
1

Non-linear Methods for
Regression and Classification

with PLS_Toolbox and Solo

©Copyright 2008-2017!
Eigenvector Research, Inc.!
No part of this material may be
photocopied or reproduced in any form
without prior written consent from
Eigenvector Research, Inc.!

Table of Contents!

 1. Introduction
 - Why non-linear methods?
 - How linear methods deal with non-linear data
 2. Variable Transformations
 - Log, sqrt, -log(I/I0), etc.
 - Augmenting with non-linear transforms

 3. Factor based transforms
 - PCA Scores and Augmenting
 - Polynomial PLS

2

 4. Locally Weighted Regression
 - Weighted Regression
 - Distance Measures
 - Basing Models on PCA Scores

 5. Hierarchical Models
 - Dividing regressions into domains

 6. Support Vector Machines
 - Classification Models
 - Regression Models
 7. Artificial Neural Networks
 - Regression Models

…Continued!

3

Course Materials

•  These slides	
•  PLS_Toolbox or Solo 8.2	
•  Data sets	

•  From DEMS folder (distributed with software) 		
•  plsdata.mat (SFCM), arch.mat, paint.mat	

•  From EVRIHW folder (additional data sets)	
•  NL_tank_data, tecator.mat, nlmethods.mat, NIR_sugar.mat	

4	

2

Why non-linear methods? 
!

5

•  Linear methods such as PCA and PLS are nice
for several reasons
1.  Well-defined algorithms
2.  Reasonably fast
3.  Nice graphics
4.  Easy interpretation

•  ’Smart’ way to handle non-linear problems is
therefore to try to turn them into linear problems

Why non-linear methods? 
!

6

About non-linearity!
•  Above all:

•  Severe non-linearity is not seen in practice that often (local models)

•  If the data show non-linear behaviour
•  PLS is capable of handling mild non-linearity problems

•  Stronger non-linearity
•  Include cross terms of X variables
•  Modify the inner relation to e.g. a polynomial or splines
•  Focus on local linear ranges: locally weighted regression

•  Serious non-linearity
•  Use more powerful tools like neural networks

(take care of overfitting!)
8

Linear method (MLR, for example) is a good
model for this relationship: 	

Example of linear relationship!

3

Example of non-linear relationship!

9

But what if the dependent variables of interest
depend non-linearly on X:	
Examples: y = x2, y = log(x), y = sin(x), etc.	

y ~ x2

Example of non-linear relationship  
!

10

Linear method (MLR) is not so good 	
when the x and y data are non-linearly related. 	

Sometimes you can transform the x or y variable so that there
is a linear relationship between the transformed x and y. Then
use linear methods on the transformed data.

A. Transform the y variable

•  y* = G(y)
•  Apply method to (X, y*). E.g. MLR: Xb = y*
•  Reverse transform to get y = Ginv(y*).
•  Example transformations: log(y), sqrt(y), -log(I/I0), etc.

Or,
B. Transform the X variable

•  or augment X with non-linear transforms

Variable Transformations!

11 12

Use linear method (MLR) to predict a transformed form of y, say sqrt(y).	

Transform y!

y*=sqrt(y)

y ~ x2

4

13

This linear method predicts the transformed y, y*=sqrt(y), very well. 	
Then reverse transform y* predictions to get real predicted y.	

Transform y!

14

Recovered y prediction looks good.	

Transform y!

15

Load data into analysis window	

Try it!!

>> load nlmethods.mat
>> mlr

16

Calculate model

Try it!!
Plot predictions

5

17

Not too impressive

Try it!!

18

Change preprocessing of y

Try it!!

19

Change preprocessing of y to y½

Try it!!

Do the predictions improve?

Transform X and retain MLR!

20

An alternative to transforming y is to transform x, or add new x
variables which are non-linear transforms of the original x
variables. Then apply linear regression using augmented x.
	
This is still a linear method in that the non-linearity is captured
by adding non-linear variables and maintaining a linear
regression model.	

Augmenting x with squared terms
allows MLR to capture the quadratic
relationship between x and y. 	

6

Polytransform  
!

21

Using Browse window to augment x with squared terms or do it inside the gui:	

22

Squares = ‘on’, others are off. Click ‘OK’ and save as ‘xpolytrans’.

Polytransform  
!

Apply MLR to polytransformed x  
!

23

Use Analysis window with MLR on xpolytrans and y.	
Use “Plot scores and sample statistics” plot to show y predicted versus y measured.

Factor based transforms!

24

7

Many Variable Data Sets!

•  Using polytransform expands the number of
variables

•  Especially cross terms — n variables have ​𝑛(𝑛
−1)/2  paired cross terms. (If n = 200, # cross
terms = 19,900)

•  Increases likelihood of overfitting the data
•  One solution: use PCA first then apply transform

to the scores

25

Tecator NIR calibration example!

26

Borggaard, Thodberg, Analytical Chemistry, 64 (1992) 545–551.	
Thodberg, IEEE Transactions on Neural Networks 7 (1996) 56–72.	
http://lib.stat.cmu.edu/datasets/tecator	

215 finely chopped pure meat
samples measured by Infratec
Food and Feed Analyzer.	
	
	
Nonlinearity is exhibited
between the spectra and the fat
and moisture content. The
protein content only
demonstrates weak nonlinearity. Wavelength [nm]

850 900 950 1000 1050

Ab
so

rb
an

ce

2

3

4

5

Tecator: Build PLS model!

27

Wavelength [nm]
850 900 950 1000 1050

Ab
so

rb
an

ce

2

3

4

5

Predict fat	
	
Do first derivative and
centering	
	
Any signs of non-linearity?	

Tecator: Try a nonlinear variant!

28

Add squares and crossterms. How many variables are
there now?	
	
Excessive amounts. We need a more sensible approach	

Note the message. You will need
it to get the original data back	

8

Tecator: Try a nonlinear variant!

29

Double click here to get original data back	
	
	
	
	
	
	
Build a PCA model with enough components*	
	
	
	
* Not important to use the right number, just make sure all relevant variation is included – be optimistic!	

Tecator: Extract scores!

30

Make a score plot and open scores in Analysis	
	

Make sure that only scores are
selected. In fact, hard delete
the rest.	
	
Do squares and interactions	
	
What preprocessing?	
	

Tecator: Is the PLS model nice?!

31

If not, then try to see if variable selection can improve	
	
Possible set aside a test set	

Y Measured 1 fat
0 10 20 30 40 50 60

Y
Pr

ed
ic

te
d

1
f a

t

0

10

20

30

40

50

60

R2 = 0.995
6 Latent Variables
RMSEC = 1.0554
RMSECV = 1.2219
RMSEP = 1.016
Calibration Bias = 1.7764e-14
CV Bias = 0.048009
Prediction Bias = 0.11402

Tecator: Overfit!

32

 	
	
Try using just 20% of the data for calibration and ten
PC’s. How does that work?	

9

Locally Weighted Regression!

33 34

Nonlinear relations can often be approximated by a linear
function on a small (local) scale.

LWR models work by choosing a subset of the calibration
data (the "local" calibration samples) to create a "local" model
for a given new sample. The local calibration samples are
identified as the samples closest to a new sample.

Locally Weighted Regression!

LWR!

35

x

y

x1

1-D example showing advantage of locally weighted
regression over linear regression. Predict y for a new x value.

(x1, y1) ?

LWR!

36

x

y Linear regression

x1

Linear regression is good if there is a simple linear
relationship between y and x.

(x1, y1)

10

LWR!

37

x

y Linear regression

x1

Locally weighted
regression

Advantage of locally weighted regression over linear
regression for more complex relationship between y and x.

Npts, the number of local points

(x1, y1)

38

Using LWR from the GUI. 
!

39

More advanced options  
!alpha: Weighting of y-distances in selection of local points. �

	
	0 = do not consider y-distances {default}, �
1 = consider ONLY y-distances. 	

�
any non-zero alpha = select samples which are close in both the PC space and
have similar y-values. 	

40

Build model!
Try on Tecator. GlobalPCR or PLS works best?	

11

LWR References!

42

•  Wiki: http://wiki.eigenvector.com/index.php?title=Lwr

•  Naes, T., T. Isaksson, and B. Kowalski, (1990). Locally weighted
regression and scatter correction for near-infrared reflectance data. Anal.
Chem., 1990, 62 (7), pp 664–673.

•  Wang, Z., T. Isaksson, B. R. Kowalski, (1994). New approach for distance
measurement in locally weighted regression. Anal. Chem., 1994, 66 (2),
pp 249–260.

Hierarchical Models!

•  Sort of a "Manual" Locally Weighted Regression
•  Calibration:

1.  Build top-level linear model for estimating
2.  Identify sub-regions of data which are roughly linear
3.  Build separate (linear) sub-models on sub-regions for

more accurate estimates in sub-ranges
4.  Build Hierarchical model which selects appropriate

sub-model based on top-level model estimate

•  Example: NL_tank_data

43

NL_Tank_Data!
•  Non-linear tank level control experiment
•  Input is the voltage to a pump which fills a

tank. The tank has numerous outlet holes, so
is somewhat more complicated than a single
hole

•  Each line of the calnu data (X) contains the
last 6 pump inputs (in pulse form) for the
corresponding level in calny (Y)

44

Level

Pump

(hole sizes are not
accurate as to

experimental setup!) 0 2 4 6 8 10 12
2

4

6

8

10

12

14

Y Measured 1 level

Y
CV

 P
re

di
ct

ed
 1

 le
ve

l

Samples/Scores Plot of calnu

R2 = 0.932
2 Latent Variables
RMSEC = 0.85013
RMSECV = 0.85034
CV Bias = 2.0068e-05

High Range	

Mid Range	

Low Range	

Global PLS Model Results  
!

12

Low-Range Model Results! Mid-Range Model Results!

High-Range Model Results!

If Q is too large, throw error	

If Predicted Y is > 8, apply "High-Range" model	

If Predicted Y is < 3.8, apply "Low-Range" model	

Otherwise, apply "Mid-Range" model	

Single Layer Hierarchical
Model!

13

0 2 4 6 8 10 12
0

2

4

6

8

10

12

level

Pr
ed

ict
ed

 le
ve

l

1
2
3
4

RMSEP = 0.28	
(separate set of validation samples)	

Bad Q (no prediction)	
High-Range	
Low-Range	
Mid-Range	

Hierarchical Model Output!

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

level

Ho
te

llin
gs

 T
^2

Hierarchical Model Output!

0 2 4 6 8 10 12
0

5

10

15

20

25

30

level

Q
 R

es
id

ua
ls

Hierarchical Model Output! Add Layer of Output Testing!
If Predicted Y is > 8, apply "High-Range" local
model and test outputs…	

If Q from "High-Range" model is too
high, error;�
Otherwise, return High-Range prediction	
	

Similar tests on Low-Range and Mid-
Range Models	

14

0 2 4 6 8 10 12
0

2

4

6

8

10

12

level

Pr
ed

ict
ed

 le
ve

l

2 2
3 1
3 2
4 1
4 2

RMSEP = 0.28	

2-Layer Hierarchical Model Output 
!

0 2 4 6 8 10 12
0

1

2

3

4

5

6

level

Q
 R

es
id

ua
ls

2-Layer Hierarchical Model Output 
!

Considerations!

•  Sub-models should include
samples from "outside" the
range they will be used in

•  Anticipate "transition" effects.
Step effects may be observed
between models. Avoid putting
transitions in critical places.

56

0 2 4 6 8 10 12
2

4

6

8

10

12

14

Y Measured 1 level

Y
CV

 P
re

di
ct

ed
 1

 le
ve

l

Samples/Scores Plot of calnu

R2 = 0.932
2 Latent Variables
RMSEC = 0.85013
RMSECV = 0.85034
CV Bias = 2.0068e-05

0 2 4 6 8 10 12
0

2

4

6

8

10

12

level

Pr
ed

ict
ed

 le
ve

l

2 2
3 1
3 2
4 1
4 2

Variable named "producttype"	

Classification-Based Selection
of Regression Models!

•  Many systems have "domains" which are best fit
by individual models

•  Domain indicated by indicator variable =
Variable-Based rule

•  Domain inferred from data = classification-model-
based rule

57

15

Diesel Fuel BP50 Determination!

•  BP50 = boiling point at
50% recovery (deg C,
ASTM D 86)

•  Two versions of the fuel,
Winter and Summer

•  NIR Spectra
•  SWRI_Diesel_NIR.mat

•  http://www.eigenvector.com/data/SWRI/

58

PCA Scores

Local Regression Model Based
on NIR Spectra of Diesel Fuel!

Classification Model Rule Summer-only fuel model

Winter-only fuel model

59

PLSDA Classification Model!

60

Hands-On!

•  Using SWRI Diesel Data (in homework folder)
•  Preprocessing: 1st Derivative + Mean Centering
•  Two PLS models: Summer-Only regression model

and a Winter-Only regression model (predicting
first column of y-block, BP50)

•  PLSDA Model: Summer vs. Winter
•  Assemble Hierarchical Model
•  Output: BP50 prediction and Q residuals

61

16

Support Vector Machines!

Support Vector Machines (SVMs) are a set
of related supervised learning techniques for
classification and regression which became
popular over the past decade.

62

Support Vector Machines!
•  Since version 5.8, PLS_Toolbox provides an interface to the

commonly-used and freely available “LIBSVM”
implementation (version 2.9) by Chang and Lin. http://
www.csie.ntu.edu.tw/~cjlin/libsvm

•  Wrapped for ease of use:
 Calibration and Prediction using same function
 Automatic parameter selection
 Standard PLS_Toolbox syntax including options and default values

•  Regression (SVM) and Classification (SVMDA) support,
command line and Analysis window usage.

•  Low-level access to LIBSVM functions if desired!

63

Introduce Support Vector Machines (SVMs) as
binary linear classifier

•  Decision boundary between two classes in X-space
•  Extensions to multi-class
•  Extensions to handle non-separable problems (“cost”, “gamma” parameters)
•  “Nu” parameter is an alternative to “cost”.
•  How to find the best parameters to use

Using SVM-Classification in Analysis Window
and command line

Extension to SVM regression
• “Epsilon” parameter

64

SVM Outline!
SVM Classification!

SVMs finds the optimal separating margin
between each pair of classes.

65

Example: samples belong to one of two classes,
A and B, in two variable space (x1, x2).	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
X(:,1)	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

X	 (:	,
	 2)	

Class 1	
Class 2	

17

SVM Classification!
SVMs finds the optimal separating margin
between each pair of classes.

66

Example: samples belong to one of two classes,
A and B, in two variable space (x1, x2).	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
X(:,1)	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

X	(:	,
	2)	

Class 1	
Class 2	

0 = xTw + b	

SVM Classification!
SVMs finds the optimal separating margin
between each pair of classes.

67

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
X(:,1)	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

X	 (:	,
	 2)	

0 = [X1 X2]*[1 -1]' + 0.1	

Class 1	
Class 2	

0 = xTw + b	

SVM Classification!
If the point has a positive value, it is red and if
negative blue

68

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
X(:,1)	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

X	(:	,
	2)	

0 = [X1 X2]*[1 -1]' + 0.1	

0.2 = [0.81 .75]*[1 -1]' + 0.1	

-0.3 = [0.13 .50]*[1 -1]' + 0.1	

Class 1	
Class 2	

SVM Classification!

69
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(:,1)

0

0.2

0.4

0.6

0.8

1

1.2

X(
:,2
)

0 = [X1 X2]*[1 -1]' + 0.1

0.2 = [0.81 .75]*[1 -1]' + 0.1

-0.3 = [0.13 .50]*[1 -1]' + 0.1

Class 1
Class 2

yi = sign[wTxi+b]
 	

Find ‘regression’ vector w such that
inner product of sample xi (+b) will
have the right sign: yi is either +1 or -1.

18

SVM Classification!

70

But what if a nice line cannot be found?

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	
X(:,1)	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	
X	(:
	,	2)
	

Class 1	
Class 2	

SVM Classification!

71

First, let’s reformulate the linear SVM. Instead of
just solving 	
	
	
We do	
	
	
	
This will aim to find a classifier that works (!) and
has a wide margin (the margin equals 2/||w||)	
	

yi = sign[wTxi+b]
 	

min(wTw) subject to yi([wTxi+b])>1

 	

SVM Classification!

72

First, lets reformulate the linear SVM. Instead of just
solving 	
	
	
We do	
	
	
	
This will aim to find a classifier that works (!) and
has a wide margin (the margin equals 2/||w||)	
	

yi = sign[wTxi+b]
 	

min(wTw)½ subject to yi([wTxi+b])>1

 	
Kernel Methods	
J. Suykens,	
2009 Elsevier B.V

SVM Classification!

73

First, lets reformulate the linear SVM. Instead of just
solving 	
	
	
We do	
	
	
	
This will aim to find a classifier that works (!) and
has a wide margin (the margin equals 2/||w||)	
	

yi = sign[wTxi+b]
 	

min(wTw)½ subject to yi([wTxi+b])>1

 	

19

SVM Classification!

74

min(wTw) subject to yi([wTxi+b])>1

 	

Support vectors = the
ones where the equality
holds. The ones further
out don’t matter, once
w and b are found

SVM Classification!

75

min(wTw) subject to yi([wTxi+b])>1

 	

Support vectors = the
ones where the equality
holds. The ones further
out don’t matter, once
w and b are found

Margin = 2/||w||

wTxi+b=0	

wTxi+b=1	

wTxi+b=-1	

Allowing misclassification!

76

min(wTw)+CΣβi subject to yi([wTxi+b])>(1-βi)

 	
Cost given by C.

When zero, don’t worry
about misclassifications,

When big (up to infinity),
no errors allower (=smaller
margin)

βi	=	0	

βi	=	0	
βi	=	0.5	

βi	=	2	

Missclassified	

SVM Classification!

77

Cost: (0 – infinity). When high, fewer samples within

narrower margin, less misclassification, maybe overfitting.	

cost = 0.1 cost = 0.001

20

The Gaussian RBF kernel function takes the following form:

SVM nonlinearity!

78
https://en.wikipedia.org/wiki/Kernel_method	

gamma: (0 – infinity). Low,

linear; high local and
nonlinear	

SVM classification involves defining parameters

(cost, gamma).

Cost: (0 – infinity). When high, allow less

misclassification but could cause overfitting.	

gamma: (0 – infinity). Low, linear; high local and

nonlinear	

The svm function and GUI selects automatically by

default using cross-validation.

SVM Parameters!

79

SVM Parameters!

80

Examine the effect of the cost/nu and gamma parameters using simple two-
variable, two-class dataset with 100 red and 100 blue data points.
These two classes are not linearly separable but are not too complicated.

81

a) Cost = 0.1 b) Cost = 1.0

c) Cost = 10 d) Cost = 100

21

82

a) gamma = 0.0001 b) gamma = 0.001

c) gamma = 0.01 d) gamma = 1.0

Summary of parameter effects!

83

Increase cost (decrease nu)
Narrower separating margin and fewer support vectors.

Increase gamma
More complicated decision boundary shape. Very small
gamma gives linear kernel behavior (decision boundary is
a plane).

For more detailed discussion of SVM parameters see
http://wiki.eigenvector.com/index.php?title=Svmda.

84

Multi-class SVM Classification!
•  Classifying data belonging to more than two classes (k > 2) is handled

by considering each pair of classes as a separate SVM problem. Hence
k*(k-1)/2 SVM classifiers

•  LIBSVM implements the “one-against-one" approach for multiclass

classification. If k is the number of classes, then k(k - 1)/2 classifiers
are constructed and each one trains data from two classes. In
classification of a new sample we use a voting strategy: each binary
classification is considered to be a voting where votes can be cast for
the class of the new sample. In the end a point is designated to be in a
class with the maximum number of votes.

85

x1

x2

C-SVC: (#SVs =15)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-3

-2

-1

0

1

2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Multi-class SVM Classification!

22

86

x1

x2

C-SVC: (#SVs =15)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-3

-2

-1

0

1

2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Multi-class SVM Classification!

New test dataset samples are assigned to a class according to which
partition they reside in.

87

x1

x2

C-SVC: (#SVs =15)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-3

-2

-1

0

1

2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

o = Support vectors

Multi-class SVM Classification!

SVM C-classification using the
PLS_toolbox GUI

!

88

Note the defaults: rbf, and
parameter search ranges.	

SVM Classification!

89

Run the model. “Optimal” parameters are found and the model built.

23

SVM Classification!

90

View the parameter search results. “X” identifies the optimal parameters.

Misclassification cost

Gamma
(non-linear

kernel parameter)

Misclassification
rate

Best cost and
gamma values

SVM Classification!

91

View class predictions for the training dataset

SVM Classification!

92

View class predictions for the training and test datasets

93

SVMDA predicts class labels or per-class probabilities for samples. The
per-class probabilities are calculated if the "Probability Estimates" option is
enabled in the SVMDA analysis window (or set the option
probabilityestimates = 1 in command line usage). The method
is explained in Chang and Lin (2001), section 8, "Probability Estimates".

The per-class probability estimates appear in model.detail.predprobability as
an nsample x nclasses array. The columns are the classes, in the order given
by model.detail.svm.model.label where the class values are what was in the
input X-block.class{1} or Y-block. These probabilities are used to find the
most likely class for each sample and this is saved in pred.pred{2} and
model.detail.predictedclass. This is a vector of length equal to the number of
samples with values equal to class values (model.detail.class{1}).

Per-class probability estimates!

24

94

You can get details of the true-positive, false-positive rates, etc. by using the
‘confusionmatrix’ command line function.

>> confusionmatrix(model);

Confusion Matrix:

 Class: TP FP TN FN

 K 1.00000 0.00000 1.00000 0.00000

 BL 1.00000 0.00000 1.00000 0.00000

 SH 1.00000 0.00000 1.00000 0.00000

 AN 1.00000 0.00000 1.00000 0.00000

See ‘help confusionmatrix’ and ‘help confusiontable’.

An aside: confusion matrix! SVM Regression!

95

Goal: Predict a property of interest (y) from measured values (x)
•  SVM regression introduces a parameter epsilon, e, representing the

maximum penalty-free deviation of training set predictions from the
target values.

•  The C parameter controls the penalty for deviations greater than e.

x

y

e	

Single variable, x, target y

y predicted

SVM Regression!

96

•  Increasing the epsilon value allows a more relaxed

fitting of the regression to the training data.
•  Reduces risk of overfitting the training data but

might miss important features of the data.

x

y

e!

Single variable, x, target y

y predicted

SVM Regression!

97

Linear kernel SVM regression produces a straight line response of y with
respect to x. It cannot capture any non-linearity in the x-y relation.

Regression with linear kernel. epsilon = 0.1, cost = 10.

25

98

b) epsilon = 0.3

c) epsilon = 0.5 d) epsilon = 0.7

a) epsilon = 0.1

Compare epsilon values, keeping gamma = 0.01, cost= 10.

> 0.3

SVM Regression!

99

Summary of parameter effects:
•  Decreasing epsilon causes tighter fitting of the regression

represented in the training data.

•  Decreasing cost causes looser fitting to the training data regression
relation.

•  Gamma determines how strongly non-linear the modeled

regression can be.
Smaller gamma tends towards linear kernel behavior, giving a straight predicted
line. Larger gamma allows the SVM to represent stronger nonlinearity in the
x,y regression.

SVM Regression!

100

Selecting the parameters to use for SVM regression.
•  SVM regression has one more parameter than SVM

classification, (epsilon, cost, [gamma]). Pick optimal
parameter set by scanning over parameter ranges testing for
the best cross-validation RMSE. This can be slow…

SVM e-regression using
PLS_Toolbox GUI!

101

26

Tecator NIR calibration example!

102

Borggaard, Thodberg, Analytical Chemistry, 64 (1992) 545–551.	
Thodberg, IEEE Transactions on Neural Networks 7 (1996) 56–72.	
http://lib.stat.cmu.edu/datasets/tecator	

215 finely chopped pure meat
samples measured by Infratec
Food and Feed Analyzer.	
	
	
Nonlinearity is exhibited
between the spectra and the fat
and moisture content. The
protein content only
demonstrates weak nonlinearity. Wavelength [nm]

850 900 950 1000 1050

Ab
so

rb
an

ce

2

3

4

5

Tecator NIR calibration example!

103

Compare how PLS and SVR predict fat	

Tecator NIR calibration example!

104

Possibly retain a validation set	
Maybe only keep 20% in calibration to speed up	

SVM Performance Issues!

105

•  X-block compression: Data compression performed on x-block prior to

calculating or applying the SVM model.

•  'pca' uses a simple PCA model to compress the information. 'pls' uses either a
pls or plsda model (depending on the svmtype). Compression can make the
SVM more stable and less prone to overfitting, and faster to calculate.

X

1,000 Variables

PCA
PLS scores

1-20 Vars (PCs)

1,000 Dimensional Space
= a lot of degrees of freedom

27

SVM Performance Issues!

106

SVM optimal parameter search: the slowest step when

building an SVM model. SVM regression with Gaussian
RBF involves three parameters (epsilon, cost, gamma), so
searching can be slow. Linear kernel function uses one
SVM parameter less than the Gaussian RBF so the search
is [notably] faster.

Due to randomness in the selection of training samples during the cross-validation

process, multiple runs of the optimal parameter search may return slightly
different optimal parameter values.

A time limit (option ‘cvtimelimit’) exists for model building during CV parameter

searching (default 2 sec), because searching can be exceptionally slow for
some parameter combinations. If an exact parameter set is used then no CV
search occurs but even then, a timelimit = 30 x cvtimelimit is enforced when
building the SVM.

SVM References!

108

•  Ivanciuc, O. (2007). “Applications of Support Vector Machines in

Chemistry”
 http://www.ivanciuc.org/Files/Reprint/Ivanciuc_SVM_CCR_2007_23_291.pdf

•  Chang, C.-C. and C.-J. Lin, (2001) “Libsvm: a library for support vector
machines”. http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf

 Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

•  Hsu, C.W., C.C. Chang, C.J. Lin (2009). “A Practical Guide to Support
Vector Classification”. http://www.csie.ntu.edu.tw/~cjlin

•  Smola, A.J. and B. Scholkopf (2003). “A tutorial on support vector
regression”. http://alex.smola.org/papers/2003/SmoSch03b.pdf

•  Bennett, K.P. and C. Campbell, "Support Vector Machines: Hype or
 Hallelujah?" (2000). http://www.sigkdd.org/explorations/issue2-2/bennett.pdf

Artificial Neural Networks!

109 110

•  Artificial Neural Network (ANN) is a non-linear regression method.

•  ANN mimics the architecture of the brain where a network of neurons
are connected by synapses. X data are presented to the ANN in the
input layer. A simple single hidden-layer example:

Artificial Neural Networks!

Input
layer
(X)

Single
hidden
layer

Output
layer
(Y)

If the input to a neuron is
strong enough the neuron is
activated and it affects
downstream connected
neurons

28

111

ANN is defined by:
• The layers and nodes in each layer and their connections.

 Input layer has as many nodes as X has variables.
 Output layer has as many nodes as Y has variables.

• Weights: weight associated with each synapse, or node-pair.

• Activation function converts node’s weighted input to its
output, and is usually step-like such as tanh.

ANN!

112

Each node receives input ​𝑥↓𝑖 , from N upstream nodes, each modified
by a transmission factor ​𝑤↓𝑖 :
​𝐼= ∑𝑖=1↑𝑁▒(​𝑤↓𝑖 ​𝑥↓𝑖 +𝑏) ↓  
and outputs a signal, ​𝑥↓  =𝑓(𝐼), to downstream nodes.
𝑓() is called the Activation Function. It non-linearly converts node’s
weighted input to its output, and is usually step-like such as tanh.

Artificial Neural Networks!

The activation function must
be smooth (differentiable) to
allow the backpropagation
error reduction method to work
in training the ANN

113

You have ~86 billion neurons and ​10↑14 − ​10↑15  synapses.
(http://cs231n.github.io/neural-networks-1/#bio)

ANNs in 2015 as large as approx. ​10↑11  weights (synapses)

Biological Analogy!

114

ANN using the Analysis GUI!

Training process for updating the weights for each connection. ANN
uses a feedforward network with back-propagation training. The
training calculates the error between actual and predicted output and
adjusts weights to minimize this error.	

29

Compare using plsdata dataset!
 RMSEC RMSEP

PLS 0.1063 0.1385
LWR 0.0964 0.1765
SVM 0.0949 0.1495
ANN 0.0985 0.1449

115

•  Both LWR, SVM and ANN have more freedom to fit data
•  Data relationship is NOT inherently non-linear so freedom is overkill

•  Mean Centering preprocessing the same for X in all
•  PLS: 3 LVs
•  LWR: 30 neighbors, 3 LVs (Global PCR)
•  SVM: Radial Basis Function, no compression
•  ANN: 1 hidden layer, 3 nodes, BPN method.

Using NL_tank_data dataset!
 RMSEC RMSEP

PLS 0.2619 1.8937
LWR 0.1152 0.1589
SVM 0.1419 0.3654
ANN 0.1424 0.4934

116

•  Both LWR, SVM and ANN have more freedom to fit data
•  Data relationship IS non-linear so freedom is needed. PLS predicts poorly.

•  Autoscale preprocessing the same for X in all
•  PLS: 2 LVs
•  LWR: 30 neighbors, 3 LVs (Global PCR)
•  SVM: Radial Basis Function, no compression
•  ANN: 1 hidden layer, 2 nodes, BPN method.

Using Tecator dataset!
 RMSEC RMSEP

PLS 3.891 3.743
LWR 1.138 3.326
SVM 1.252 1.262
ANN 0.605 0.825

117

•  Data relationship IS non-linear so freedom is needed. PLS predicts poorly.

•  Using 50/50 split into Calibration and Validation datasets.
•  SavGol derivative and mean center preprocessing the same for X in all
•  PLS: 2 LVs
•  LWR: 11 neighbors, 3 LVs (Global PCR)
•  SVM: Radial Basis Function, no compression
•  ANN: 1 hidden layer, 2 nodes, BPN method.

Final example multi-
step process!

118

R. Tange, M. A. Rasmussen, Eizo Taira, and R. Bro. Application of support vector regression for
simultaneously modelling of near infrared spectra from multiple process steps. Journal of Near
Infrared Spectroscopy 23:75-84, 2015.

30

Final example multi-
step process!

119

Predict Pol (sugar)	
	
Retain a validation set keeping 30%
in calibration	
	
Compare SVM, ANN and PLS	
	
Use SNV and PCA compression	

Final example!

120

PLS

SVM

ANN

Conclusions!
•  Many tools and approaches readily available
•  Tip #1: Use your background knowledge. The more

you know, the better you can do
•  Prefer simpler models in general. Simpler implies less

overfit
•  Remember validation
•  Nonlinear transformations of data together with e.g.

PLS are nice as they allow easy visualization, outlier
detection, variable selection etc.

121

