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Course Materials 

•  These slides	
•  PLS_Toolbox or Solo 8.2	
•  Data sets	

•  From DEMS folder (distributed with software) 		
•  plsdata.mat (SFCM), arch.mat, paint.mat	

•  From EVRIHW folder (additional data sets)	
•   NL_tank_data, tecator.mat, nlmethods.mat, NIR_sugar.mat	
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Why non-linear methods? 
!
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•  Linear methods such as PCA and PLS are nice 
for several reasons 
1.  Well-defined algorithms 
2.  Reasonably fast 
3.  Nice graphics 
4.  Easy interpretation 

•  ’Smart’ way to handle non-linear problems is 
therefore to try to turn them into linear problems 

Why non-linear methods? 
!
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About non-linearity!
•  Above all: 

•  Severe non-linearity is not seen in practice that often (local models) 

•  If the data show non-linear behaviour 
•  PLS is capable of handling mild non-linearity problems 

•  Stronger non-linearity 
•  Include cross terms of X variables 
•  Modify the inner relation to e.g. a polynomial or splines 
•  Focus on local linear ranges: locally weighted regression 

•  Serious non-linearity 
•  Use more powerful tools like neural networks 

(take care of overfitting!) 
8 

Linear method (MLR, for example) is a good 
model for this relationship: 	
 

Example of linear relationship!
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Example of non-linear relationship!
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But what if  the dependent variables of interest 
depend non-linearly on X:	
Examples: y = x2,  y = log(x), y = sin(x), etc.	

y ~ x2 

Example of non-linear relationship  
!

10 

Linear method (MLR) is not so good 	
when the x and y data are non-linearly related. 	

Sometimes you can transform the x or y variable so that there 
is a linear relationship between the transformed x and y. Then 
use linear methods on the transformed data. 
 
A. Transform the y variable  

•  y* = G(y) 
•  Apply method to (X, y*). E.g. MLR: Xb = y*  
•  Reverse transform to get y = Ginv(y*). 
•  Example transformations: log(y), sqrt(y), -log(I/I0), etc.  
 

Or, 
B. Transform the X variable 

•  or augment X with non-linear transforms  

Variable Transformations!
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Use linear method (MLR) to predict a transformed form of y, say sqrt(y).	

Transform y!

y*=sqrt(y) 

y ~ x2 
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This linear method predicts the transformed y, y*=sqrt(y), very well. 	
Then reverse transform y* predictions to get real predicted y.	
 

Transform y!

14 

Recovered y prediction looks good.	
 

Transform y!

15 

Load data into analysis window	
 

Try it!!

>> load nlmethods.mat 
>> mlr 
 

16 

Calculate model 

Try it!!
Plot predictions 
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Not too impressive 

Try it!!

18 

Change preprocessing of y 

Try it!!

19 

Change preprocessing of y to y½ 

Try it!!

Do the predictions improve? 

Transform X and retain MLR!

20 

An alternative to transforming y is to transform x, or add new x 
variables which are non-linear transforms of the original x 
variables. Then apply linear regression using augmented x. 
	
This is still a linear method in that the non-linearity is captured 
by adding non-linear variables and maintaining a linear 
regression model.	
 

Augmenting x with squared terms 
allows MLR to capture the quadratic 
relationship between x and y. 	
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Polytransform  
!

21 

Using Browse window to augment x with squared terms or do it inside the gui:	
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Squares = ‘on’, others are off.  Click ‘OK’ and save as ‘xpolytrans’. 

Polytransform  
!

Apply MLR to polytransformed x  
!

23 

Use Analysis window with MLR on xpolytrans and y.	
Use “Plot scores and sample statistics” plot to show y predicted versus y measured. 

Factor based transforms!

24 
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Many Variable Data Sets!

•  Using polytransform expands the number of 
variables 

•  Especially cross terms — n variables have  ​𝑛(𝑛
−1)/2  paired cross terms. (If n = 200, # cross 
terms = 19,900) 

•  Increases likelihood of overfitting the data 
•  One solution: use PCA first then apply transform 

to the scores 
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Tecator NIR calibration example!
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Borggaard, Thodberg, Analytical Chemistry, 64 (1992) 545–551.	
Thodberg, IEEE Transactions on Neural Networks 7 (1996) 56–72.	
http://lib.stat.cmu.edu/datasets/tecator	
 

215 finely chopped pure meat 
samples measured by Infratec 
Food and Feed Analyzer.	
	
	
Nonlinearity is exhibited 
between the spectra and the fat 
and moisture content. The 
protein content only 
demonstrates weak nonlinearity. Wavelength [nm]
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Tecator: Build PLS model!
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Predict fat	
	
Do first derivative and 
centering	
	
Any signs of non-linearity?	

Tecator: Try a nonlinear variant!

28 

Add squares and crossterms. How many variables are 
there now?	
	
Excessive amounts. We need a more sensible approach	

Note the message. You will need 
it to get the original data back	
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Tecator: Try a nonlinear variant!

29 

Double click here to get original data back	
	
	
	
	
	
	
Build a PCA model with enough components*	
	
	
	
* Not important to use the right number, just make sure all relevant variation is included – be optimistic!	

Tecator: Extract scores!
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Make a score plot and open scores in Analysis	
	

Make sure that only scores are 
selected. In fact, hard delete 
the rest.	
	
Do squares and interactions	
	
What preprocessing?	
	

Tecator: Is the PLS model nice?!
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If not, then try to see if variable selection can improve	
	
Possible set aside a test set	

Y Measured 1 fat
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R2 = 0.995
6 Latent Variables
RMSEC = 1.0554
RMSECV = 1.2219
RMSEP = 1.016
Calibration Bias = 1.7764e-14
CV Bias = 0.048009
Prediction Bias = 0.11402

Tecator: Overfit!

32 

 	
	
Try using just 20% of the data for calibration and ten 
PC’s. How does that work?	
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Locally Weighted Regression!

33 34 

 
Nonlinear relations can often be approximated by a linear 
function on a small (local) scale. 

LWR models work by choosing a subset of the calibration 
data (the "local" calibration samples) to create a "local" model 
for a given new sample. The local calibration samples are 
identified as the samples closest to a new sample. 
 

Locally Weighted Regression!

LWR!

35 

 
 

x 

y 

x1 

 
1-D example showing advantage of locally weighted 
regression over linear regression. Predict y for a new x value.  

(x1, y1) ? 

LWR!

36 

 
 

x 

y Linear regression 

x1 

 
Linear regression is good if there is a simple linear 
relationship between y and x. 

(x1, y1) 
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LWR!

37 

x 

y Linear regression 

x1 

Locally weighted 
regression 

Advantage of locally weighted regression over linear 
regression for more complex relationship between y and x. 

Npts, the number of local points 

(x1, y1) 

38 

Using LWR from the GUI. 
!
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More advanced options  
!alpha: Weighting of y-distances in selection of local points. �

	
	0 = do not consider y-distances {default}, �
1 = consider ONLY y-distances. 	

�
any non-zero alpha = select samples which are close in both the PC space and 
have similar y-values. 	

40 

Build model!
Try on Tecator. GlobalPCR or PLS works best?	
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LWR References!

42 

 
•  Wiki: http://wiki.eigenvector.com/index.php?title=Lwr 

•  Naes, T., T. Isaksson, and B. Kowalski, (1990). Locally weighted 
regression and scatter correction for near-infrared reflectance data. Anal. 
Chem., 1990, 62 (7), pp 664–673. 

•  Wang, Z., T. Isaksson, B. R. Kowalski, (1994). New approach for distance 
measurement in locally weighted regression. Anal. Chem., 1994, 66 (2), 
pp 249–260. 

 

Hierarchical Models!

•  Sort of a "Manual" Locally Weighted Regression 
•  Calibration: 

1.  Build top-level linear model for estimating  
2.  Identify sub-regions of data which are roughly linear 
3.  Build separate (linear) sub-models on sub-regions for 

more accurate estimates in sub-ranges 
4.  Build Hierarchical model which selects appropriate 

sub-model based on top-level model estimate 

•  Example: NL_tank_data 
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NL_Tank_Data!
•  Non-linear tank level control experiment 
•  Input is the voltage to a pump which fills a 

tank. The tank has numerous outlet holes, so 
is somewhat more complicated than a single 
hole 

•  Each line of the calnu data (X) contains the 
last 6 pump inputs (in pulse form) for the 
corresponding level in calny (Y) 
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Level 

Pump 

(hole sizes are not 
accurate as to 

experimental setup!) 0 2 4 6 8 10 12
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Samples/Scores Plot of calnu

R2 = 0.932
2 Latent Variables
RMSEC = 0.85013
RMSECV = 0.85034
CV Bias = 2.0068e-05

High Range	

Mid Range	

Low Range	

Global PLS Model Results  
!
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Low-Range Model Results! Mid-Range Model Results!

High-Range Model Results!

If Q is too large, throw error	

If Predicted Y is > 8, apply "High-Range" model	

If Predicted Y is < 3.8, apply "Low-Range" model	

Otherwise, apply "Mid-Range" model	

Single Layer Hierarchical 
Model!
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RMSEP = 0.28	
(separate set of validation samples)	

Bad Q (no prediction)	
High-Range	
Low-Range	
Mid-Range	

Hierarchical Model Output!
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Hierarchical Model Output!
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Hierarchical Model Output! Add Layer of Output Testing!
If Predicted Y is > 8, apply "High-Range" local 
model and test outputs…	

If Q from "High-Range" model is too 
high, error;�
Otherwise, return High-Range prediction	
	

Similar tests on Low-Range and Mid-
Range Models	
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RMSEP = 0.28	

2-Layer Hierarchical Model Output 
!
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2-Layer Hierarchical Model Output 
!

Considerations!

•  Sub-models should include 
samples from "outside" the 
range they will be used in 
 

•  Anticipate "transition" effects. 
Step effects may be observed 
between models. Avoid putting 
transitions in critical places. 
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4  2

Variable named "producttype"	

Classification-Based Selection 
of Regression Models!

•  Many systems have "domains" which are best fit 
by individual models 

•  Domain indicated by indicator variable  = 
Variable-Based rule 
 

•  Domain inferred from data = classification-model-
based rule 

57 
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Diesel Fuel BP50 Determination!

•  BP50 = boiling point at  
50% recovery (deg C,  
ASTM D 86) 

•  Two versions of the fuel,  
Winter and Summer 

•  NIR Spectra  
•  SWRI_Diesel_NIR.mat 

 
•  http://www.eigenvector.com/data/SWRI/ 

58 

PCA Scores 

Local Regression Model Based 
on NIR Spectra of Diesel Fuel!

Classification Model Rule Summer-only fuel model 

Winter-only fuel model 
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PLSDA Classification Model!
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Hands-On!

•  Using SWRI Diesel Data (in homework folder) 
•  Preprocessing: 1st Derivative + Mean Centering 
•  Two PLS models: Summer-Only regression model 

and a Winter-Only regression model (predicting 
first column of y-block, BP50) 

•  PLSDA Model: Summer vs. Winter 
•  Assemble Hierarchical Model 
•  Output: BP50 prediction and Q residuals 

61 
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Support Vector Machines!

Support Vector Machines (SVMs) are a set 
of related supervised learning techniques for 
classification and regression which became 
popular over the past decade. 

62 

Support Vector Machines!
•  Since version 5.8, PLS_Toolbox provides an interface to the 

commonly-used and freely available “LIBSVM” 
implementation (version 2.9) by Chang and Lin. http://
www.csie.ntu.edu.tw/~cjlin/libsvm 

•  Wrapped for ease of use:  
 Calibration and Prediction using same function 
 Automatic parameter selection 
 Standard PLS_Toolbox syntax including options and default values 

•  Regression (SVM) and Classification (SVMDA) support, 
command line and Analysis window usage. 

•  Low-level access to LIBSVM functions if desired! 

63 

Introduce Support Vector Machines (SVMs) as 
binary linear classifier 

•  Decision boundary between two classes in X-space 
•  Extensions to multi-class   
•  Extensions to handle non-separable problems (“cost”, “gamma” parameters) 
•  “Nu” parameter is an alternative to “cost”. 
•  How to find the best parameters to use   

Using SVM-Classification in Analysis Window 
and command line 
 

Extension to SVM regression 
• “Epsilon” parameter 
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SVM Outline!
SVM Classification!

SVMs finds the optimal separating margin 
between each pair of classes.  

65 

Example: samples belong to one of two classes, 
A and B, in two variable space (x1, x2).	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
X(:,1)	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

X	 (	:	,
	 2	)	

Class 1	
Class 2	
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SVM Classification!
SVMs finds the optimal separating margin 
between each pair of classes.  

66 

Example: samples belong to one of two classes, 
A and B, in two variable space (x1, x2).	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
X(:,1)	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

X	(	:	,
	2	)	

Class 1	
Class 2	

0 = xTw + b	

SVM Classification!
SVMs finds the optimal separating margin 
between each pair of classes.  
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0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
X(:,1)	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

X	 (	:	,
	 2	)	

0 = [X1 X2]*[1 -1]' + 0.1	

Class 1	
Class 2	

0 = xTw + b	

SVM Classification!
If the point has a positive value, it is red and if 
negative blue 
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0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
X(:,1)	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

X	(	:	,
	2	)	

0 = [X1 X2]*[1 -1]' + 0.1	

0.2 = [0.81 .75]*[1 -1]' + 0.1	

-0.3 = [0.13 .50]*[1 -1]' + 0.1	

Class 1	
Class 2	

SVM Classification!

69 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(:,1)

0

0.2

0.4

0.6

0.8

1

1.2

X(
:,2
)

0 = [X1 X2]*[1 -1]' + 0.1

0.2 = [0.81 .75]*[1 -1]' + 0.1

-0.3 = [0.13 .50]*[1 -1]' + 0.1

Class 1
Class 2

yi = sign[wTxi+b] 
 	

Find ‘regression’ vector w such that 
inner product of sample xi (+b) will 
have the right sign: yi is either +1 or -1. 
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SVM Classification!

70 

But what if a nice line cannot be found? 

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
X(:,1)	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	
X	(	 :
	,	2	)
	

Class 1	
Class 2	

SVM Classification!
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First, let’s reformulate the linear SVM. Instead of 
just solving 	
	
	
We do	
	
	
	
This will aim to find a classifier that works (!) and 
has a wide margin (the margin equals 2/||w||)	
	

yi = sign[wTxi+b] 
 	

min(wTw)  subject to  yi([wTxi+b])>1 

 	

SVM Classification!

72 

 
First, lets reformulate the linear SVM. Instead of just 
solving 	
	
	
We do	
	
	
	
This will aim to find a classifier that works (!) and 
has a wide margin (the margin equals 2/||w||)	
	

yi = sign[wTxi+b] 
 	

min(wTw)½  subject to  yi([wTxi+b])>1 

 	
Kernel Methods	
J. Suykens,	
2009 Elsevier B.V 

SVM Classification!
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First, lets reformulate the linear SVM. Instead of just 
solving 	
	
	
We do	
	
	
	
This will aim to find a classifier that works (!) and 
has a wide margin (the margin equals 2/||w||)	
	

yi = sign[wTxi+b] 
 	

min(wTw)½  subject to  yi([wTxi+b])>1 
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SVM Classification!

74 

min(wTw)  subject to  yi([wTxi+b])>1 

 	

Support vectors = the 
ones where the equality 
holds. The ones further 
out don’t matter, once 
w and b are found 

SVM Classification!
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min(wTw)  subject to  yi([wTxi+b])>1 

 	

Support vectors = the 
ones where the equality 
holds. The ones further 
out don’t matter, once 
w and b are found 

Margin = 2/||w|| 

wTxi+b=0	

wTxi+b=1	

wTxi+b=-1	

Allowing misclassification!

76 

min(wTw)+CΣβi  subject to  yi([wTxi+b])>(1-βi) 

 	
Cost given by C.  
 
When zero, don’t worry 
about misclassifications,  
 
When big (up to infinity), 
no errors allower (=smaller 
margin) 

βi	=	0	

βi	=	0	
βi	=	0.5	

βi	=	2	

Missclassified	

SVM Classification!

77 

 
Cost: (0 – infinity). When high, fewer samples within 

narrower margin, less misclassification, maybe overfitting.	

cost = 0.1 cost = 0.001 



20 

The Gaussian RBF kernel function takes the following form:  
 
 

SVM nonlinearity!

78 
https://en.wikipedia.org/wiki/Kernel_method	

 
 
gamma: (0 – infinity). Low, 

linear; high local and 
nonlinear	

 
SVM classification involves defining parameters 

(cost, gamma). 
 
Cost: (0 – infinity). When high, allow less 

misclassification but could cause overfitting.	
 
gamma: (0 – infinity). Low, linear; high local and 

nonlinear	
 
The svm function and GUI selects automatically by 

default using cross-validation. 

SVM Parameters!

79 

SVM Parameters!

80 

Examine the effect of the cost/nu and gamma parameters using simple two-
variable,  two-class dataset with 100 red and 100 blue data points. 
These two classes are not linearly separable but are not too complicated.  
 
 

 

81 

a) Cost = 0.1 b) Cost = 1.0 

c) Cost = 10 d) Cost = 100 
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a) gamma = 0.0001 b) gamma = 0.001 

c) gamma = 0.01 d) gamma = 1.0 

Summary of parameter effects!

83 

Increase cost (decrease nu)  
Narrower separating margin and fewer support vectors. 
 
Increase gamma 
More complicated decision boundary shape. Very small 
gamma gives linear kernel behavior (decision boundary is 
a plane). 
 
For more detailed discussion of SVM parameters see 
http://wiki.eigenvector.com/index.php?title=Svmda. 
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Multi-class SVM Classification!
•  Classifying data belonging to more than two classes (k > 2) is handled 

by considering each pair of classes as a separate SVM problem. Hence 
k*(k-1)/2 SVM classifiers 

 
•  LIBSVM implements the “one-against-one" approach for multiclass 

classification. If k is the number of classes, then k(k - 1)/2 classifiers 
are constructed and each one trains data from two classes. In 
classification of a new sample we use a voting strategy: each binary 
classification is considered to be a voting where votes can be cast for 
the class of the new sample. In the end a point is designated to be in a 
class with the maximum number of votes. 
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C-SVC: (#SVs =15)
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Multi-class SVM Classification!
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x1

x2

C-SVC: (#SVs =15)
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Multi-class SVM Classification!

New test dataset samples are assigned to a class according to which 
partition they reside in. 
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x1

x2

C-SVC: (#SVs =15)
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o = Support vectors 

Multi-class SVM Classification!

SVM C-classification using the 
PLS_toolbox GUI 

!

88 

Note the defaults: rbf, and 
parameter search ranges.	

SVM Classification!

89 

Run the model. “Optimal” parameters are found and the model built. 
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SVM Classification!

90 

View the parameter search results. “X” identifies the optimal parameters. 

Misclassification cost 

Gamma 
(non-linear 

kernel parameter) 

Misclassification 
rate 

Best cost and 
gamma values 

SVM Classification!

91 

View class predictions for the training dataset 

SVM Classification!

92 

View class predictions for the training and test datasets 

93 

SVMDA predicts class labels or per-class probabilities for samples. The 
per-class probabilities are calculated if the "Probability Estimates" option is 
enabled in the SVMDA analysis window (or set the option 
probabilityestimates = 1 in command line usage). The method 
is explained in Chang and Lin (2001), section 8, "Probability Estimates".  
 
The per-class probability estimates appear in model.detail.predprobability as 
an nsample x nclasses array. The columns are the classes, in the order given 
by model.detail.svm.model.label where the class values are what was in the 
input X-block.class{1} or Y-block. These probabilities are used to find the 
most likely class for each sample and this is saved in pred.pred{2} and 
model.detail.predictedclass. This is a vector of length equal to the number of 
samples with values equal to class values (model.detail.class{1}).  

Per-class probability estimates!
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You can get details of the true-positive, false-positive rates, etc. by using the 
‘confusionmatrix’ command line function. 
 
>> confusionmatrix(model); 

  

Confusion Matrix: 

    Class:      TP          FP          TN          FN 

        K       1.00000     0.00000     1.00000     0.00000 

        BL      1.00000     0.00000     1.00000     0.00000 

        SH      1.00000     0.00000     1.00000     0.00000 

        AN      1.00000     0.00000     1.00000     0.00000 

 
See ‘help confusionmatrix’ and ‘help confusiontable’. 

An aside: confusion matrix! SVM Regression!
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Goal: Predict a property of interest (y) from measured values (x) 
•  SVM regression introduces a parameter epsilon, e, representing the 

maximum penalty-free deviation of training set predictions from the 
target values.  

•  The C parameter controls the penalty for deviations greater than e. 

x 

y 

e	

Single variable, x,  target y 

y predicted 

SVM Regression!
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•  Increasing the epsilon value allows a more relaxed 

fitting of the regression to the training data.  
•  Reduces risk of overfitting the training data but 

might miss important features of the data. 

x 

y 

e!

Single variable, x,  target y 

y predicted 

SVM Regression!
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Linear kernel SVM regression produces a straight line response of y with 
respect to x. It cannot capture any non-linearity in the x-y relation. 

Regression with linear kernel.   epsilon = 0.1, cost = 10.  
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b) epsilon = 0.3 

c) epsilon = 0.5 d) epsilon = 0.7 

a) epsilon = 0.1 

Compare epsilon values, keeping gamma = 0.01, cost= 10.  
  

> 0.3 

SVM Regression!
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Summary of parameter effects: 
•  Decreasing epsilon causes tighter fitting of the regression 

represented in the training data. 

•  Decreasing cost causes looser fitting to the training data regression 
relation. 

 
•  Gamma determines how strongly non-linear the modeled 

regression can be. 
Smaller gamma tends towards linear kernel behavior, giving a straight predicted 
line. Larger gamma allows the SVM to represent stronger  nonlinearity in the 
x,y regression. 

SVM Regression!
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Selecting the parameters to use for SVM regression. 
•  SVM regression has one more parameter than SVM 

classification, (epsilon, cost, [gamma]). Pick optimal 
parameter set by scanning over parameter ranges testing for 
the best cross-validation RMSE. This can be slow… 

 
 

SVM e-regression using 
PLS_Toolbox GUI!

101 
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Tecator NIR calibration example!
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Borggaard, Thodberg, Analytical Chemistry, 64 (1992) 545–551.	
Thodberg, IEEE Transactions on Neural Networks 7 (1996) 56–72.	
http://lib.stat.cmu.edu/datasets/tecator	
 

215 finely chopped pure meat 
samples measured by Infratec 
Food and Feed Analyzer.	
	
	
Nonlinearity is exhibited 
between the spectra and the fat 
and moisture content. The 
protein content only 
demonstrates weak nonlinearity. Wavelength [nm]
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Tecator NIR calibration example!
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Compare how PLS and SVR predict fat	

Tecator NIR calibration example!
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Possibly retain a validation set	
Maybe only keep 20% in calibration to speed up	

SVM Performance Issues!
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•  X-block compression: Data compression performed on x-block prior to 

calculating or applying the SVM model.  

•  'pca' uses a simple PCA model to compress the information. 'pls' uses either a 
pls or plsda model (depending on the svmtype). Compression can make the 
SVM more stable and less prone to overfitting, and faster to calculate. 

 

X

1,000 Variables

PCA  
PLS scores

1-20 Vars (PCs)

1,000 Dimensional Space 
= a lot of degrees of freedom
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SVM Performance Issues!
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SVM optimal parameter search: the slowest step when 

building an SVM model. SVM regression with Gaussian 
RBF involves three parameters (epsilon, cost, gamma), so 
searching can be slow.  Linear kernel function uses one 
SVM parameter less than the Gaussian RBF  so the search 
is [notably] faster. 

 
Due to randomness in the selection of training samples during the cross-validation 

process, multiple runs of  the optimal parameter search may return slightly 
different optimal parameter values. 

 
A time limit (option ‘cvtimelimit’) exists for model building during CV parameter 

searching (default 2 sec), because searching can be exceptionally slow for 
some parameter combinations. If an exact parameter set is used then no CV 
search occurs but even then, a timelimit = 30 x cvtimelimit is enforced when 
building the SVM. 

 

SVM References!
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•  Ivanciuc, O. (2007). “Applications of Support Vector Machines in 

Chemistry”  
   http://www.ivanciuc.org/Files/Reprint/Ivanciuc_SVM_CCR_2007_23_291.pdf 

•  Chang, C.-C. and C.-J. Lin, (2001) “Libsvm: a library for support vector 
machines”. http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf  

   Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm 

•  Hsu, C.W., C.C. Chang, C.J. Lin (2009). “A Practical Guide to Support 
Vector Classification”.  http://www.csie.ntu.edu.tw/~cjlin 

•  Smola, A.J. and B. Scholkopf (2003). “A tutorial on support vector 
regression”.  http://alex.smola.org/papers/2003/SmoSch03b.pdf 

•      Bennett, K.P. and C. Campbell, "Support Vector Machines: Hype or  
     Hallelujah?" (2000). http://www.sigkdd.org/explorations/issue2-2/bennett.pdf 

 

 

Artificial Neural Networks!
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•  Artificial Neural Network (ANN)  is a non-linear regression method. 

•  ANN mimics the architecture of the brain where a network of neurons 
are connected by synapses. X data are presented to the ANN in the 
input layer.  A simple single hidden-layer example: 

 
 
 

Artificial Neural Networks!

Input 
layer 
(X) 

Single 
hidden 
layer 

Output 
layer 
(Y) 

If the input to a neuron is 
strong enough the neuron is 
activated and it affects 
downstream connected 
neurons 
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ANN is defined by: 
• The layers and nodes in each layer and their connections.  

 Input layer has as many nodes as X has variables. 
 Output layer has as many nodes as Y has variables. 

• Weights: weight associated with each synapse, or node-pair. 
 
• Activation function converts node’s weighted input to its 
output, and is usually step-like such as tanh. 
 

ANN!

112 

Each node receives input ​𝑥↓𝑖 , from N upstream nodes, each modified 
by a transmission factor ​𝑤↓𝑖 : 
​𝐼= ∑𝑖=1↑𝑁▒(​𝑤↓𝑖 ​𝑥↓𝑖 +𝑏) ↓   
and outputs a signal, ​𝑥↓  =𝑓(𝐼),  to downstream nodes.  
𝑓() is called the Activation Function. It non-linearly converts node’s 
weighted input to its output, and is usually step-like such as tanh. 
 
 

Artificial Neural Networks!

The activation function must 
be smooth (differentiable) to 
allow the backpropagation 
error reduction method to work 
in training the ANN 

113 

You have ~86 billion neurons and ​10↑14 − ​10↑15  synapses. 
(http://cs231n.github.io/neural-networks-1/#bio) 

ANNs in 2015 as large as approx. ​10↑11  weights (synapses) 

Biological Analogy!
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ANN using the Analysis GUI!

Training process for updating the weights for each connection. ANN 
uses a feedforward network with back-propagation training. The 
training calculates the error between actual and predicted output and 
adjusts weights to minimize this error.	
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Compare using plsdata dataset!
   RMSEC  RMSEP 

PLS   0.1063        0.1385 
LWR  0.0964  0.1765 
SVM   0.0949  0.1495 
ANN   0.0985  0.1449 
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•  Both LWR, SVM and ANN have more freedom to fit data 
•  Data relationship is NOT inherently non-linear so freedom is overkill 

•  Mean Centering preprocessing the same for X in all 
•  PLS: 3 LVs 
•  LWR: 30 neighbors, 3 LVs (Global PCR) 
•  SVM: Radial Basis Function, no compression 
•  ANN: 1 hidden layer, 3 nodes, BPN method. 

Using NL_tank_data dataset!
   RMSEC  RMSEP 

PLS   0.2619        1.8937 
LWR  0.1152  0.1589 
SVM   0.1419  0.3654 
ANN   0.1424  0.4934 
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•  Both LWR, SVM and ANN have more freedom to fit data 
•  Data relationship IS non-linear so freedom is needed. PLS predicts poorly. 

•  Autoscale preprocessing the same for X in all 
•  PLS: 2 LVs 
•  LWR: 30 neighbors, 3 LVs (Global PCR) 
•  SVM: Radial Basis Function, no compression 
•  ANN: 1 hidden layer, 2 nodes, BPN method. 

Using Tecator dataset!
   RMSEC  RMSEP 

PLS   3.891        3.743 
LWR  1.138  3.326 
SVM   1.252  1.262 
ANN   0.605  0.825 
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•  Data relationship IS non-linear so freedom is needed. PLS predicts poorly. 
 
•  Using 50/50 split into Calibration and Validation datasets. 
•  SavGol derivative and mean center preprocessing the same for X in all 
•  PLS: 2 LVs 
•  LWR: 11 neighbors, 3 LVs (Global PCR) 
•  SVM: Radial Basis Function, no compression 
•  ANN: 1 hidden layer, 2 nodes, BPN method. 

Final example multi-
step process!
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R. Tange, M. A. Rasmussen, Eizo Taira, and R. Bro. Application of support vector regression for 
simultaneously modelling of near infrared spectra from multiple process steps. Journal of Near 
Infrared Spectroscopy 23:75-84, 2015. 
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Final example multi-
step process!
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Predict Pol (sugar)	
	
Retain a validation set keeping 30% 
in calibration	
	
Compare SVM, ANN and PLS	
	
Use SNV and PCA compression	

Final example!
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PLS 

SVM 

ANN 

Conclusions!
•  Many tools and approaches readily available 
•  Tip #1: Use your background knowledge. The more 

you know, the better you can do 
•  Prefer simpler models in general. Simpler implies less 

overfit 
•  Remember validation 
•  Nonlinear transformations of data together with e.g. 

PLS are nice as they allow easy visualization, outlier 
detection, variable selection etc. 
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