increasing the estimation error).

8 EIGENVECTOR

A RESEARCH INCORPORATED
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NAS wrt Clutter

NAS
target spectrum a j

plane defined by

L;mter spectra

X3

X

Every time an interference is added (new clutter) there is a risk of reducing NAS.
Estimation error ~1/INASI

Interferences Decrease NAS

>> snas = pspec;
>> for i=2:5, snas(i,:) = pspec(1,:)-(pspec(1,:)/pspec(2:i,:))*pspec(2:i,:); end
NAS vs Number of

0.025

0.015

0.005

interferences

NAS w/ increasing
number of interferences

81

900 1000 1100 1200 13 1400 1500 160 800 900 1000 1100 1200 1300 1400 1500 160

EIGENVECTOR
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| #
[ |
[ J
|2

Example of NAS Decreasing

* Imagine there are five potential analytes and the
first is the target of interest. NAS is a vector.
NAS =(1-S_S"S_S")s,
s, isthei” column of S

S_, is S with the i" column removed

>> load nir_data

>> whos
Name Size Bytes Class
conc 30x5 7408 dataset
readme 7x67 938 char
specl 30x401 109008 dataset
spec2 30x401 109008 dataset

>> pspec = conc.data\specl.data; % S
>> plot (specl.axisscale{2},pspec)

0 # s EIGENVECTOR
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How to Account for Clutter?

* Follow through with the CLS example and show
how we might deal with clutter using the extended
mixture model (ELS).

 Target detection example

» Extended multiplicative scatter correction (EMSC)

» Combines the extended mixture model and
multiplicative scatter correction

* Introduce, multiplicative scatter correction (MSC) first

EIGENVECTOR

L&\ RESEARCH INCORPORATED
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Target Detection
for a Single Target

Measured signals > decision limit in
the direction of the target is
considered a detection event.

s is the spectrum
of the target

decision X, : :
2 The measured signal is modeled as a

limit ¢, \ linear multiple of the target signal.
X=cste
\< ¢>cy,  is adetection

This is the CLS model.

X

* Detection on the target is often based on a non-negativity constraints.
* Present model assumes only a single target.
* What to do with signal from interferences and / or other targets?

83

Target Detection
with an Unknown Interference

The difference between the interference
signal and the target spectrum provides

Target informati:n abouts the signal.
=x—c
X, O=c¢ele
If the measured signal looks like target O
e is small and there is good confidence in

the detection.

If the measured signal does not look like
target, Q is large and there is poor
confidence in the detection i.e., this is a
"no-call”.

How can interferences be accounted for
so that detection can be made with high
confidence?

Interference

X

» Unknown interference typically
results in "no-calls".

EIGENVECTOR

85 '=
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Target Detection
with an Unknown Interference

Interferences signal that overlaps the
target spectrum results in a positive
projection on the target.

decision This would be a false alarm, but

typically more information is available.
(assuming the interference isn't exactly
parallel to the target)

2

limit \

Interference

X

* Presence of an unknown interference can result in false alarms.

54 # s EIGENVECTOR

EIEJ RESEARCH INCORPORATED

Target Detection
Accounting for an Interference
with the Extended Mixture Model

Including an interference explicitly in
the model allows the detector to
account for interference signal.

e=x—c¢S

e=x—[c; cls; sy
where s, is the target spectrum and s,
is the interference spectrum

€> Cyyy 18 a detection
This is the extended mixture model
(Extended Least Squares).

* Multiple targets and interferences can be accounted for (but there's a limit).
*» Non-negativity forces the signal to lie on, or between, the target and interference.
* Detection statistics for targets are treated independently from interferences .

@ EIGENVECTOR

LILJ RESEARCH INCORPORATED
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X3

87

Target Detection (summary)

* The model for target detection is based on a Linear Mixture

x model

71 » Non-negativity incorporates a priori knowledge of the
physics.
Target Lo
* Projections onto the target vectors
1. provides the contribution of each target to the measured
signal where contributions determine the mix of targets

— (can be used for classification)

Interference
2. the combined distance along the targets (7%) provides a

X measure of distance from the null
1

* New measurements that lie within the plane of the targets are
considered nominal signals.

* New measurements that lie off the plane of the targets are
considered unusual signals. Unusual signals occur due to
sensor problems or interferences — and correspond to no-
calls. These signals are defined by limits on Q (sum-squared-

residuals). i el EIGENVECTOR 88

RESEARCH INCORPORATED

Objective

* Remove
* scattering artifacts
* atmosphere analytes (H,O and CO,)
* Retain
« reference soil signal
« analyte signal [dibutyl phosphate (DBP) —
organophosphorous]
» However, scattering and atms are more
complicated than simple offset and gain
« extended least squares model

EIGENVECTOR %

M\J RESEARCH INCORPORATED

Extended and Inverse MSC

¢ based on CLS and the extended mixture model
* Inverse SC and Extended Inverse SC

* based on inverse least squares (ILS) model

* Martens H, Stark E., Journal of Pharmaceutical and Biomedical
Analysis, 9, 625-635 (1991).

» Helland IS, Naes T, Isaksson T., Chemom. Intell. Lab. Syst., 29,
233-241 (1995).

» Martens H, Nielsen JP, Engelsen SB., Anal. Chem., 75(3), 394—
404 (2003).

* Gallagher NB, Blake TA, Gassman PL, J. Chemometr., 19(5-7),
271-281 (2005).

# s EIGENVECTOR
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Windowed Scatter Correction

» Scatter correction is typically applied to entire
frequency range, BUT....

*  Windowing (piece-wise) correction is possible!
* Requires more parameters, but is more flexible

» If offset/multiplicative factors are NOT constant with
wavelength

» Isaksson T, Kowalski B., Appl. Spectrosc., 47(7),
702-709 (1993).

e Blank TB, Sum ST, Brown SD, Monfre, SL., Anal.
Chem., 68(17), 2987-2995 (1996).

Extended multiplicative scatter correction (EMSC)

EIGENVECTOR
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Extended MSC EMSC

» EMSC attempts to correct for scatter that can add spectra of known farget analyte S, .,
manifests in forms other than just linear using the

i polynomial can be of order K-1
extended mixture model

can add spectra of known interference Q.

c P . =[ viov 1 J .
_ 2 : = ...
% _|: S VoV ! :| ¢ $; = |:Sm/’ S P Q:|c Pk |: vovi :|
P Zy k) :|: s, P j| o
e (ZTZ)*‘ erz . c= (ZTZ) ZTS2 ZNx(1+J+K+L) =l: S, SA P Q i|
1
¢= s =(s,—Pc,-Qc,)/c, o= L
s2,cm'rected = (SZ - PcP )/Cl cP Heomected ( ’ " Q ¢ )/ 1 €= |: C] cS CP ¢ :l]x(1+J+K+L)
PV EIGENVECTOR o #EEIGENVECTOR
A\ RESEARCH INCORPORATED A\ RESEARCH INCORPORATED

“Reality Check”: How to get Q? Extended MSC Weighted

Q is a sub-space that spans scatter What if we know channels that should have target
L] u -

analytes but we don’t have their spectra S ;? —
* Q spans the clutter
. . i 3
+ measure multiple reflectance spectra of soil samples If we do nothing the
that do not contain analyte > X,, target spectradwﬂl b%zs the g | known bands of
regression and provide Iyt
* define reference spectra as mean of Xo2 s, g P Fqf rectanabyes
poor correction. s
* center X 108, > Xop, £
* perform PCA on centered data > X,,=TQ" + E Weighted least squares .
« use the big eigenvalues to get Q can be used to de-weight
« use the loadings Q,,; to characterize scatter these channels in the
MSC regression step. 3500 3000 2500

Frequency (cm-1)

@ EIGENVECTOR

4 RESEARCH INCORPORATED
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Weighted EMSC

* use a diagonal weighting matrix W, to de-
weight channels where analyte is present

» weights are 0 where analyte is expected to be present

s,=[s, S P Qe
=(2'WzZ)' Z'Ws,
S5 corrected = (sz —Pc, - QcQ )/Cl

s FMEIGENVECTOR

L@\7J RESEARCH INCORPORATED

Soil/Analyte Samples

» League Soil (44% clay, 42% silt, 14% sand)
* Quincy Soil (7% clay, 17% silt, 76% sand)
* Analyte: Dibutyl phosphate in 2-Methyl Butane
* 0, 10-600 mM dripped onto soil sample
* 2 MB highly volatile, evaporates quickly
» measure spectra w/ and w/o dry-N, purge
» sample (DBP concentration) randomized

97 Ei s EIGENVECTOR

A RESEARCH INCORPORATED

Robust EMSC

What if we don’t know all the channels that
should have target analytes?

If we do nothing the 3
target spectra will bias the
regression and provide
poor correction.

known bands of unknown bands
target analytes of target analytes

Absorbance
3

Robust least squares
(treats these points like
“outliers”) can be used to /
de-weight these channels 3500 3000 2500
in the regression step. Frequency (cm-1)

% # s EIGENVECTOR
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Scatter on League Soil

League Soil: Uncorrected

1 DBP 10 to 600 mM

scatter signal large
compared to analyte
5011 + dlbutyl phosphate (DBP) signal

5000 4500 4000 3500 3000 2500 2000 1500 1000 =;==E|GENVECTOR
Frequency (cm ™) L4\ RESEARCH INCORPORATED
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Robust EISC for League Soil

League Soil: REISC Corrected

H,0 \

Co, \

6

1 DBP 10 to 600 mM

scatter signal much
1 smaller compared to
analyte signal

25000 4500 4000 3500 3000 2500 2000 1500 1000 "“ElGENVE TOR
o CTO

Frequency (cm” )

Scores on PC 1: 83.1%

N[ |

RESEARCH INCORPORATED

PCA

Scores on PC 2: 10.3%

PCA Scores for mean-centered data. Not directly chemically meaningful,

so let's try multivariate curve resolution.
How to deal with signal from scratches?

107
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MCR w/ Clutter Example
Using PCs for the ELS in MCR

Where are the sugar and protein in a
feed pellet?

Embed a pellet in epoxy, section, and
polish. Scratches are evident and are a
source of significant clutter. Confounds
the analysis so that chemical
information is "smeared out" in the
image.

Thanks to Sean Smith and Janiece Hope of Cargill, Inc., Global Food
Research, Scientific Resources for the image data.

FTIR reflection image ~400 microns square

8 EIGENVECTOR

| |
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Initial Estimates for Spectra

0.5

Step 1: isolate the clutter
0.4

Bacteria regions used with 2" derivative
spectra to estimate spatial
03 contributions of scratch features
Glucose
02 ™Yo can this information about the

Lysine amino acid scratches be used to improve
estimates of chemical

Resin contributions to the image in
»/\’\ Nw MCR?

0
3000 1000

0.1

Wavenumber (cm’ )

@Y EIGENVECTOR

LILJ RESEARCH INCORPORATED
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Scratch Features

0.5 .
ek
04 10| 1
., | Bacteria
0.3 f -

I / Glucose

”Mﬂi
0.1 —t
\/\,\/\/ ‘ Resin

-0.005

2nd derivative spectra

T
=il i |

16’92 3000 2500 2000 1500 1000 —
Wavenumber (cm™) -4 R A INCORPORATED

o

MCR Factor 1: Resin

0
3000 2500 2000 1500 1000

‘Wavenumber (cm'l)

EIGENVECTOR
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Example of Dealing w/ Clutter
* MIA Example: Multivariate Curve Resolution (MCR)

* Perform EMSC magnitude and slope correction (more later ...)
— reference is an estimate of the resin spectrum with robust fitting
— allow glucose, lysine, CaSO, spectra to pass the filter
— Gallagher, Blake, Gassman, J. Chemometr., 19(5-7), 271-281 (2005).

» Step 2: Account for scratches using spatial constraints:

* Scores from a PCA of region 2778 to 1790 cm! w/ 2" derivative
preprocessing capture variability due to scratch features

 Equality constraints on C: components 4 to 11=>the scratches
— Soft equality Constraints on S: components 1 to 3

» Factor 1: resin, Factor 2: lysine (w/~ CaSO,), Factor 3: glucose

* =>»linear mixture model referred to as an extended mixture

X=[C T|[S P| +E

desired factors interferences

# s EIGENVECTOR

L RESEARCH INCORPORATED

2 oo — MCR Factor 2
I8 Lysine
Caso,
16 02
14
12 0.15 )
: Lysine Sulfate
0.1
038
0.6 005
0.4
02 O A
0 3000 2300 2000 1300 1000
2 MCR Factor 3
Sucrose
18
02 Glucose
16
14 015
1.2
0.1 Sugar
1
08 405 \
0.6
0.4 0
02 Y
0.05
0 3000 2

el /\ 1
W@ BESEARCH INCORPORATED
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1 MCR Factor 4 Exam p[e of a
Contributions — RGB
. "AA ﬂ [\ /\/\V/\A\ N /\ Scra tCh Fea ture C for Factors 1:3: 1-Norm Preprocessing C for Factors [2 1 3] =RGB
an U I \/\\/\ KNN Clu§ter Analysis of the MCR R = lysine, G = resin, B = sucrose
0.5 v U Comnsbamm[lx‘lin(s:o(l;relalion Map (5 clusters)

4000 5000 6000 7000 8000 9000
Wavelength (nm)

0.16 um

[ 0.23 pmi ool 4 )
1 /\ / \ I \ / \ / | | » :

ARV \j = ¥
N Pei, L. Guilin, J., Davis, R.C., Shaver, J.M., Smentkowski, V.S., Asplund, M.C.,

Linford, M.R., Applied Surface Science, 253(12), 5375-5386 (2007).

o

s

-1
3209 3400 3600 3800 4000 4200 4400 4600 4800 5000

Wavelength (nm)

114

External Parameter

ELS and EMSC Summary Orthogonaliziation

* The extended mixture model can be used to » EPO: form of the extended mixture model that can be used as
account for complicated scatter a pre-processing by orthogonalizing to the clutter.
* Best to have many analyte-free measurements to * need a model of the clutter / interferences
characterize clutter * e.g., spectra (as seen above) or PCA loadings
. . CLS model using the
. We'lght.ed and Robust regression are useful for extonded mixturs model 6. use 2 PCA model of
estlmatlng EMSC model coefficients desired factors interferences intra-class variance to
. characterize the clutter
» EISC and EMSC show promise / )(_ l
* based in ILS and CLS respectively x=[c t][S P] +e X = x(] - PPT)
epo
* spectra interpretable, relevant/predictive variance O T -1
P P p [¢ t]=x[s P][s P]'[s P])

brought to top (scatter artifacts removed)

115 116



& Near IR Data
& Octane Rating by NIR Spectroscopy

[ JOlive Ol Classification by R

Wil PLS Data from Slurry-Fed Ceramic Melter (p|

B Figure 1: Calibration X:

OliveOilData.mat
Four classes
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Humber PCs:| 3 Ah> St

Percent Variance Captured by PCA Model
Principal  Eigenvalue % Variance % Variance
This PC Cumulative

<- Suggested

Samples

OliveOilData.mat
PCA of xcal
w/ mean-centering

/Scores Plot of Olive Oil Calibration

025
Scores on PC 2 (9.56%)
v CMarg
0.2 vw + Com H
u Ole
015 v . saff i
[Warning: This mods| appears to have some unusual Q residuals. Please 1232
residuals and Q contributions using the Scores plot and determine if these &
samples are errors that should be removed. If these are not errors, consider © 0.1 J
a b ! ~
— S
o +
§ 005 . J
2
g " w
@ 0 n
v v
[ ] *
<005l af g* 1
L
L]
01 . . + . . .
118 03 02 01 . 02 03 04 05
Scores on PC 1 (82.76%)
Samples/Scores Plot of Olive Oil Calibration
0.25
Scores on PC 2 (9.56%)
v CMag
02 B & Com
- o esults
0.15. v + Saffl
g
8 . .
e o1l OliveOilData.mat
o
Q N PCA of xcal
& 005 - w/ EPO and mean-centering
8 n N
3 ++ .
& o n Samples/Scores Plot of Olive Oil Calibration
7 0.25 T T T T
+ Scores on PC 2 (12.11%)
i 02 v CMarg
T + Com i
wv m Ol
0.1 . . . . . .
03 02 01 [ 01 02 03 04 o 015 + Saff H
Scores on PC 1 (82.76%) b
g os i
N
[¢]
g
S 005 i
g
8 it
@ [ *, ES
0.05 ".' i
try it with the test data too.... o . L
0.2 015 -01 -0.05 005 0.1 015 02 025 03
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Scores on PC 1 (83.58%)
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Why 1 PC for EPO Model?

How would the number of EPO PCs be determined?

8no Preprocessing X-block

Avaiablo Mnods [ Selctod Monods toad || sove

Abgolto Vae <one>
Lo

octiod pans) Eigenvalues for Olive Ol Cabration I

niod Laast Sauaros) as

o (Sauion oo e N |

8 N |

EVSC Extendea Scatter Coracton) B i
g

EPO Fito!
GLS Wi

Iog(eigenvalues)
/

T+ ¢+ w u w1 %
Principal Component Number

<-Romove

Fomove moan tesponss fom each oase
> ((vow)

show | ok | [ camcel
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Generalized Least Squares (GLS)

* Generalized least squares (GLS) is a weighted
version of the classical least squares (CLS) model

Xy = clxKSIT(xN te,y
CLS GLS
ee’ = (x - cST)(x— cS” )T eW e’ = (x —cS7 )W;l (x —cST )T
d(ee”) c=xW'S(S"W.'S)"

— =-28"(x-¢e8")=0

= (x—1x" )W 'S(STW's)"
c=x8(S’s)” o= (x-IXJWIS(SW.'S)

W, = (X, -1x7) (X, -1x7)

c

clutter covariance matrix /

EIGENVECTOR

L&\ RESEARCH INCORPORATED
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Preprocessing as Part of the Model

* Generally, preprocessing is applied prior to the modeling step
(e.g., PCA, PLS)

* Some models include preprocessing as part of the model e.g.,

* Maximum / Minimum Noise Fractions (MNF)

* Green AA, Berman M, Switzer P, Craig MD (1988) IEEE Trans Geosci
Remote Sens 26:65-74

* Maximum Autocorrelation Factors (MAF)
» same model as MNF, but clutter is defined differently
* Generalized Least Squares (GLS)

« Aitken, A., "On Least Squares and Linear Combinations of
Observations", Proceedings of the Royal Society of Edinburgh,
1935, 55, 42-48

2 # s EIGENVECTOR

EIEJ RESEARCH INCORPORATED

CLS vs. GLS

* Comparison of CLS and GLS models

x, =xW."?
X=Cs" S, =W"’s
¢=xs(s’s)’ ¢=x,8,(8's,)’

Weighting by the inverse square root of the clutter covariance reduces the
GLS model to CLS with weighted measurements and spectra i.e., it is a
preprocessing step! The weighting can be viewed as a preprocessing step
i.e., a pre-whitening.

-1/2
X, = XW_"'" can be used w/ PCA and ILS models (PLS, PCR)
N.B. Gallagher, "Detection, Classification and Quantification in Hyperspectral Images using Classical
Least Squares Models," in Techniques and Applications of Hyperspectral Image Analysis, H. F.
Grahn and P. Geladi, eds. (John Wiley & Sons, West Sussex, England), 181-201, 2007.
H. Martens, M. Hoy, B.M. Wise, R. Bro and P.B. Brockhoft, "Pre-whitening of data by covariance-

weighted pre-processing," J. Chemo., 17(3), 153-165 (2003). EIGENVECTOR

124
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Channel 2

How the Whitening Works:
Target Projected onto Clutter
Directions

target response

Channel 1 <_/

PCA of (correlated) clutter

125

Channel 2

PCA of (correlated) clutter

127
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Whitened Signal

the "whitened" signal is shorter
(lower magnitude) - loss of target

target response signal

Channel 1 clutter now is "white" all directions have

similar variance

Scale Target by Clutter

target response

Channel 2

Channel 1
PCA of (correlated) clutter

126 # s EIGENVECTOR

4 RESEARCH INCORPORATED

Olive Oil Clutter

Eigenvalue distribution of the within class variance.

x10° Eigenvalues for Olive Oil Calibration
3

|

The large eigenvalues are associated with directions that
will be de-weighted.

2.5

Don't want to include variance associated with target
of interest because this variance will be de-weighted
resulting in loss of target signal.

This whitening process is referred to as "multiplying by
the sqrt of the inverse clutter covariance".

[

Try PCA with whitening: GLS weighting > GLSW

0.5

Principal Component Number

128
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B Analysis - PCA 2 PCs - Olive Ol Call i
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ile Edit Preprocess Analysis Tools Help FigBrowser

B VIR |

OliveOilData.mat w/ GLSW (default
declutter parameter) and mean-centering

)

A

ble Methods.

Selected Methods

—

SSQ Table

Calibration

- Transformations ---
\Absolute Value

10
Transmission to Absorbance (log(1/T))

(GLS Weighting (classes.alpha 0.02)

Declutter Settings

- Fiering - S
([Fumber PCs: | 2 At SoBet Bassline (Specified points) ol ° hide
. Baseline (Weighted Least Squares) ‘automatic
Percent Variance Captured by PCA Model Derivative (SavGol) T
Principal ~ Eigervalue % Variance % Variance ren
Component  of Cov() This PC  Cumulative l EMSC (Extended Scatter Correction) © x-block classes oil
1 2.142-002 oo Wei ok
3, [Kaiser HoloReact Method Edi
ER " (OSC (Orthogonal Signal Correction)
H 5 [Smoothing (SavGol)
s N 0 N Aigorithm
. N \--- Normalization ---
4.742-005 0.18 gg9.50 lgnore Clutter Mean
2.81e-005 0.11 99.70
1.89e-005 0.07 98.77 Remove Mezn on Apply.
1.672-005 0.08 oe.83
A 727=_0n on cg s ;‘-ﬁicsi::g and Centering --- Ooisw
Warning: This model appears to have some unusual Hotel|[ Group Scale Declutter Threshold: 002

review TA2 and T contributions using the Scores plot and
samples are errors that should be removed. If these are ng

Log Decay Scaling
Mean Center
Median Center

Less [ | 1 more

EPO/EMM/ELS

EMM/ ELS (Full Rank)

Show
X L ¥
— oK Cancel Help
#%= EIGENVECTOR
129
4 RESEARCH INCORPORATED
8no PLS_Workspace Browser
File Edit View Analyze Help FigBrowser
- L& zd
Curent Folder: | /Users /Neal /Documents/MATLAB j (=)
‘Analysis Tool: [ Workspace
o Worapace Vs es e

¥ 5.4 FAVORITES Bytes

- Dataset Editor

L+ Getting Started

L+ PCA - Principal Component Anal
» £ DECOMPOSITION

xeal <a6xS18 dataset>
 xtost <4dx516 dataset>

reozes
20131 s

> s
» Model Cache 0.009
> ] Cache - “general” LNEAGE View (- = Not Avaiable) oo
" > Cache Settings and View
» X TooLs No Cached Data Avaiable 0015
» £J IMAGE PROCESSING v & Demo ban
» 2 HELP
? Alcoholics Biological D
i FGENGUDE ONUNE VoS e B e e o0 B
L " 0,025
we Samples/Scores Plot of Olive Oil ¢ °
e 02 008 *
Y Predicted 2 (Com,Olive, Saff) .
0,035
v CMarg v, B
+ Com s 0.04 N
m Ol * 005
L+ saff *
* 08
o TsC O oW o7 07 0% o0 w0 G0z
A TAmnd f ]
%  TCMarg
e TCom
v Toiwe
+ TPeant 5 4
o TSaffi
+ TSesme
e TiC o o
A T20C ) g+
% T30C * .
* @
© T4C
LN A
0,05 . . . . . . v
131 -0.2 -0.15  -0.1 -0.05 o 0.05 0.1 0.15 0.2 0.25

Scores on PC 1 (81.89%) CH INCORPORATED

Scores on PC 2 (9.56%)

Samples/Scores Plot of Olive Oil Calibration

0.25
Scores on PC 2 (9.56%)
v CMarg
0.2 vw + Com G
. o LSW Result
0.15| v . Saffl esu s
01l OliveOilData.mat
N PCA of xcal
005 - w/ GLSW and mean-centering
| ] +
0 n +* Samples/Scores Plot of Olive Oil Calibration
T 0.2
Scores on PC 2 (16.13%)
oos. ™ ﬁt; v v CMarg
| | N + Com
[ ] . 0.15 m Ol H
R Y a— 0 0.1 0.2 03 04 _ + St
Scores on PC 1 (82.76%) B
s o1 i
«
4
& o0 i
o
&
&
0 e
&
-0.05 r r I r I I
02 -0.15 -01 -0.05 0.05 0.1 0.15 0.2 0.2¢
Sccr;s on PC 1 (81.89%)
130 EIGENVECTOR
@\ RESEARCH INCORPORATED
Inverse Clutter Covariance
¢ The SVD can be used to obtain the inverse of the clutter covariance
.

132

Interpreting the inverse isn’t necessarily intuitive

= VATV’
WA =VAAV!

(X~ 151 (X, 15) W' = (VAVT) = (V) Ay
= VAV’

N RESEARCH INCORPORATED
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Scores on PC 2 (29.26%)

Regularization

If an inverse doesn’t exist or is ill-conditioned
regularization is necessary.

* ridging

* D diagonal

cov_cv(xblockl .data)

W'=V(A+a) V'
W'=V(A+D) V'

cov_cv(raman_dust_particles.data)

300x20 120x1025
10° L
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Median Center
[ Mutiway center
Mutiway Scal

ook M Y| lok
Available Methods Selected Methods

GLS Weighting (classes alpha 0.02)
an Center

<end>

Center

SNV is designed to remove

magnitude information

Add—>_||[<=Remove] | w Settings

[ o ][ canca |

v | [ show Excluded

EPO & GLS Weighting Results

» EPO and GLS weighting can be viewed as
complimentary approaches

* both are designed to account for clutter / interferences

« EPO is a strict orthogonalization - directions associated with
clutter PCs are completely removed from the data

* GLS de-weights the clutter directions

— clutter PCs with very large eigenvalue compared to the rest are

effectively removed

— directions associated with medium eigenvalues remain but are

de-weighted

* neither is designed to account for magnitude differences
that might make a class cluster spread out

136
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Comparison Between

EPO and GLSW

xn*

Eigenvalues for Olive Oil Calibraion

EPO

inv(sqrt(Ev))

/’

~ GLSW

T~

GLSW doesn’t throw out eigenvalues.

g B
Principal Cormponent Nomber

*

i

Directions associated with big clutter
eigenvalues are down-weighted.
If all were ==, there’s no down-weighting.

137

max

Effective Ev for EPO

Regularized 1/5q(E¥)

16

]

EPO throws out biggest
eigenvalues. Others set to 1.

MNF Derivation

Rearranging results in the

T
X, v

i

i

T
;#0
viz0 | v, K.V,

The objective function is a

scalar function.

Taking the derivative wrt v,

and setting to 0 gives:

v, (VE)-Zov, (VZ)

(VEev,)

139

MNF eigenvector solutions.

V‘T ZyVi
ZXV[ - ( v;"E[‘vl ZCV[
Y v.=AY v ggneralized
X i i=C i eigenvector problem
-1 — eigenvector problem
ZC ZXVi - /livi B .
with non-symmetric
matrix (there is a trick to
— 0 convert to a symmetric

eigenvector problem)

EIGENVECTOR
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Maximum Noise Fractions
Minimum Noise Factors

* MNF attempts find directions in the data that
maximize the signal-to-clutter.

X, measured data with mean x,,,
X, v clutter matrix with mean X,

_ 1 7\ _r . .
ZX—m<X—1X )T(X—lx ) signal covariance
p) =;(X —liT) (X, —1x) clutter covariance
C (MC—I) c 4 4 4
T
max| Ve the objective function
vzl ViTZCVi J
P EIGENVECTOR
L#\Z RESEARCH INCORPORATED
MNF vs PCA
PCA MNF
T
max(v;, X, V. T
objective function vz¢0( e ’) max %
subject to v!v, =1 w0 Vi By,

eigen-problem XV, =4y,

with clutter T8 Ty, = Ay,
(GLSW)

Gallagher, N.B., Shaver, J.M., Bishop, R., Roginski, R.T., Wise, B.M.,
“Decompositions with Maximum Signal Factors,” J. Chemometr., 28(8),
140 663671 (2014), DOL: 10.1002/cem 2634.
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Quary

Example: ARCH

* 10 Variables: metal concentration (ppm via XRF)

* 75 Samples:

* 63 obsidian samples from 4 quarries (known origin)
« used to calibrate the models

« center each cluster to own mean to estimate clutter

* 12 artifacts (unknown origin)
« which of the 4 known quarries do they belong?

* Data Matrix X is 75 by 10

#x8 EIGENVECTOR
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arch.mat RESEARCH INCORPORATED
Plot data Plot data
Plot:Rows Plot:Columns
View:Classes:Quarry View:Classes:Quarry
View:Labels:Element View:Labels:uncheck
1800, 1800
Fe
1600, J ° ZTSSS 0 +§4+ - *ﬁ*: e
| 1600 |- v K . N o 4
1400 q + BL +
m SH +
120 1 1400 + AN 1
100( &
o '
w L]
600 °e
»
200 L1} v
200 ° s
* L]
&0 0 a0 a0 4 80 0 70

Variable

143

Sample
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Example:
PCA of the Arch data set

)
File Edit View Analyze Help FigBrowser
W oD# =@

uron Pkt JUsers [Neal [Documents/ MATLAS

Be @

Analysis Tools

[ Workspace

Topics (double cck 1 open)
i

[ Click to import Vaggdation X-block da v i FAVONTES
|

= - Getting Star
Auto Select L+ PCA - Principal Component Analyss
- "DECOMPOSTION
it Variance Captured by PCA Model » # REGRESSION

Eigenvalue % Variance % Variance
of Cov() This PC Curnulative

) CLUSTERING

[info| Data| Row Labels | Column Labeis |

= Hame: axch
ATl Author: axcheologit
lo:
Jf  Dts Cass:doukle Size 7Sx10] Ickiect 75x10] —
= BL mype: data History: g

Created: 11-May-2001 11:19:45 nl
Modified: 11-Mar-2009 14:41:55

Description:

>

laxchd: XRF measurements for 10 elements in obsidian samples.
axchd 75x10 concentrations for 10 elements.

‘Sarmples 1 to 63 are for samples from known quarries.
Samples 64 to 75 are for samples from unknown quarries

||[BR Kowalski, TF Schatzki, FH Stross. Classfication of
rtifact;

¥
utn trace element date. Anal. Chem ; 1972; 44(13); 2176-210.
I
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Preprocessing X-block

+ B Cache Sttngs and View
v 5 pemoaa
@ Aconolics Biological Data
N 9 minoacid uorescece eevs

Current Workspace Variables
Neme Value sytes

| Model cache

@ NR of Pseudo-Gasolines 18

...\PLS_Toolbox\dems\Arch.mat
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Calibration Available Methods.

Preprocessing: Calibration X Block (cli:
Mutoscale
Number PCs:| & | . c0e0

Percent Variance Captured by PCA Model
Principal ~ Eigenvalue % Variance % Variance -
Component  of Cov(X) This PC Curnulative Baseine (Specified points)

Least Squares)
1 5.252+000

Absolute \Value

Log
Transmissionto Absorbance (log(1/m))

Derivative (SavGol)
Detrend

2 ren
3 [EMSC (Extended Scatter Correction)
z PO Fiter
(GLS Weighting
M IKaiser HoloReact Method
é (OSC (Orthogonal Signal Correction)
7 'Smoothing (SavGal)
8
s - Normalization -
MSC (mean)
Normaiize

.60=-002

A model has been calibrated from the data. Review the model using

button(s), save the model (File menu), or load test (validation) data (f

number of components, preprocessing options, and other settings c4l|[— Scaing and Centering -
Autoscale

(Group Scale

Log Decay Scaling

Mean Center

Median Center

Mutiway Center

Mutiway Scale

‘Sart Mean Scale

- Other -
1 Loop.

Selected Methods

<end>

m

hoa— ||[oremone] [ Jloonn]  [Setiogee

[ ok ][ camca |

144 B

¥ ] ['show Excluded
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Scores on PC 2 (20.78%)

Plot the Scores

Samples/Scores Plot of arch

4
Scores on PC 2 (20.78%
Plot scores L * T ® Classo
K
Select PC 2 vs PC 1 * M M-
No Confidence Limit 5 2 v ¢ | & s
P> + +
Insert Legend g . L v
. - g 1l ]
View:Spawn Static View by geo T
o
T oo £ 4
A PR
o . ° b+
8 Ak " e o ;**,
2. .
2l - |
°r 3 E) E] 1 2 3 4

Scores on PC 1 (52.52%)
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PCA vs PCA w/ Whitened Data
Samples/Scores Plot of arch ‘Samples/Scores Plot of arch
4 0.15
: .
N Scores on PC ¢ Scores on PC 2 (31.18%)
3 N v @ Class0 ® Class0
* v Vw v K 01 v K
vv + BL + BL
2| v ® m osH _ = sH b
+ B v + AN B + AN
e 9 = 005
1k ‘ 'Y * - % L]
o
* a E +
+ + < 3 +
o o o4 S
+
Fug . R & - Tt
EIN L] ] g ° +
3.
+# -0.05 ;.
-
2L . 4 [
3 N N . . N , 01 . . . . .
-4 -3 -2 -1 1 2 3 4 -0.2 -0.15 -0.1 -0.05 o 0.05 0.1 0.7
Scores on PC 1 (52.52%) Scores on PC 1 (54.68%)
7 EIGENVECTOR
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R Ny
TR

FEile Edit Preprocess Analysis Tools Help FigBrowser

PR RV |
j Clutter |

B PCA of "whitened" data
Clutter covariance based on intra-

h class variance
!

B Preprocessing b_ =E)

Calibration

I
\l” Available Methods Selected Methods Loaa | [save || ‘
iew | ssaTable | Transformations — T llerswe ® O ) Declutter Settings.
bsolute Value Mean C|
Number PCs:| 3 Atk Seioct lLogt0 Cluter Source hide
. Transmission to Absorbance (Iog(1/T)) o
Percent Variance Captured by PCA Model (o) CITITD
Principal ~ Eigenvalue % Variance % Variance ||[-- Fitering —- O ybiock gradient
Component  of Cov() This PC Cumulative [Baseine (Specified points) (®) xblock ciasses Quany r
Baseine (Weighted Least Squares) = -
1 7.10=-003 . Derivative (SavGol) O extemal data
. Detrend -
El N [EMSC (Extended Scatter Correction) Ll =
3 1 EPO Fiter
: . (GLS Weighting
i oo é'sa o Kaiser HoloReact Method b
- . . (0SC (Orthogonal Signal Correction)
1.122-004 0.86 ©8.04 Smoaothing (SavGol) (¥ 1gnore Means (mean conter)
©.642-005 0.74 8.7 =
8.832-005 0.68 ©9.47 (-~ Normalization -—- -~
£g5e-0 LS3___100 00 ~ Docutter Thresnokt: | 0.02
Warning: This model appears to have some unusual Q re: Less[ ™D |
residuals and Q contributions using the Scores plot and d|
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s < O ero
O
O Emm/ELS
Sart Mean Seale (O None (disabe fiter)
|--- Other --- o [ ok ][ cancel | [ hee |
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PCA vs MNF Scores

PCA scores MNF scores
scores for calibration set are orthogonal scores for calibration set are oblique
loadings are orthogonal loadings are oblique
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-20

-25

-30

-40

PCA pre-whitened vs MNF

PCA scores after GLS weighting MNF scores
scores for calibration set are orthogonal scores for calibration set are oblique
loadings are orthogonal loadings are oblique
15
:w 10 'M
w,
Yvo N

A

s ©
M ’ "
affi 4
o 0 v A : ngﬁ\oivéﬁ“i
- b |

10
-15
o uknown o uknown
® K 20l e x
= BL = BL
v SH 25t v osH
A AN o A AN
3 -30
30 20 -10 0 10 20 30 40 30

1499ArchMNFGLS.m
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TOF-SIMS of Time Release
Drug Delivery System

* Multi-layer drug beads serve as a controlled-
release delivery system

* TOF-SIMS measurements of a drug bead
embedded in epoxy and sliced to expose the bead
cross-section

» Examine integrity of the layers and distribution of
ingredients

Thanks to Physical Electronics and Anna Belu for the data.
AM. Belu, M.C. Davies, J.M. Newton and N. Patel, “TOF-SIMS Characterization and Imaging
of Controlled-Release Drug Delivery Systems," Anal. Chem., 72(22), 5625-5638, 2000
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Maximum Autocorrelation
Factors for Multivariate Images

* For MNF, the clutter was intra-class variance
» For MAF, the clutter is the first spatial difference

« the first difference should be high on edges and just noise
w/in clusters

* the result is the same generalized eigenvector problem as
MNF with different clutter X

T.A. Blake, J.F. Kelly, N.B. Gallagher, P.L. Gassman and T.J. Johnson, "Passive detection of solid explosives in Mid-IR
hyperspectral images," Anal Bioanal Chem, 395, 337-348,2009.

N.B. Gallagher, J.F. Kelly, T.A. Blake, "Passive infrared hyperspectral imaging for standoff detection of tetryl
explosive residue on a steel surface,” Whispers 2010, June 14-16, Reykjavik, Iceland
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...\EVRIHW\Avicel.mat

PCA used Poisson scaling
and mean centering.
MAF used no additional
preprocessing.

Both models have a sign

ambiguity:
X =TP = (-T)(-P")

152
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General Centering and Scaling

X=w" (X -1’ ) = general centering and scaling

X, measured data L. center

Wi, sample weighting £, variable weighting

Z=I W=I U=0 nposcaling

r=¢> W=I UL=X diagonal (autoscaling)
=W W=I u=¢ GLS weighting

50 100 150 200 250

RGB images after auto-contrasting

MATF can be applied to time-series as well. r
Other models include principal autocorrelation factors, maximum difference factors. 2C = m (C — 16) (C — 16) clutter covariance

Cu.v measured clutter matrix

. &% EIGENVECTOR . Gw  clutter mean #M EIGENVECTOR
L@\7J RESEARCH INCORPORATED L@\ RESEARCH INCORPORATED
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Data: Arch

Analysis: PLSDA
PLS-DA on ARCH Prr:;)ryosissing: I-norm, Blrepocesngxoos LI ‘

— e - :
1 Analysis - PLSDA (No Mode)“arcn I [l e GLSW, mean-center ‘Avaiablo Mothods [t || setetoutotnose =
- i B PLSDA Class Groups = ~Fomatzs i o A
File EdjjPrepeqcess Analysis Tools Help FigBrowser — — T ——] jpha 0.02)
Rt = Help FigBrowser ~ 800 Log10 IMean Center
File Edit Preprocess Analysis Tools Help | |f Transmissionto Absorbance (log(1/))
Available Classes Class Groups EORY R L. Fiering - © O 7 Declutter Settings
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i :g;’,‘:ﬂ“ (Savea) O avtomate
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. \ \ Number LVs: | Smoothing (SavGol) -
Click the 'bent arrow' to e vrisnce cpsnces oy Wl eomaaon E Load | [ Ed
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Data has been loaded but no modal exists. Set the preprocessing and other [ sow x J[| O
options (from the Preprocess and Tools menus) and calibrate a model (Calibrate o BE3 21 <| O tone (aisavie fiten
button). The data can be viswed and edited with the Edit menu i
L oK J L Cancel J L Help J
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£, e PLS-DA NIR Shootout 2002
2ol e Rt on Arch + Estimate assay value from NIR transmittance of
AR o LI G tablets 600 to 1898 in 2 nm increments
e o * It's fairly casy to see which classes « http://www.idrc-chambersburg.org/shootout_2002.htm
1 1 the samples might belong. o ’ — ’
. £ * Calibration (155 samples), Test (460 samples)
< g - » Samples that don’t belong to any -
é " . e 2. class have high Q (selected points).
= “ﬁ _-.-_*',.':. gl & e Ty calibration data
* San;:le ° * San:;le ° g
s a Zl’nﬂmdi(ﬂm E/D
Z i h
% : &nm«md)
E . :];::(‘?:Md, Selected)
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Predicted

RMSEP on Validation Set

Assay SavGol-2,SNV GLSW

@
& _ .
2
230 2 o 2
2201 ‘3 S > E Q
] z Z o >
210 ] G Z o z
< G 5 @
200} > < 4 8 I
° ° = S 2 4 3
190 < > O ] 3
< = 1]
° -9 S & E
180 = iz 2
170 o 2
RMSEP =2.7
10ouggs © o
00 o0 70 T80 w0 20 2i0 20 230 290 30
’ Preprocessing Method
Measured

several of the simple approaches perform
better than more complex pre-processings
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“Window” Methods - Filters

» Savitzky-Golay with derivative
set to 0 is just a box-car average

* Box-car averages and other "
piece-wise (wavelength-
localized) methods are filters i

* Many preprocessing methods 1

can also be done in a g0
windowed” /piecewise manner  *°
* OSC, MSC, continuos 02
wavelets,. ... o=
. Many can be employed using %0 w0 00 To0 1200 1300 1400 1500 1600
Variables

convolution but some can not
¢ median, max, min, ...

EIGENVECTOR
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Summary up to now

¢ Centering and Offsets
« choose appropriate "center" for the objective

Normalization (removes magnitude)
SNV, MSC (removes magnitude and offset)
Baselining, Savitzky-Golay (high pass filter)

.

.

.

EMSC (filter plus removes magnitude and offset)

.

Autoscaling and Weighting

« can be used to de-weight unusual variables, samples or directions

ELS / EPO and GLS are complimentary procedures used to account for
clutter

* clutter needs to be characterized

* not appropriate for everything - it does reduce net analyte signal

« get rid instrument related problems first (may be simple) and then account for sampling related
problems

EIGENVECTOR

te4 LIAEJ RESEARCH INCORPORATED
SavGol as an Operator
%2 = specl.data(l,:)+0.4+0.001*mncn (specl.axisscale{2}')"';
[d1l,d] = savgol(x2,11,2,2);

pcolormap (fliplr (full (d)))
d_201 = full(d(:,201))"';

dl = x2*d;

004 o

0.15 ooe|

d is a banded 0.03
diagonal 0.1 i
0.02 Py

0.05 o

0.01 w0z i s e @0 22 an 26 aw 2

c . . .

50 100 150 200 250 300 350 400
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Derivatives via Convolution

* convolution =
* fis the spectrum
* g is the point source function H(v)=F(v)-G(v)
for the derivative
>> d = [d(201l:end), d(2:201)];

* h is the derivative
e F, G, H are respective Fouier tranforms

& EIGENVECTOR
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Filters

* Savitsky-Golay
» For derivatives OR smoothing (noise reduction)
» Fourier

« Remove high-frequency (noise) or low-frequency (baseline)
components

* Typically- NOT “windowed” but can be
« Position (wavelength) information not considered
* Wavelets
» Extracting information by BOTH frequency and position
+ Allows BOTH feature selection and pre-processing!

« filters that are based on window-size (scale)
« orthogonal and oblique basis functions can be used

A

& EIGENVECTOR
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LINE_FILTER

Compare SavGol and FFT

xf = line_filter(specl(l,:),d);

xfu = line filter(xf,d,struct ('

conv', 'deconvolve', 'reg',le-11));

plot (specl.data(l, :)-mean(specl.data(l,:),2)), hold on

plot (xfu.data(1,:), 'r—-")

N\

A SavGol 2nd D Spectrum
0.0151 ————— Convolution with 2nd D Operator

Original Measured Spectrum

———— After De-convolution

Weakly Multi-Way Models

data from a single batch operation

1
x 10

25
@ 2L - R ~ e
P SR -
e
5 15
5
«
3 1
2
2
2
©v 05
OISR A v
0.5
20 40 60 80 100

Process Time

©Copyright 2005-2017
Eigenvector Research, Inc.
No part of this material may be
photocopied or reproduced in any form
17Gvithout prior written consent from
Eigenvector Research, Inc.

each process variable is a column
of a data matrix

IJXK
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Weakly Multi-Way Models

data from multiple batches are data can be rearranged to two-way arrays
logically arranged into a cube in different ways (two are shown)
K arrangement for Multi-way

g —
PCA (MPCA)
each variable trajectory

. logically arranged in blocks
. I R R

Batches x Variable*Time

IxIxK 1UXK

Batches x Time x Variable Batches*Time x Variabl

171

Block / Group Scaling

* Autoscaling increases variance on irrelevant variables
* e.g., during overetch (T>70) where little of interest occurs

IxJ

—
o . I N R
*Scaling each of k=1,...,K blocks corresponding to a i —

IxJ set of trajectories for an individual variable
* retains the relative variance within each variable’ s block IxJK
» weighs each IxJ variable block equally Batches x Variable*Time

Autoscaled Block Scaled

EndPtA
EndPtA

50 60 70 %0

o
Time Pt

& EIGENVECTOR
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AUTO, GSCALE

Weakly Multi-Way Models

centering: centers to the overall centering: centers to the variable
variable mean mean trajectory (mean at any time)

autoscaling: scales to overall autoscaling: scales to deviation at
deviation about the overall mean each process time

each column is a

single variable I E— —

IXJK

each IxJ block
corresponds to a
single variable’ s
trajectory

IIxK

K.
| |
172 »
| ¥

EIGENVECTOR
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Block / Group Scaling

» With blocks of different variables, may want each

block to have the same variance
« Example: data set with NIR spectra and GC data and a
collection of engineering variables, T, pH, P, Q etc.

 Variables within each block may be autoscaled or
just mean-centered

* Determines a factor to multiply each block by so
that total sum of squares (variance) is the same for
each block (each variable)

see GSCALE
174
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Overall Summary 1/2

» Centering used when entire data set has an offset

» Background subtraction is used when the offset varies sample-to-
sample

» Column scaling can be used to weight variables
« changes relative contribution to least-squares model
* autoscaling (includes centering), Poisson scaling

+ Filters attempt to remove (or partition) variance
into different signals
« want signal of interest to pass the filter

« Savitzky-Golay, FFT, wavelets, ...

52 # 8 EIGENVECTOR
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Perspectives on Preprocessing

* Order matters. The general approach is:
1. Background and offset removal
2. Normalization
3. Centering
4. Scaling
 Always keep in mind: “what is each preprocessing step
supposed to be doing?....”
» Plot data after pre-preprocessing

* Always compare the effect of the pre-processing
(RMSECV/RMSEP!) with the results from a model based
on the raw data

184

Overall Summary 2/2

* Modeling paradigm

* design experiments to find signal AND
» design experiment to characterize clutter

* When clutter can be characterized, then...

* replicate samples with target not varying
 off-target pixels in MIA
* variables selective for clutter

* Models can explicitly account for clutter

» Extended mixture model uses explicit interference factors
« used in EMSC, ELS and EPO

» Generalized least squares (GLS) weighted de-weights directions of
high clutter (pre-whitening)

» Generalized eigenvector problems (e.g., MAF, MNF)

# s EIGENVECTOR
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Pre-processing will offer...

* Models with better predictive performance (lower
RMSEP) and/or

* Simpler models that are more robust and/or more easy to
interpret

* But there is a risk that you can remove useful information
from data

* The preprocessing itself can be overfit

« Are the GLS weightings or interference factors relevant for future data? Use
adaptive models for clutter?

* Pre-processing is seldom capable of saving a poor model

but often makes a good model better
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