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Course Materials

¢ These slides
e PLS Toolbox or Solo 8.2
¢ Data sets

¢ From DEMS folder (distributed with software)
¢ plsdata.mat (SFCM), arch.mat, paint.mat
¢ From EVRIHW folder (additional data sets)

¢ NL_tank_data, tecator.mat, nlmethods.mat, NIR_sugar.mat
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Why non-linear methods?

* Linear methods such as PCA and PLS are nice
for several reasons
1. Well-defined algorithms
2. Reasonably fast
3. Nice graphics
4. Easy interpretation

* ’Smart’ way to handle non-linear problems is
therefore to try to turn them into linear problems

PMEIGENVECTOR
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About non-linearity
+ Above all:

» Severe non-linearity is not seen in practice that often (local models)

If the data show non-linear behaviour
» PLS is capable of handling mild non-linearity problems

* Stronger non-linearity
* Include cross terms of X variables
* Modify the inner relation to e.g. a polynomial or splines
» Focus on local linear ranges: locally weighted regression

* Serious non-linearity

» Use more powerful tools like neural networks
: A T]
(take care of overfitting!) EE“ ElGENVECTOR
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Why non-linear methods?
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Example of linear relationship

Linear method (MLR, for example) is a good
model for this relationship:

MLR: Actual versus predicted Y

+ Actual
*  Predicted

Actual and Predicted Y

X FHBEIGENVECTOR
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Example of non-linear relationship Example of non-linear relationship

But what if the dependent variables of interest Linear method (MLR) is not so good
depend non-linearly on X: when the x and y data are non-linearly related.
Examples: y = x2, y = log(x), y = sin(x), etc. . [ ——
35 M y~ )CZ
' ’ R ’ ’ EIGENVECTOR @S EIGENVECTOR
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Variable Transformations Transformy
Sometimes you can transform the x or y variable so that there Use linear method (MLR) to predict a transformed form of y, say sqrt(y).
is a linear relationship between the transformed x and y. Then \
use linear methods on the transformed data. . y~¥
A. Transform the y variable 2 yE=sqri(y)
. yr=G®y) ;; ’ o
+  Apply method to (X, y*). E.g. MLR: Xb =y* B e
* Reverse transform to gety = G,,,(»*). ! RIS N
» Example transformations: log(y), sqrt(y), -log(l/l,), etc. 0s W
Or, 05
B. Transform the X variable E B . g ®
* or augment X with non-linear transforms -~
H¥EIGENVECTOR IGENVECTOR
L4LJ RESEARCH INCORPORATED 12
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Transformy

This linear method predicts the transformed y, y*=sqrt(y), very well.
Then reverse transform y* predictions to get real predicted y.

55l Predicted

MLR: Actual versus predicted sqrt(Y)

Actual and Predicted sqri(Y)

IGENVECTOR
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Try it!
Load data into analysis window
>> load nlmethods.mat
>> mlr
] Analysis - LR (No Mod &) LTS - T
e Preprocess  Analysis Befine Jook Help FigBrows G B deen b e
® % e SEEE LTI AT )
[ ]
& EIGENVECTOR
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Transformy

Recovered y prediction looks good.

rmsec = 0.073953

S|l o Predicted

Actual and Predicted y
&

14 RESEARCH INCORPORATED
Try it!
Calculate model
\ s Plot predictions
[« Analysis - MLR - X, y
File Edit PNprocess lysis Refine Tools Help FigBrowser
|88 ma| B3|\
Ca! to edit) :-
EIGENVECTOR
16 RESEARCH INCORPORATED



Try it!

Not too impressive

Y CV Predicted 1

--0.5 0 0.5 1 1.5 2 25 3 35 4
Y Measured 1

L@\7J RESEARCH INCORPORATED

Try it!
Change preprocessing of y to y*”

Do the predictions improve?

£y Preprocessing Y-block
Avaiabf wethods at_l[_setected methods

[~ Traghformations — « Arithmetic Settings  —

AbsolWe Value

Avithmetic Operation |

Glog Operation Select Type v

Haar Transform . aad x = %o

Log10 (e subtract x = x-c -

Reference/Background Correction Variable Range: maltiply x = xvc *

Transmission to Absorbance (log(1/T) aivide  x = x/c /
inverse \

— Filtering — Help power. N

Baseline (Automatic Weighted Least Squares) S 7

Baseline (Automatic Whittaker Filter) eans <

Baseline (Specified points) )

Column-wise Derivative round x = round (x*c)/c r

Derivative (SavGol) log x = log(x)/log(c) 1

Detrend antilog X = c™(x) a

EEM Filtering Select Type

EMSC (Extended Scatter Correction)

EPO Filter

Gap Segment Derivative

(GLS Weiahting

EIGENVECTOR
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Try it!

Change preprocessing of y

Analysis - MLR - x, y

Aeprocess Analysis Refine Tools Help FigBrowser

Edit Preprocessing Apply / Validate

Basic Methods »Block (click to edit) ~

Load Preprocessing

Save Preprocessing

Set Current As Default

Plot Preprocessed Data
Save Preprocessed Data

Quick-Open Mode

AV

Transform X and retain MLR

An alternative to transforming y is to transform x, or add new x
variables which are non-linear transforms of the original x
variables. Then apply linear regression using augmented x.

This is still a linear method in that the non-linearity is captured
by adding non-linear variables and maintaining a linear
regression model.

R :
25 <
- Augmenting x with squared terms
o allows MLR to capture the quadratic
B relationship between x and y.
ot

e EIGENVECTOR
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Polytransform

Using Browse window to augment x with squared terms or do it inside the gui:

[« Analysis - MLR (No Model) - x, y
File Edit Preprocess Analysis Refine Tools Help FigBrowser
8el| @ TN
Load Data
Import Data 3
L New Data Apply / Validate
VilCalibratic Plot Data
sia  EditData
e reyl Transform Calibration Transfer (Apply)
o1 Var Ibl Create Y From X Columns Polynomials and Cross Terms
Splitinto Calibration / Validation Coadd Data Reduction
Augment with Validation Reduce NN Samples
Save Data ‘
Clear Data
; _ |ClearData |
R
R EIGENVECTOR
21 RESEARCH INCORPORATED
Use Analysis window with MLR on xpolytrans and y.
Use “Plot scores and sample statistics~ plot to show y predicted versus y measured.
B Figure 1: Samples/Scores - MLR - data, 2 D " - (B
File Edit View Inset Tools Desktop Window Help FigBrowser PlotGUI >
NEde MR UDPEL- (G0 D
(I Tla ®i G
. Samples/Scores Plot of data
| .
35 |
3 } >
| A
25
3 \ :
£ | v
& |
> 15 | °
i
05 } . ..'
05 0 . 05 1 15 2 25 3 35 4
Y Measured 1
23 L4LJ RESEARCH INCORPORATED
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Polytransform

Squares = ‘on’ , others are off. Click ‘OK’ and save as ‘xpolytrans’ .

[ Options / Preferences b=
User Level
Option Categories Description
! Al |
Option Name Value Description [click to display above]
! Setup
squares - — "Add squared variables.
cubes off = "Add cubed variables.
quadratics off v"Add 4th power variables.
crossterms off = ‘Add crossterm variables.
preprocessingtype D < ‘Add preprocessing.
preprocessoriginalvars 1 oves) - "Return preprocessed original variables?
pca off + [Convert values to PC scores.

@ EIGENVECTOR
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Factor based transforms

% EIGENVECTOR
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Many Variable Data Sets

Using polytransform expands the number of
variables

Especially cross terms — #n variables have 7(7
—1)/2 paired cross terms. (If n = 200, # cross
terms = 19,900)

Increases likelihood of overfitting the data

One solution: use PCA first then apply transform
to the scores

& EIGENVECTOR
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Tecator: Build PLS model

Predict fat

Do first derivative and
centering

Any signs of non-linearity?

Wav:\v;ngth [Hvrva]J” EIGENVECTOR
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Tecator NIR calibration example

215 finely chopped pure meat
samples measured by Infratec
Food and Feed Analyzer.

Absorbance

Nonlinearity is exhibited
between the spectra and the fat
and moisture content. The
protein content only
demonstrates weak nonlinearity.

900 950 1000 1050
Wavelength [nm]

Borggaard, Thodberg, Analytical Chemistry, 64 (1992) 545-551.

Thodberg, IEEE Transactions on Neural Networks 7 (1996) 56-72. =;== E I GE NVE CTO R
o
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Tecator: Try a nonlinear variant

Add squares and crossterms. How many variables are
there now?

Excessive amounts. We need a more sensible approach

< Analysis - MLR (No Model) - x, y
File Edt Preprocess Analysis Refine Tools Help FigBrowser

X | B3| @ | 2%

o 1

Load Data jJ -

Import Data ,

New Data Apply / Validate

Plot Data ~
Edit Data

Note the message. You will need
it to get the original data back

Create Y From X Columns Polynomi -

(uiydd Data Reduction Data Transformed L

Reduce NN Samples % Data s boon tansormad snd epiced. Orgealdta stored i
cacne

o

Transform | Calibration Transfer (Apply)

ind Cross Terms

FMEIGENVECTOR
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Tecator: Try a nonlinear variant
Double click here to get original data back

-3 Demo Data
E1-21-May-2015

rate Apply / Validate [ item: PLS (sim) 8 LVs [X: 1st Derivative (
I item: [240,1] "fat "
580 ftem: Tecotor NIR (24051501
3F2] item: PLS (sim) 1 LVs [X: 1st Derivative (
Variance Captured by Mode! (- = suggested) W
[55] item: PLS (sim) 3 LVs [X: 1st Derivative (

Build a PCA model with enough components*

* Not important to use the right number, just make sure all relevant variation is included — be optimistic!

# 8 EIGENVECTOR
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Tecator: Is the PLS model nice?

If not, then try to see if variable selection can improve

Possible set aside a test set

60

R’ =0.995
6 Latent Variables
0 |RMSEC = 1.0554
RMSECV = 1.2219
RMSEP = 1.016
40 | Calibration Bias = 1.7764e-1
CV Bias = 0.048009
Prediction Bias = 0.11402

¥ Predicted 1 fat
8

50 60

3 #x EIGENVECTOR
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Tecator: Extract scores

Make a score plot and open scores in Analysis

Make sure that only scores are
selected. In fact, hard delete
the rest.

—1 Do squares and interactions

What preprocessing?

& EIGENVECTOR
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Tecator: Overfit

Try using just 20% of the data for calibration and ten
PC’s. How does that work?

32



Locally Weighted Regression

3 PMEIGENVECTOR
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LWR

1-D example showing advantage of locally weighted

regression over linear regression. Predict y for a new x value.

(%1, Vi)™= 2

3 giiiEIGENVECTOR
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Locally Weighted Regression

Nonlinear relations can often be approximated by a linear
function on a small (local) scale.

LWR models work by choosing a subset of the calibration
data (the "local" calibration samples) to create a "local" model
for a given new sample. The local calibration samples are
identified as the samples closest to a new sample.

y PMEIGENVECTOR
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LWR

Linear regression is good if there is a simple linear

relationship between y and x.

L

Linear regression

IGENVECTOR
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LWR

Advantage of locally weighted regression over linear

regression for more complex relationship between y and x.

/‘
=:§Cai ation Validation 2. Load Y data

Using LWR from the GUI.

=B

[ BB Anslysis - LWR (No Mode) - sblockL. yblockL
Eile Edit Preprocess Analysis Tools Help FigBrowser

e T T

. Cache : "general” LI
Analysis Flowchart T B Cache Setings 2

Load X data (500 Demo Dats

@
@ @ arch

- spect
3. Choose Preprocessing | (| & @ test1
@@ xblockl

AT
~——  —

y o Linear regression

Locally weighted
regression

Aﬁ X1 X

Npts, the number of local points
[ A~

EIGENVECTOR
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More advanced options
alpha: Weighting of y-distances in selection of local points.
0 = do not consider y-distances {default},
1 = consider ONLY y-distances.
any non-zero alpha = select samples which are close in both the PC space and
have similar y-values.
B Ostions / Preferences (===
i o :
T o
e Bl e
: e
I EIGENVECTOR
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‘Wil = the number used inthe global PCA selection model.

9. Review Loadings
Use Model

10. Load Test Data

I

11. Apply Model

Data has been loaded but no madel exists. Set the preprocessing and other options  ~
(from the Preprocess and Tools menus) and calibrate a model (Calbrate buttan). The
data can be viewed and edited with the Edit menu T B

Humber of Local Points: 2
b 4. Choose Cross-Validation block?
et for the local regression model. & ChooselLasal Poiia @ = yblockl
@ block2
Algorithm: p— -] i
. 6. Build Model
GlobalPCR = model is buit from the global PCA space of all
samples, PCR /PLS = model is buit from local PCA or PLS Ri Model
pisling eview Matel
RS ULV S CCREESH 7. Choose Components
Number of latent variables to use in local PCR or PLS model. If
number of LV i ey, the number of LY inthe ocal morel 8. Review Scores

~

—~
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Build model

Try on Tecator. GlobalPCR or PLS works best?

T sz - LR comp - blockLyoiockl.
B Edt Breprocess fnalyss Tools Help Fighrowser

|58 M & x|

Analysis Flowchart

1

2. Losd ¥ data
3. Choose Prepracessin
oo T
Baicart Varance Captursa by Modsl 4. Cheoss Cross-Valdation
Latent Block
Vie WM 5 coose LocalPams_] | &

a— Review Model
11 <not calculated> 9. Reviaw Loadings

15 Zner caloulaced Use Mode!
1 <nor calcwlateds

15 Cner calowlaced 10, Load Test Data

16 <not caloulated

17 Cnet calowlaced 11, Apply Mokl

18 ot caloulateds

19 Znet calowlaceds 5

A model has heen calbrated from the deta. Review the model veing 3
outton(s), save the modl (File menu), o oad test galdaton) cata (< menu). The |
umbor of componsris, proprocessing options, and ot settings can lso bo 8 a =

40

EIGENVECTOR

RESEARCH INCORPORATED
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LWR References

Wiki: http://wiki.eigenvector.com/index.php?title=Lwr

Naes, T., T. Isaksson, and B. Kowalski, (1990). Locally weighted
regression and scatter correction for near-infrared reflectance data. Anal.
Chem., 1990, 62 (7), pp 664—673.

Wang, Z., T. Isaksson, B. R. Kowalski, (1994). New approach for distance
measurement in locally weighted regression. Anal. Chem., 1994, 66 (2),
pp 249-260.
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NL Tank Data

Non-linear tank level control experiment

Input is the voltage to a pump which fills a
tank. The tank has numerous outlet holes, so
is somewhat more complicated than a single
hole
Each line of the calnu data (X) contains the
last 6 pump inputs (in pulse form) for the
corresponding level in calny (Y) Pump
(hole sizes are not

accurate as to
experimental setup!)

EIGENVECTOR
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Hierarchical Models

+ Sort of a "Manual" Locally Weighted Regression
* Calibration:

1. Build top-level linear model for estimating

2. Identify sub-regions of data which are roughly linear

3. Build separate (linear) sub-models on sub-regions for
more accurate estimates in sub-ranges

4. Build Hierarchical model which selects appropriate
sub-model based on top-level model estimate

* Example: NL tank data

# s EIGENVECTOR
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Global PLS Model Results

14
R?=0.932 A
12 2 Latent Variables
[ |RMSEC = 0.85013
RMSECV = 0.85034
_ CV Bias = 2.0068e-05
g 10 High Range
z )
S 8
g N
o
>
O 6
> Mid Range
4L ° A 1V
o 1 Low Range
2 ; ; ; ;
0 2 4 8 10 12

Y Measured 1 level

EIGENVECTOR
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Low-Range Model Results

Samples/Scores Plot of calnu

Mid-Range Model Results

5 Samples/Scores Plot of calnu
T T T T T T g T T T
R’ = 0.895 R’ = 0.984
4.5 |2 Latent Variables 7] 2 Latent Variables
RMSEC = 0.20623 8 |RMSEC =0.18268
4} |[RMSECV = 0.20971 H RMSECV = 0.18392
_ CV Bias = 0.0011159 ® _ CV Bias = -0.00037424 ° a5
[3] [ o
= =7r 7
B35 &7 o :"‘
el - e
2 2 o §hve
8 3 Bel o B B
3 5 * 5%
a a B °
P 2.5 3 . &
> >5 T I . % T
()
2 o ® o )
15 4
3 . \ . . .
?J- 3 4 5 [ 7 8 9

Y Measured 1 level Y Measured 1 level

Single Layer Hierarchical
Model

High-Range Model Results

Samples/Scores Plot of calnu

115 T T T
R®=0.987 ,
11 |2 Latent Variables . wen —_—
RMSEC = 0.10541 ° ; -LI Error| If Q is too large, throw error
RMSECV = 0.10646 Y Ne—
2105 ias = - sadse , ] 1]>8
g P o R MOdel“ If Predicted Y is > 8, apply "High-Range" model
B 190 Lo ¥ . e ’ [1]<3.8 Model, ‘ If Predicted Y is < 3.8, apply "Low-Range" model
2 % e C . ‘
§ 9.5 . ° t‘.é ° 1 [Otherwise Model“‘ Otherwise, apply "Mid-Range" model
9 s B0
8.51 7
8 . ‘ ‘ ‘ ‘
8 85 9 9.5 10 10.5 11

Y Measured 1 level

12



Hierarchical Model Output

Predicted level

Hierarc

Q Residuals

10 RMSEP=0.28 N i
(separate set of validation samples)
8L 4
6L 4
4 i
¢ Bad Q (no prediction)
“ High-Range
2 4 Low-Range §
Mid-Range
0 r r r r |
0 2 4 6 8 10 12
level

hic

# 8 EIGENVECTOR
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al Model Output

251

201

T

A
A

Hierarchical Model Output

60

50

401

301

Hotellings T2

201

Add Layer of Output Testing

If Predicted Y is > 8, apply "High-Range" local
model and test outputs...

\@%-—..Q.ba /EZN/\
[1]=8 ~Rule ] "Q">6 15;”
a oy
|Otherwise Model
[1]<3.8 \Ru% "Q">6 1EE”
|Olherwise Model
Otherwise "Q"=6 1;%,/‘

RS

| Otherwise  /\aodel

If Q from "High-Range" model is too
high, error;
Otherwise, return High-Range prediction

Similar tests on Low-Range and Mid-
Range Models

13
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2-Layer Hierarchical Model Output

RMSEP =0.28
10+
8L
°©
H
el
'48 61 E ~Q"6 @
3 o o 18 i, 0% oy
= 4l o Otherise_fupogel]
1]<38 Q‘% "Q'>6 @
Otherwise f\oqer/ ©
2L g s B Otherwise /\R/u% o) @
Otherwise _ fy1oqe)/ E
0 r . . . L }
0 2 4 6 8 10 12
level
[~ 1}
S EIGENVECTOR
L@\ RESEARCH INCORPORATED
- -
Considerations

* Sub-models should include
samples from "outside" the
range they will be used in

* Anticipate "transition" effects.
Step effects may be observed
between models. Avoid putting
transitions in critical places.

2-Layer Hierarchical Model Output

m B
5L ° o= B
B

Q Residuals

Classification-Based Selection
of Regression Models

* Many systems have "domains" which are best fit

by individual models

* Domain indicated by indicator variable =

Variable-Based rule Variable named "producttype"

@_“gmﬂucﬂx@“:ﬂ Model/ pLs

"productivpe’==2_ iodel/ pis

Otherwise a— . .
) = "unknown product

¢ Domain inferred from data = classification-model-

based rule /,\l/u wodel] pis
- ——— joroduc?__ ivodel/ pg
Classification Model-based Rule ==
Model Type: PLSDA Otherwise Error] = "ynknown product”
Classes defined by model. "Otherwise” used
if no class fits or statistics are out-of-limit.
Double-click to open in Analysis

% EIGENVECTOR

A RESEARCH INCORPORATED
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Diesel Fuel BP50 Determination

PCA Scores

BP50 = boiling point at
50% recovery (deg C,
ASTM D 86)

Two versions of the fuel,
Winter and Summer §oos

NIR Spectra

on PC 2 (14.16%)

SWRI Diesel NIR.mat ol

ol———

0.02 0.04 0.06 0.08

Scores on PC 1(77.05%)

http://www.eigenvector.com/data/SWRI/

¥ EIGENVECTOR
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PLSDA CIass:flcatlon Model

0.08 T
¢ Summer !
= Winter :
006 |__ —95% Confidence Level | !
S 004 - ! .
g e I o RS P
) o re o 4
3 ’ (P & 3
3 0.02 J/ l?‘-ﬂll'.lb. PN R
~ \
s |/ g4 oot
| ,/ s F | “.0 "\
c
A - TR S
g \ Ren gae ?I’ .{" . 0* ’m‘o //
*
&-002f E PR N S
3 \."’ . o’t. %
WEL e
N ¢ °% % -7
0.04 A ol * -
~— :‘0 o -
———hy

©
o
>

. . . L
-0.03 -0.02 -0.01 0 0.01 0.02 0.03

L
0.04 0.05

Scores on LV 2 (28.03%)
[~ 1}
@\ EIGENVECTOR
L@\ RESEARCH INCORPORATED
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Local Regression Model Based
on NIR Spectra of Diesel Fuel

Classiﬁcatlon Model Rule Summer-only fuel model

Rule Summer

Model y Winter-only fuel model
‘E S
Qtherwize (Error] = "UNRECOGNIZED SAMPLE"

FMEIGENVECTOR
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Hands-On

» Using SWRI Diesel Data (in homework folder)
* Preprocessing: 1t Derivative + Mean Centering
* Two PLS models: Summer-Only regression model

and a Winter-Only regression model (predicting
first column of y-block, BP50)

* PLSDA Model: Summer vs. Winter
* Assemble Hierarchical Model
* Output: BP50 prediction and Q residuals

Eii-EIGENVECTOR

A RESEARCH INCORPORATED
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Support Vector Machines

Support Vector Machines (SVMs) are a set
of related supervised learning techniques for
classification and regression which became
popular over the past decade.

& EIGENVECTOR

RESEARCH INCORPORATED

SVM Outline

Introduce Support Vector Machines (SVMs) as
binary linear classifier

« Decision boundary between two classes in X-space

« Extensions to multi-class

« Extensions to handle non-separable problems (“cost”, “gamma” parameters)
« “Nu” parameter is an alternative to “cost”.

« How to find the best parameters to use

Using SVM-Classification in Analysis Window
and command line

Extension to SVM regression

*“Epsilon” parameter

EIGENVECTOR
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Support Vector Machines

» Since version 5.8, PLS Toolbox provides an interface to the
commonly-used and freely available “LIBSVM”
implementation (version 2.9) by Chang and Lin. http://
www.csie.ntu.edu.tw/~cjlin/libsvm

* Wrapped for ease of use:

Calibration and Prediction using same function

Automatic parameter selection
Standard PLS_Toolbox syntax including options and default values

* Regression (SVM) and Classification (SVMDA) support,
command line and Analysis window usage.
* Low-level access to LIBSVM functions if desired!

@S EIGENVECTOR

63 L@\ RESEARCH INCORPORATED

SVM Classification

SVMs finds the optimal separating margin
between each pair of classes.

12

O Class1
O Class 2

0 01 0.2 03 0.4 05 0.6 0.7 0.8 09 1
X(;1)

Example: samples belong to one of two classes, P EIGENVECTOR

EIAEE RESEARCH INCORPORATED

65 A and B, in two variable space (x1, x2).

16



SVM Classification

SVMs finds the optimal separating margin
between each pair of classes.

12

O Class 1 ‘
O Class2

04f

02 1
[e] o o o 0o

0 . . . . . . .
0 0.1 02 03 04 05 06 07 08 09 1
X(:1)

Example: samples belong to one of two classes, wam
A and B, in two variable space (x1, x2). \ 1 EIGENVECTOR

LIA‘EH RESEARCH INCORPORATED

66

SVM Classification

If the point has a positive value, it is red and if
negative blue

12 T T
|
O Class2
i o 0.2=[0.81.75]"[1 -1]' + 0.1 1
8 o
o o o o
o8 [e) i
° °

= | -03=[013.500°1 1 +0.1 °

04

0.2 (o]

8 EIGENVECTOR
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SVM Classification

SVMs finds the optimal separating margin
between each pair of classes.

12

O Class 1 ‘
O Class2

IGENVECTOR

ESEARCH INCORPORATED
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SVM Classification

Find ‘regression’ vector w such that
inner product of sample x; (+b) will
have the right sign: y; is either +1 or -1.

y; = sign[wTx;+b]

Q Gl
O Ciass2
3 0.2=[0.81 75][1 ] + 0.1
8 o )
o ° o o
0
° % oe
) | 03=[0.43 5011 Ay + 0.1 °
fe o
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SVM Classification

But what if a nice line cannot be found?
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SVM Classification
First, lets reformulate the linear SVM. Instead of just

solvin WT
Iving /QUPFVGE'IG_‘%

Kernel Methods
1. Suykens,
2009 Elsevier B.V

This will aim to find a classifier that works (!) and
has a wide margin (the margin equals 2/IIwll)

¥ EIGENVECTOR
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SVM Classification

First, let’s reformulate the linear SVM. Instead of
just solving

y; = sign[wTx+b]

We do

MIN(WTW) subjectto y,([wx+b])>1

This will aim to find a classifier that works (!) and
has a wide margin (the margin equals 2/Ilwll)

P EIGENVECTOR
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SVM Classification

First, lets reformulate the linear SVM. Instead of just
solving

y; = sign[wTx;+b]
We do

min (WTW)Vz subject to y;([w™x;+b])>1

This will aim to find a classifier that works (!) and
has a wide margin (the margin equals 2/Ilwll)

PMEIGENVECTOR
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SVM Classification

Support vectors = the
ones where the equality
holds. The ones further
out don’t matter, once
w and b are found

mln(wTw) subject to yi([W™x+b]

: WEIGENVECTOR

4 RESEARCH INCORPORATED

Allowing misclassification
MIN(WTW)+C2B; sublectto y(wix+5])>(1-6)

Cost given by C.

X(:,2)

When zero, don’t worry
about misclassifications,

When big (up to infinity),
no errors allower (=smaller
margin)

@  EIGENVECTOR
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SVM Classification

Support vectors = the

ones where the equality
holds. The ones further
out don’t matter, once

mln(WTW) subject to yi([wx+b] w and b are found

0.6

X(:,2)
o

Margin = 2/||w||

0.4

wix+b=-1 02
wTx+b=0
wix+b=1 % 0.1 0.2 03 il
m-EIGENVECTOR
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SVM Classification

Cost: (0 — infinity). When high, fewer samples within
narrower margin, less misclassification, maybe overfitting.

E

cost =

¥ EIGENVECTOR
77 |7 |
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SVM nonlinearity SVM Parameters

The Gaussian RBF kernel function takes the following form: SVM classification involves defining parameters
(cost, gamma).
I\'(Ii, 1.}) _ wall-rﬁ.rJHz
Cost: (0 — infinity). When high, allow less

gamma: (0 — infinity). Low, misclassification but could cause overfitting.
linear; high local and

nonlinear

gamma: (0 — infinity). Low, linear; high local and
nonlinear

The svm function and GUI selects automatically by
IGENVECTOR default using cross-validation.

RESEARCH INCORPORATED 7

https:/len.wikipedia.org/wiki/Kernel_method

Tor-class dacision vlue contours: Cost= 0.1, Gamma = 001 To-clsss decision value contours: Cost= 1, Gamma'= 0.01

SVM Parameters

Examine the effect of the cost/nu and gamma parameters using simple two-
variable, two-class dataset with 100 red and 100 blue data points.

These two classes are not linearly separable but are not too complicated.

Torclass data

& EIGENVECTOR
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Multi-class SVM Classification

Classifying data belonging to more than two classes (k > 2) is handled
by considering each pair of classes as a separate SVM problem. Hence
k*(k-1)/2 SVM classifiers

LIBSVM implements the “one-against-one" approach for multiclass
classification. If k is the number of classes, then k(k - 1)/2 classifiers
are constructed and each one trains data from two classes. In
classification of a new sample we use a voting strategy: each binary
classification is considered to be a voting where votes can be cast for
the class of the new sample. In the end a point is designated to be in a
class with the maximum number of votes.

EIGENVECTOR
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Summary of parameter effects

Increase cost (decrease nu)

Narrower separating margin and fewer support vectors.

Increase gamma

More complicated decision boundary shape. Very small
gamma gives linear kernel behavior (decision boundary is

a plane).

For more detailed discussion of SVM parameters see

http://wiki.eigenvector.com/index.php?title=SV£1lga.

& EIGENVECTOR
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Multi-class SVM Classification

C-SVC: (#SVs =15)
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Multi-class SVM Classification

C-SVC: (#SVs =15)

x1
New test dataset samples are assigned to a class according to which
partition they reside in.

. FMEIGENVECTOR
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SVM C-classification using the
PLS_toolbox GUI

BEr

d Note the defaults: rbf, and
parameter search ranges.
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Multi-class SVM Classification

C-SVC: (#SVs =15)

0 = Support vectors

87 RESEARCH INCORPORATED
SVM Classification
Run the model. “Optimal” parameters are found and the model built.
B Analysis - SYMDA - arch, [
:
Xt
2 Lot s o)
d 3. Choose Preprocessing

| © [e-sue] C-support vector classification

| [nu-sue] uv-support vector classification 5. Build Model L

oo g L | :

e = =5

e v
2 4r ;I! Use Model
)
A
e otetasvancitidf he ca Carayh T htotkat
lutton(s), save the model (File menu), or Ioad test (validation) data (File menu). The |
e s o e e et e
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View the parameter search results.

Gamma—"_|

(non-linear
kernel parameter)

SVM Classification

X" identifies the optimal parameters.

[ Figure 1: Parameter Optimization Results.
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SVM Classification

View class predictions for the training and test datasets

Misclassification

rate

Best cost and
gamma values
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SVM Classification

View class predictions for the training dataset

B0 Analysis - SVMDA - arch

By - SYMOA-arch () pio Controls [ 112 et | B Figure 1: Samples/Scores - SVMDA - arch =@ &
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Per-class probability estimates

SVMDA predicts class labels or per-class probabilities for samples. The
per-class probabilities are calculated if the "Probability Estimates" option is
enabled in the SVMDA analysis window (or set the option
probabilityestimates 1 in command line usage). The method
is explained in Chang and Lin (2001), section 8, "Probability Estimates".

The per-class probability estimates appear in model.detail.predprobability as
an nsample x nclasses array. The columns are the classes, in the order given
by model.detail.svm.model.label where the class values are what was in the
input X-block.class{1} or Y-block. These probabilities are used to find the
most likely class for each sample and this is saved in pred.pred{2} and
model.detail.predictedclass. This is a vector of length equal to the number of
samples with values equal to class values (model.detail.class{1}).

8 EIGENVECTOR
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An aside: confusion matrix

You can get details of the true-positive, false-positive rates, etc. by using the
‘confusionmatrix’ command line function.

>> confusionmatrix (model);

Confusion Matrix:

Class: TP FP TN FN
K 1.00000 0.00000 1.00000 0.00000
BL 1.00000 0.00000 1.00000 0.00000
SH 1.00000 0.00000 1.00000 0.00000
AN 1.00000 0.00000 1.00000 0.00000

See ‘help confusionmatrix’ and ‘help confusiontable’ .

[~ 1]

EIGENVECTOR

94 RESEARCH INCORPORATED

SVM Regression

* Increasing the epsilon value allows a more relaxed
fitting of the regression to the training data.

* Reduces risk of overfitting the training data but
might miss important features of the data.

Y Single variable, x, targety
/r(\/
}e
o )) ) O o O
o o y predicted
F.

x #S=EIGENVECTOR
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SVM Regression

Goal: Predict a property of interest (y) from measured values (x)

* SVM regression introduces a parameter epsilon, e, representing the
maximum penalty-free deviation of training set predictions from the
target values.

* The C parameter controls the penalty for deviations greater than e.

Y Single variable, x, targety
le

y predicted

% # s EIGENVECTOR
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SVM Regression

Linear kernel SVM regression produces a straight line response of y with
respect to X. It cannot capture any non-linearity in the x-y relation.

shversus precictad Y., nsar ernel, (epsion = 0.1, cost = 10)

Actuslsnd Predited Y
%

Regression with linear kernel. epsilon =0.1, cost = 10.

EIGENVECTOR
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=001, cost= 1)

Compare eps110n Values keepmg gamma = 0 01 cost= 10
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a) epsilon = 0.1

Actusiversus pracicted Y (spsion = 05, gamma =001, cost = 10)
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c) epsilon = 0.5 d) epsilon = 0.7
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SVM Regression

Selecting the parameters to use for SVM regression.

* SVM regression has one more parameter than SVM
classification, (epsilon, cost, [gammal]). Pick optimal
parameter set by scanning over parameter ranges testing for
the best cross-validation RMSE. This can be slow...

& EIGENVECTOR
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SVM Regression

Summary of parameter effects:

* Decreasing epsilon causes tighter fitting of the regression
represented in the training data.

* Decreasing cost causes looser fitting to the training data regression
relation.

* Gamma determines how strongly non-linear the modeled
regression can be.

Smaller gamma tends towards linear kernel behavior, giving a straight predicted
line. Larger gamma allows the SVM to represent stronger nonlinearity in the
X,y regression.

EIGENVECTOR
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SVM e-regression using
PLS Toolbox GUI

B Analysis - SVM (No Model) - xblockl, yblockl. [E=SE=x=)

1" LINEAGE Vi

ache "
B g+ and View

3. Choose Preprocessing
4. Review Settings
5. Build Model

Review Model

& Opti

WLFold Cross Validation Spits &
2 | 150 Use Model

He 8. Load Test Data
9. Apply Mokl

[Data has been loaded but 1o model exists. Set the preprocessing and other options
o5 and Tols manue) s caats a mosel (Calbrte ) The
and ecited vith the Edit mer

EIGENVECTOR
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Absorbance

102

104

Tecator NIR calibration example

215 finely chopped pure meat
samples measured by Infratec
Food and Feed Analyzer.

Nonlinearity is exhibited
between the spectra and the fat
and moisture content. The

—,, protein content only
demonstrates weak nonlinearity.

900 950 1000
Wavelength [nm]

Borggaard, Thodberg, Analytical Chemistry, 64 (1992) 545-551.
Thodberg, IEEE Transactions on Neural Networks 7 (1996) 56-72. =
http://lib.stat.cmu.edu/datasets/tecator z

IGENVECTOR
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Tecator NIR calibration example

Possibly retain a validation set
Maybe only keep 20% in calibration to speed up

+ o
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| Create Y From X Columns o
i Splitinto Calibration / Validation |- myjative  RMSECY fat

A0 | Augmentonto Calibration
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Tecator NIR calibration example

Compare how PLS and SVR predict fat

4 Analysis

File Edit Preprocess Analysis Refine Tools Help FigBrowser

i _J—
| u Load Data. —_J

View: Import Data * L5 Variable Selection
Number LV{ New Data
Plot Data § by Model - = suggested
———=  EditData r—
-Blodl
Select Y-Columns %umu,ative RN
1 f  Iensform *T 524 508
2 1 CreateY From X Columns 85.73 5.00)
3 | Splitinto Calibration / Validation 88.08 475
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SVM Performance Issues

* X-block compression: Data compression performed on x-block prior to
calculating or applying the SVM model.

» 'pca' uses a simple PCA model to compress the information. 'pls' uses either a
pls or plsda model (depending on the svmtype). Compression can make the
SVM more stable and less prone to overfitting, and faster to calculate.

—> 1,000 Variables

X scores

1,000 Dimensional Space
= a lot of degrees of freedom

1-20 Vars (PCs)

EIGENVECTOR
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SVM Performance Issues

SVM optimal parameter search: the slowest step when
building an SVM model. SVM regression with Gaussian
RBF involves three parameters (epsilon, cost, gamma), so
searching can be slow. Linear kernel function uses one
SVM parameter less than the Gaussian RBF so the search
is [notably] faster.

Due to randomness in the selection of training samples during the cross-validation
process, multiple runs of the optimal parameter search may return slightly
different optimal parameter values.

A time limit (option ‘cvtimelimit’ ) exists for model building during CV parameter
searching (default 2 sec), because searching can be exceptionally slow for
some parameter combinations. If an exact parameter set is used then no CV
search occurs but even then, a timelimit = 30 x cvtimelimit is enforced when

building the SVM. 5% EIGENVECTOR

Artificial Neural Networks
PEEIGENVECTOR
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SVM References

Ivanciuc, O. (2007). “Applications of Support Vector Machines in
Chemistry”
http://www.ivanciuc.org/Files/Reprint/Ivanciuc_SVM _CCR_2007_23_291.pdf
Chang, C.-C. and C.-J. Lin, (2001) “Libsvm: a library for support vector
machines”. http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Hsu, C.W., C.C. Chang, C.J. Lin (2009). “A Practical Guide to Support
Vector Classification”. http://www.csie.ntu.edu.tw/~cjlin
Smola, A.J. and B. Scholkopf (2003). “A tutorial on support vector
regression”.

Bennett, K.P. and C. Campbell, "Support Vector Machines: Hype or
Hallelujah?" (2000). nttp://www.sigkdd.org/explorations/issue2-2/bennett . pdf
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Artificial Neural Networks

Artificial Neural Network (ANN) is a non-linear regression method.

ANN mimics the architecture of the brain where a network of neurons
are connected by synapses. X data are presented to the ANN in the
input layer. A simple single hidden-layer example:

If the input to a neuron is
strong enough the neuron is
activated and it affects

L downstream connected
neurons
Input Single Output
layer hidden layer
X) layer Y)

@ EIGENVECTOR
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ANN .

Input Single Output
layer hidden layer
X) layer Y)

ANN is defined by:

*The layers and nodes in each layer and their connections.
Input layer has as many nodes as X has variables.
Output layer has as many nodes as Y has variables.

*Weights: weight associated with each synapse, or node-pair.

Activation function converts node’s weighted input to its
output, and is usually step-like such as tanh.

EIGENVECTOR
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Biological Analogy

o Wo
synapse
woT

—_——e
axon from a neuron

impulses carried

toward cell body cell bod!
branches Y\ fwms
dendrites: of axon !
w;z; +b
U Z e output axon
axon ! tivati
nucleus ——=_g@ '\ axon terminals faucnlcvﬁao:n
4}
impulses carried
away from cell body
cell body

A cartoon drawing of a biological neuron (left) and its mathematical model (right)

You have ~86 billion neurons and 10714 —10715 synapses.
(http://cs231n.github.io/neural-networks-1/#bio)

ANNSs in 2015 as large as approx. 10711 weights (synapses)

EIGENVECTOR
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Artificial Neural Networks

Each node receives input x4z, from N upstream nodes, each modified
by a transmission factor wds:

/= Yi=1TNE Wi xli+b) 4
and outputs a signal, x+{ =/£(/), to downstream nodes.

/0 is called the Activation Function. It non-linearly converts node’s
weighted input to its output, and is usually step-like such as tanh.

tanh(z)

The activation function must
be smooth (differentiable) to
allow the backpropagation

; : error reduction method to work
1 2 ‘ in training the ANN

EIGENVECTOR
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@ LCMS of SurfactantsX A
@ LCMS of Surfactants, |
@ NIR of Pseudo-Gasoli
Apply / Validate @ Octane Rating by NIR
@ Olive Oil Classificatio
@ PGSE NMR of Photog.
@ Paint Formulation No
@ Purity Demo Data (p
— @ Purity Demo Data w/i
X-block Compression:  none v @ Raman Spectra of Mis
@ Raman Spectra of Mi
@ Raman of Time Resol
@ Semiconductor Etch £
@ Semiconductor Etch ¢
@ Slurry-Fed Ceramic M
W Slurry-Fed Ceramic M
~ @ Slurry-Fed Ceramic M .

PP
v||< B

Training process for updating the weights for each connection. ANN
uses a feedforward network with back-propagation training. The
training calculates the error between actual and predicted output and
adjusts weights to minimize this error.

2\
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Compare using plsdata dataset

RMSEC RMSEP

PLS 0.1063 0.1385
LWR 0.0964 0.1765
SVM 0.0949 0.1495
ANN 0.0985 0.1449

* Both LWR, SVM and ANN have more freedom to fit data
* Data relationship is NOT inherently non-linear so freedom is overkill

* Mean Centering preprocessing the same for X in all
* PLS: 3 LVs

* LWR: 30 neighbors, 3 LVs (Global PCR)

* SVM: Radial Basis Function, no compression

* ANN: 1 hidden layer, 3 nodes, BPN method.

IGENVECTOR
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Using Tecator dataset

RMSEC  RMSEP

PLS 3.891 3.743
LWR 1.138 3.326
SVM 1.252 1.262
ANN 0.605 0.825

* Data relationship IS non-linear so freedom is needed. PLS predicts poorly.

« Using 50/50 split into Calibration and Validation datasets.
* SavGol derivative and mean center preprocessing the same for X in all
* PLS: 2 LVs

* LWR: 11 neighbors, 3 LVs (Global PCR)

* SVM: Radial Basis Function, no compression

* ANN: 1 hidden layer, 2 nodes, BPN method. o~

& EIGENVECTOR
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Using NL_tank_data dataset

RMSEC RMSEP

PLS 0.2619 1.8937
LWR 0.1152 0.1589
SVM 0.1419 0.3654
ANN 0.1424 0.4934

* Both LWR, SVM and ANN have more freedom to fit data
* Data relationship IS non-linear so freedom is needed. PLS predicts poorly.

* Autoscale preprocessing the same for X in all

* PLS: 2 LVs

* LWR: 30 neighbors, 3 LVs (Global PCR)

* SVM: Radial Basis Function, no compression

* ANN: 1 hidden layer, 2 nodes, BPN method.
116

Sugarcanes

Final example multi-
step process

Evaporation

Crystallisation

Centrifugation

Raw sugar

R. Tange, M. A. Rasmussen, Eizo Taira, and R. Bro. Application of support vector regression for
simultaneously modelling of near infrared spectra from multiple process steps. Journal of Near
Infirared Spectroscopy 23:75-84, 2015.
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Final example multi-
step process

[-] m
El g2 5] E |
§ g

Predict Pol (sugar)

0

Retain a validation set keeping 30%
in calibration

Compare SVM, ANN and PLS

Use SNV and PCA compression

PMEIGENVECTOR
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Conclusions

* Many tools and approaches readily available

* Tip #1: Use your background knowledge. The more
you know, the better you can do

* Prefer simpler models in general. Simpler implies less
overfit

* Remember validation

» Nonlinear transformations of data together with e.g.

PLS are nice as they allow easy visualization, outlier
detection, variable selection etc.

PMEIGENVECTOR
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Final example

65|

Prodiction Bias = -0.03:
& [Re2 (piottea) = 0 987

SVM
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