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Regression

Y-Block
What’s desired

X-Block
What’s measured

Regression

Model

Regression analysis creates a mapping between two 
blocks of data.

In contrast, PCA was used to explore the correlation 
structure within a single data block.

Regression models are often used to obtain estimates 
(or predictions) for one block of data from the other.

What Can Be Done with 
Regression?
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• Analyte concentrations from spectra or other sensors
• CH4, H2O, CO2 in natural gas (NIR)

• H2, NH3 in waste tanks (FTIR)

• Sugar content of fruit (NIR)

• Prediction of property values
• Octane of gasoline (NIR)

• Ozone forming potential of automobile exhaust (FTIR)

• Sample classification (e.g., PLS-DA)
• Detection of cervical cancer (ETF)

• Detection of atherosclerotic (vulnerable) plaques (NIR)
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Outline
• Introduction

• Classical Least Squares (CLS)

• Inverse Least Squares (ILS) Models

• Multiple Linear Regression (MLR)

• Ridge Regression (RR)

• Principal Components Regression (PCR)
• Cross-validation

• Partial Least Squares Regression (PLS)
• Model Quality Measures

• Determining of the Number of factors

• Outlier Detection and Model Diagnostics

• Comparison of Methods on NIR Styrene Copolymer data 

• A Unifying Theme: Continuum Regression (CR)

• Model Updating, Missing Data

• Summary



Course Materials

• These slides

• PLS_Toolbox or Solo 8.1 or later

• Data sets
• From DEMS folder (installed with software)

• plsdata (SFCM) 

• From EVRIHW folder (additional data sets)
• EigenU_nir_data, SBRdata_EU
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Conventions & Notation

• Rows correspond to samples, columns correspond to variables

• Notation:
• X = matrix of predictor variables

• Y = matrix (or vector y) of predicted variables

• M = number of samples (observations)

• Nx = number of X variables, Ny = number of Y variables

• T = X-block scores matrix, t1, t2, ..., tK score vectors

• U = Y-block scores matrix, u1, u2, ..., uK score vectors

• P = X-block loads matrix, p1, p2, ..., pK loadings vectors

• Q = Y-block loads matrix, q1, q2, ..., qK loadings vectors

• W = X-block weights matrix, w1, w2, ..., wK loadings vectors

• Θ = ridge parameter
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Data Preprocessing

• Everything that was said about preprocessing for 
PCA goes double for regression

• Data should be linearized, if possible

• Data is often mean-centered

• Variance scaling used when variables are in 
different units or greatly different magnitudes

• Many preprocessing methods available!
• Goal: reduce extraneous variance, emphasize relevant 

variance

• Outlier elimination is critical to regression models

8

Classical Least Squares

• CLS can be used to develop calibration models
• often used in spectroscopy

• The CLS model assumes the data follows:

X = CST + E

where X (MxNx) is the measured response,

S (NxxK) is a matrix of pure component 
responses, C (MxK) is a matrix of weights (e.g.,
concentrations) and E (MxNx) is noise or an 
error matrix.
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The CLS Model
• Given known pure component spectra, how 

much of each does it take to make up the 
observed mth spectrum?

• xm = cmST + em

• m = 1,…,M

• cm=[cm,1, cm,2, …, cm,K]

• k = 1,…,K
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The CLS Model
• Given known pure component spectra S, how 

much of each does it take to make up the 
observed spectrum?

• i.e., what are the cm,k?
xm

cm,ksk
T
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CLS (cont.)

• Once S (the spectral “basis”) is known, c, the 
degree to which each component contributes to a 
new sample x, can be determined from

c = xS+

where S+ is the pseudo-inverse of S, defined in 
CLS as

S+ = S(STS)-1

• Problem: How to get S?
• library, estimate from calibration measurements
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Classical Least Squares

X = CST + E
X = CST

XS = CSTS
XS(STS)-1 = C
S+ = S(STS)-1

• Note that STS is KxK (analytes by analytes) 
and square
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Estimating S
• Sometimes, S can be compiled a priori from a 

data base/spectral library, or from direct 
measurements of pure components
• Problem: must account for all components that can 

contribute to X! 

• S can also be estimated from mixtures, provided 
all C are known and enough samples are available:

ST = (CTC)-1CTX
• Problem: The concentration of every analyte that 

contributes to X must be known!*

*Interferences and unknowns can be handled with GLS or ELS 
type models, but their basis must be estimated.
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CLS Example
• NIR data of pseudo-gasoline samples

• absorbance at 401 channels 
• 30 samples
• 5 analytes

• EigenU_nir_data.mat
• Data broken into

• 25 calibration samples and
• 5 test samples
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>> load EigenU_nir_data
>> whos
Name            Size          Bytes  Class
cal_conc 25x5           11002  dataset              
cal_spec 25x401         96466  dataset              
test_conc 5x5           10042  dataset              
test_spec 5x401         32146  dataset

Load Data Into Browser
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Start CLS Interface

16

data in
workspace

double-
click



Data Loaded

17

mouse over to get info

darker color indicates data loaded

Set Preprocessing to “none,”
calculate model
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Pure Component Spectra

S, estimated from mixtures, 
using known concentrations 
of all 5 analytes

ST = (CTC)-1CTX
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Click loadings “spectrum”
icon, select all 5 components

20

Fit to Calibration and Estimate 
for Validation Samples

Click scores “flask”
icon to get fits and 
predictions (test set).

Check “Show Cal Data 
with Test”.

Calibration data (black)

Predicted test (red).

All analytes fit and 
predicted well.
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CLS Problem

• What if the concentration of 1 analyte was unknown?

• Repeat the CLS procedure using only the first 4 (of 5) 
analytes

• Attempt to predict concentrations of unused (test) 
samples

Select only the first four 
analytes and repeat
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click ‘cal Y: select Y-columns’
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CLS Solution with One 
Analyte “Missing”

Click scores “flask”
icon to get fits

Some analytes not fit 
(black) and not 
predicted (red) well, 
especially heptane
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Inverse Least Squares

• Inverse least squares (ILS) models assume that 
the model is of the form:

Xb = y + e

where y (Mx1) is a property to be predicted, 

X (MxNx) is the measured response, e (Mx1) is 
an error vector, and b (Nxx1) is a vector of 
coefficients

• Unlike CLS, ILS methods associate the noise 
with the predicted property, not the measured 
response
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Advantage of ILS Methods

• ILS methods (including MLR, PCR, PLS, CR) 
don’t require the concentration of all analytes, 
including interferents, be known …

• …however, interferents must vary in the 
calibration data set for the ILS regression model to 
be robust against them

Interferent: Any substance whose presence interferes with an analytical 
procedure and generates incorrect results (wiktionary)
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Estimation of b: MLR

• It is possible to estimate b from

where      is the pseudo-inverse of X

• There are many ways to obtain a pseudo-inverse; 
the most obvious is multiple linear regression 
(MLR), a.k.a., Ordinary Least Squares (OLS)

• In this case,       is estimated from  

  b = X+y

  X
+

  X
+

   
X+ = XT X( )-1

XT
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Multiple Linear Regression

• Note that            is NxxNx and square

   

Xb = y + e

Xb = y

XT Xb = XT y

b = XT X( )-1
XT y

X+ = XT X( )-1
XT

  X
T X
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Problem with MLR

• Inverse of           only exists if … 
• Rank(X) = Nx, however rank(X) ≤ min (M,Nx)

• X has more samples than variables i.e., if M>Nx, and
• problem with spectra

• Columns of X are not co-linear.

• Inverse may exist but be highly unstable if X is 
nearly rank deficient (a.k.a., ill-conditioned).

• In these cases, small perturbations in the data 
(possibly due to noise) can produce very different 
results.

  X
T X
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Slurry Fed Ceramic Melter: 
SFCM

left right
20 temperatures

(numbered bottom to top)
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MLR Example

• Use MLR to obtain a relationship between 
temperature and level in a SFCM 

Load SFCM Data (plsdata)
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find data set
in DEMS folderdrag onto

MLR
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Edit Data
xblock1 and yblock1
will load as calibration

xblock2 and yblock2
will load as validation set

Edit calibration X-block data



Remove Outliers

Select “Row Labels”
tab in DataSet Editor

Exclude samples 73, 
167, 278 and 279 from 
xblock1
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Set Preprocessing
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set the preprocessing to 
mean-center for both the 
x- and y-block

Mean-centering allows for an 
offset in the linear regression.
Not centering is a force fit 
through zero.

Set Cross-Validation
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set the cross-validation 
to split the data into 
contiguous blocks with 
10 splits
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MLR Fit to Calibration and 
Prediction on Validation Data

Click calculate model 

Click scores “flask”
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Ridge Regression
• Ridge Regression (RR) is one way to deal with ill-

conditioned problems

• RR gets its name because a constant is added to 
the “ridge” of the covariance matrix in the 
formation of the pseudo-inverse:

• The addition of the ridge (Iθ term) stabilizes the 
inverse and shrinks the values of the coefficients
• this “ridging” is known as matrix regularization

   
X+ = XT X + Iq( )-1

XT
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RR Shrinkage

[brr,theta] = ridge(mx,my,0.015,31);
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RR and MLR Regression 
Vectors
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Problem with MLR and RR
• RR helps stabilize the inverse

• ridging biases the regression
• how to determine the ridge parameter θ?

• MLR does not work when M<Nx

• Possible solution: eliminate variables
• how to choose which variables to keep?

• stepwise regression or other variable selection

• lose multivariate advantage - signal averaging

• Another solution: use PCA to reduce original 
variables to some smaller number of factors
• retains multivariate advantage
• noise reduction aspects of PCA
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Principal Components 
Regression

• Principal Components Regression (PCR) is one 
way to deal with ill-conditioned problems

• Property of interest y is regressed on PCA scores:

• Problem is to determine K the number of factors to 
retain in the formation of the model

   
X+ = P

K
T

K
T T

K( )-1
T

K
T
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Principal Components 
Regression

   

TKb pc = y + e = XPKb pc

T
K
b

pc
= y

TK
T TKb pc = TK

T y

b pc = TK
T Tk( )-1

TK
T y    

b = P
K
b

pc

b = P
K

T
K
T T

K( )-1
T

K
T y

X+ = P
K

T
K
T T

K( )-1
T

K
T

• Note that            is KxK and square  TK
T T

K
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Cross-Validation
• Divide data set into J sample subsets

• For each subset (j=1,…, J):
• Build PCA model using samples in the remaining subsets

• Apply the model to subset j samples

• Calculate PRESS (Predictive Residual Sum of Squares) for 
the subset samples:

• Look for minimum or “knee” in CumPRESS curve
   
e

j
2 = y - Xb( )

j

2

   
RMSECV =

1

M
e j

2

j=1

J

å
æ

èç
ö
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1
2
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Cross-Validation Graphically

X y

break data 
into subsets
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d 
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d 
2
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d 
3

form model with then 
use

to 
predict

calculate
prediction error
for each subset
as a function of
number of PCs
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X y

“Venetian 
blinds” - OK

when data
already in
random
order

contiguous 
blocks-best 

for time 
series

random
selection-
usually
repeated

several times

leave-one-
out, used
when not
much data
available

Formation of Test Sets

What else?  
Custom selection, based on 
prior knowledge!
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Cross-Validation Considerations

• Cross-validation method selection criteria
• Number of objects in dataset, M

• Order of objects in dataset

• Objective of cross-validation (specific type of error?)

• Presence/absence of replicates

• Remember the objective is to mimic future performance

• “Traps” to avoid
• “Replicate sample trap”

• Different replicates in both model and test set

• “External subset selection trap” - extrapolation
• Test set “space” outside of model set “space”
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Cross-validation Usage Matrix 1/2

48

Cross-Validation Usage Matrix 2/2
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Switch Analysis from MLR to 
PCR, Calculate Model
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PCR Variance Captured and Statistics for xblock1

 

 

RMSECV Level

RMSEC Level

PCR Cross-Validation Example
irrelevant PCs

choice for K (6 PCs)Recall: time series data so 
contiguous block CV 

Click variance “lambda”
icon to get CV results
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PCR Variance Captured

Percent Variance Captured by PCR Model   

-----X-Block----- -----Y-Block-----
PC #    This PC    Total     This PC    Total 
---- ------- ------- ------- -------
1      81.55 81.55      85.50 85.50
2       6.19     87.74       0.20     85.70
3       5.24     92.98       0.29     85.99
4       2.53     95.51       0.04 86.03
5       1.37     96.89       0.15     86.17
6       1.01     97.90      1.13 87.31
7       0.46     98.36       0.06     87.37
8       0.40     98.76       0.28     87.64
9       0.36     99.12       0.30     87.94
10       0.24     99.37       0.01     87.95

1      81.61 81.61      85.23 85.23
2       6.16     87.77       0.19     85.41
3       5.22     92.98       0.30     85.71
4       2.54     95.53       0.02 85.74
5       1.37     96.90       0.17     85.91
6       1.01     97.91       1.09 86.99
7       0.46     98.37       0.05     87.04
8       0.39     98.76       0.27     87.31
9       0.36     99.12       0.30     87.61
10       0.24     99.37       0.02     87.63

PCR Model Fit to Calibration 
Data and Validation Predictions
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Click scores “flask” to 
get prediction results

Adjust Plot 
Controls to 
get desired 
plot
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Problems with PCR

• Some PCs not relevant for prediction, but are only 
relevant for describing variance in X
• leads to local minima and increase in PRESS

• This is a result of PCs determined without using 
information about property to be predicted y

• A solution is to find factors using information 
from y and X
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Partial Least Squares
• PLS is related to PCR and MLR

• PCR captures maximum variance in X

• MLR achieves maximum correlation between X and Y

• PLS tries to do both by maximizing covariance between 
X and Y

• Requires addition of weights W to maintain 
orthogonal scores

• Factors calculated sequentially by projecting Y
through X

   
X+  =  R

K
T

K
TT

K( )-1
T

K
T = W

K
P

K
TW

K( )-1
T

K
TT

K( )-1
T

K
T
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SIMPLS Variance Captured and Statistics for xblock1

 

 

RMSECV Level

RMSEC Level

PLS Cross-Validation Example

choice for K

no irrelevant factors

Set Analysis to PLS

Calculate model 

Click variance “lambda”
to get CV results

PLS Model Fit to Calibration 
Data and Validation Predictions

Set number of LVs to 4

56
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PLS Variance Captured
Percent Variance Captured by PLS Model   

-----X-Block----- -----Y-Block-----
LV #    This LV    Total     This LV    Total 
---- ------- ------- ------- -------
1     81.55 81.55      85.61 85.61
2       5.18     86.72       1.13     86.74
3       2.06     88.79       1.14     87.89
4       4.81     93.59       0.19     88.08
5       1.92     95.51       0.25     88.33
6       1.41     96.92       0.18     88.51
7       1.16     98.08       0.05     88.56
8       0.39     98.47       0.07     88.62
9       0.22     98.69       0.07     88.70
10       0.31     99.00       0.05     88.75

1      81.61 81.61      85.33 85.33
2       5.15     86.76       1.12     86.45
3       2.01     88.77       1.14     87.59
4       4.91     93.68       0.18     87.77
5       1.55     95.23       0.30     88.07
6       1.66     96.89       0.15     88.22
7       1.21     98.10       0.05     88.27
8       0.37     98.47       0.07     88.34
9       0.21     98.68       0.08     88.42
10       0.31     99.00       0.05     88.48
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Regression Vectors
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NIPALS: PLS Algorithm
Choose u1 = y or one column of Y 

(1) 

(2) 

(3) 

(4) 

Check for convergence by comparing t1 to

previous t1. If Y = y skip (3) and (4) and continue 

(5) 

(6) 

w 1   =  
X 

T 
u 1 

X 
T 
u 1 

t 1   =  Xw 1 

q 1   =  
u T 

1   t 1 

u T 

1   t 1 

u 1   =  Yq 1 

p 1   =  
X 

T 
t 1 

t 
T 

1   t 1 

p 1 new   =  
p 1 old

p 1 old

(7) 

(8) 

Find the regression coefficient for the inner

relation: 

(9) 

After calculating scores and loadings for first

Latent Variable, the X and Y-block residuals are

calculated: 

(10) 

(11) 

Repeat entire procedure replacing X and Y with

their residuals 

t 1 new   =  t 1 old p 1 old

w 1 new   =  w 1 old p 1 old

b 1   =  
  u T 

1   t 1 

t T 
1   t 1 

E 1   =  X   -  t 1 p T 
1 

F 1   =  Y   -  u 1 q T 
1 

Non-linear iterative patial least squares (NIPALS).
Geladi, Paul; Kowalski, Bruce (1986), "Partial Least Squares Regression:A Tutorial", 
Analytica Chimica Acta 185: 1–17, doi:10.1016/0003-2670(86)80028-9 60

Other PLS Algorithms

• It can be shown that w1 is given by

• The SIMPLS algorithm uses an orthogonalization
of a Krylof sequence (faster than NIPLS algorithm)

• The important thing to remember is:

PLS finds factors in X which are correlated with Y
while describing large amounts of variance in X

11
TT   wXwYYX l=

Sijmen de Jong, “SIMPLS: an alternative approach squares regression,” 
Chemometrics and Intelligent Laboratory Systems, 18 (1993) 251-263
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Y Projected onto X Plane
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PCA of X-Block
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MLR Regression Vector and 
Surface

64

PCR Regression Vector and 
Surface

M LR

PCR

PCR

M LR
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PLS Regression Vector and 
Surface

PCR

M LR
PLS
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Geometric Relationship of
MLR, PCR, and PLS

PCR

M LR
PLS

PLS is the vector 
on the PCR ellipse 
upon which MLR 
has the longest 
projection

Line perpindicular 
to the MLR 
regression vector
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PLS for Multivariate Y

• PLS can be used to relate multivariate X to 
multivariate Y (a.k.a., PLS2)
• outer relationships

• inner relationship

• i.e., the scores in Y are linear combinations of the 
scores in X

   

X =  T
K
P

K
T  +  E

Y =  UKQK
T  +  F

   UK
 =  T

K
B

K
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PLS2

w1 and q1 are similar to PCs 
in X and Y but they are 
rotated so that there is better 
correlation between 

t1 (=Xw1) and u1 (=Yq1)

X1

X2

Y1

Y2

u1

t1

Slope = b

1st PC 1st PCw1

q1

X-Block Outer Model Y-Block Outer Model

Inner Model
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Model Quality Measures

• Root Mean Square Error 
(RMSE) Metrics

• RMSEC

• RMSECV

• RMSEP

• In units of the Y variable!

• Correlation Coefficient (r)

• Unit-less

• Considers the range of Y   

ŷ
i
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Root Mean Square Error (RMSE) 
Metrics

• These are used to assess a model’s fit to the data
and predictive ability on new data

• Measures “average” deviation of model estimates 
from the measured data

• Measure of fit - root mean squared error of 
calibration (RMSEC)

i’s refer to all 
samples used to 
build the model
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Cross-Validation Error
• RMSEC measures fit to the model data. RMSECV (root 

mean squared error of cross-validation) is an estimate of 
predictive power on new data.

• RMSECV is a function of the number of factors k and
how the test sets were selected

J’s refer to different 
CV subsets

i’s refer to CV subset 
samples- not used to 
build CV models

( )2

1 1

ˆ
JmJ

i i
j i

J J

y y
PRESS

RMSECV
m m

= =
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Prediction Error
• Prediction error is often used to validate a model 

and is a true measure of the predictive power on 
new data

• Measure of prediction error - root mean squared 
error prediction (RMSEP)

i’s refer to 
samples NOT
used to build the 
model

RMSEP
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SIMPLS Variance Captured and Statistics for xblock1

 

 

RMSECV Level

RMSEC Level

RMSE metrics, as a function of 
factor (PC, LV)

RMSEC and RMSECV 
can also be used to 
determine the optimal 
number of factors 
(LVs, PCs) to be used 
in a model

Comparison of Models

• MLR, PCR, and PLS models were constructed 
using SFCM data: Calibration used (xblock1) and 
test used (xblock2).

• Fit and prediction are two entirely different 
aspects of a model’s performance
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MLR         PCR         PLS
RMSEC      0.1002 0.1070      0.1038
RMSECV     0.1136      0.1120      0.1102
RMSEP      0.1498      0.1355 0.1415
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Number of PCs or LVs

• Choice is not always simple

• A few rules of thumb
• sqrt(M) a good choice for number of splits

• useful to do repeated CVs with different data ordering

• if data is time series use block CV due to correlated noise

• be conservative, models are more often over-fit than under-fit

• best choice is often not the global minimum PRESS

• look for minimum of PRESS and work backwards if improvement 
is not at least 2%

• RMSEC<RMSECV by more than ~20% indicates overfit

• look at variance captured in X and Y. Is it significant with respect 
to what you know about the data?
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Model Diagnostics
• Diagnostics useful for finding outliers/uniques

• X-block Q residual and T2

• X-block leverage and studentized Y-block residuals

• Try SFCM example without removing outliers
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Build PLS Model on SFCM Data

• Construct a linear regression for yblock1 from 
xblock1 (time series data)
• predict level of slurry fed ceramic melter (Y-block)

• using melter temperatures (X-block)

• Test the model on xblock2 and yblock2

IF data still loaded, can do:
• Edit/Calibration/X-block Data
• Row Labels Tab
• right-click on “Incl” : “Clear/Reset”
(checks all rows)

• calculate model

Load SFCM Data (plsdata)
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find data set
in DEMS folderdrag onto

PLS
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Data: loaded but not analyzed

1 Cursor over X-
block to get info

2 No model calculated (yet…)
3 Plot your Data!

80

Default plot

Column / Variable 
mean

Plot Your Data
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1 Plot control default
can look at summary stats

2 under view menu 
check 
labels:Temperature

3 under Y: menu 
highlight Data

the Plot control generates plots in 
MATLAB figure windows

Plot Your Data
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all samples vs. 
variables

left

bottom to top

right

bottom to top

Plot Your Data
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Plot Your Data

all variables vs. 
samples (time)

under X: menu 
highlight Samples
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Plot Y dataClick

Plot Controls: Select 
Plot:Columns
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Plot Y Data
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Plot Your Data: Summary

• Bottom temperatures higher than top temperatures
• surface and plenum space is cooler than the bottom

• Trend in time
• “saw-tooth” pattern showing correlation between some 

temperatures and level
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Which Regression?
• BACK to Analysis Window, then Analysis menu

• Choose PLS...

PLS

88

How Should We Scale the Data?
• Variables are in same units and there’s and reason to 

believe that variance is associated with signal: Suggests 
mean-centering.

• X Preprocessing is set under Preprocess:X-block

1 autoscaling is the 
default, highlight 
Mean Center

2 select Mean 
Center for both
X- and Y-blocks
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How to Cross-Validate?
• Time series data suggests contiguous block cross-validation

1 click check for Cross-Validation

3 click Model button to 
perform cross-validation and
build the regression model

2 contiguous block, then OK

Regression Results

1 variance captured table: 
% variance explained and 
RMSECV for each LV.

2 Click Eigenvalue button to 
plot RMSEC and RMSECV

modelcache saves the model 
for easy loading and 
inspection at a later time

91

RMSECV Plot

Plot RMSEC and 
RMSECV vs. LV.

9292

Choose Number of LVs

1 Highlight the fifth line 
to select 5 LVs

2 Click Model button to reconstruct 
the model with 5 LVs 

3 Click scores button 
to make scores plots, 
loads button for 
loadings plots
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Scores Summary Plot

Single-click on a 
subplot: brings up 
plot controls for 
that plot

Double-click on 
a subplot: brings 
up a new figure 
window with that 
plot only

94

X-Block Q Residuals (by sample)
1 set plot controls

X: Sample

2 Check Conf. Limits

Y: Q Residuals

95

X-Block  Hotelling T2 (by sample)
1 set plot controls

X: Sample

2 Check Conf. Limits

Y: Hotelling T^2

9696

Calibration Curve
(Predicted vs. Measured)

1 Click Scores Button

X:Y Measured

Y:Y Predicted

2 Click Plot if auto-
update is not checked
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Predicted Y vs. LV 1

1 Click Scores Button

X:LV 1

Y:Y Predicted

9898

2  Click info Button 
and select sample

LV 2 vs. LV 1

1 Click Scores Button

X:Scores on LV 1

Y:Scores on LV 2

9999

Studentized Y Residual
vs. Leverage

1 Click Scores Button

X:Leverage

Y:Y Stdnt Residual

samples removed 
in first example

2 select 
outliers

3 view 
numbers

100

Calculation of Studentized 
Residuals

• Given the pseudo-inverse       the leverage for a 
sample xm = x(m,:) and column              is

• Studentized residuals for column mth of y, te,m

  X
+

   
lm = xmX+ :,m( )    

X+ :,m( )

A studentized residual is the quotient resulting from the division of a residual 
by an estimate of its standard deviation and is a form of t-statistic.
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How Much Leverage is 
Too Much?

• In PLS and PCR a good rule of thumb is 3K/M, 
where K is the number of LVs or PCs, and M is 
the number of samples

• In MLR, use 2Nx/M, where Nx is the number of 
X-block variables

102

Regression Example

• NIR transmission spectra of styrene-
butadiene copolymers

• Different amounts of 4 analytes
• All 4 are known for all samples (by NMR)

• Data file: SBRdata_EU.mat
• 60 calibration samples in arrays Xcal, Ycal
• 10 test samples in arrays Xtest, Ytest

1,2-

cis-

trans-

styrene

103

Regression Methods

• Compare the styrene predictions using the four 
different regression approaches below.

• CLS – no centering

• MLR (stepwise) – no centering

• PCR – no centering

• PLS – no centering

• Additionally:  show results with mean centering

Load Into Workspace

104
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Load and Plot Calibration Data
Xcal Ycal

Try This:

106

Correlation Map

107 108

Loading Data

• Calibration data
• Xcal as x-block

• Ycal as y-block

• Validation data
• Xtest as x-block

• Ytest as y-block
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CLS Regression

1 Analysis: CLS
2 Preprocessing: X-block - none, Y-block - none
3 Cross-validation: contiguous block, 7 splits
4 Calculate model

110

CLS results

4 components determined “automatically”
(because of 4 Y variables)

Modelcache
updates!

111

CLS Results
Scores: Styrene predicted vs. 
Styrene measured, Cal data 
included

Loadings: all 4 components

This is the S matrix! 112

MLR- styrene

1 Analysis: MLR
2 Preprocessing: X-block - none, C-block - none
3 Cross-validation: contiguous block, 7 splits
4 Right-click calibration Y-block =>Select Y Columns => Styrene
5 Stepwise Variable Selection button
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Stepwise Variable Selection

2 Mode: forward
3 No. of Intervals: 4 

(uncheck Automatic)
4 Interval Size: 1
5 Max LVs: leave alone

1 Check “All Options”
6 Execute

6 Execute

114

Forward MLR Results

Note selected 
variables

1 Select “Use” (then, OK)
2 Calculate model (using 4 vars….)

115

MLR results
Scores button: Styrene 
predicted vs Styrene measured, 
Cal included

116

PCR- Styrene

1 Analysis: PCR
2 Right-click calibration X-block => Edit => Column Labels => Right-click “Incl.” => 
“Clear/Reset”
3 Calculate
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PCR Results
Eigenvalue button:
RMSE[C], [CV], and [P] 

Scores: Styrene predicted vs. 
Styrene measured

118

PCR Results
Loadings button: Regression Vector for Styrene
Type “2” (creates second plot)
Second plot:  Selectivity Ratio for Styrene

119

PLS Styrene

1 Analysis: PLS
2 Calculate

120

PLS Results
Eigenvalue button: 
RMSE[C], [CV], and [P]

Scores button: Predicted vs. 
Measured Styrene



PLS – 3 vs 4 LVs

121

Back to 3 LVs

122

And at 4 LVs

123 124

Regression Summary- Styrene

RMSEC CV P Comments
CLS 1.11 1.35 1.07 4 factors
MLR 1.06 1.15 1.04 4 stepwise-selected variables
PCR 1.08 1.33 1.01 4 factors
PLS 1.05 1.28 0.97 4 factors

CLS 1.39 1.61 1.33 4 factors
MLR 0.89 1.07 0.97 4 stepwise-selected variables
PCR 0.84 0.94 0.73 4 factors
PLS 0.84 0.95 0.73 4 factors

M
ea

n 
ce

nt
er

ed
N

ot
 c

en
te

re
d



Modelcache
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…

• Can list recent work 
in 3 ways:
• By type (shown here)

• By lineage

• By date

• Also, can 
load/show/save any 
item in the cache

126

Modelcache by lineage and date

By lineage By date

Step 1: Edit: Options: Model Cache Settings

127

Step 2: Cache: off
Step 3: Save

Step 2: Cache: off

Step 3: Save

128



129

Continuum Regression

• PCR, PLS and MLR can be unified under the 
single technique Continuum Regression (CR)

• CR is continuously adjustable and encompasses 
PLS and includes PCR and MLR at the extremes

PCR
“canonical
variance”

PLS
“canonical

co-variance”

MLR
“canonical

correlation”

a = ∞ a = 1 a = 0

130

CR Press Surface

131

Missing Data

• MDCHECK
• Checks data sets for 'NaN' and 'inf' and replaces with 

values consistent with a PCA model (if desired)
• e.g., see the ISFINITE function

• This is an iterative method

• Example, use some data from SFCM 

>> x = xblock1.data(1:50,[6:9 16:19]);

>> x2 = x(:,2);

>> x(2:4:50,2) = NaN;
every 4th sample of column 2 
removed

132

Call MDCHECK

• Change the options to reduce the number of PCs

>> options = mdcheck('options')
options = 

max_pcs: 5
frac_ssq: 0.9500

meancenter: 'yes'
output: 'no'

tolerance: [1.0000e-006 100]
max_missing: 0.4000

>> options.max_pcs = 3;
>> [flag,mismap,xfill] = mdcheck(x,options);
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MDCHECK Results
>> plot(1:50,x2,'ob-',1:50,xfill(:,2),'rd'), hold on
>> plot(2:4:50,xfill(2:4:50,2),'rd','markerfacecolor',[1 0 0])

134

Regression Summary

• Regression models can be divided into CLS (used 
when pure analyte spectra are available) and ILS 
models (MLR, PCR, PLS, RR, CR, ...)

• PCR and PLS work with ill-conditioned data by 
reducing to a smaller number of factors
• has advantage of signal averaging

• Cross-validation is used to determine number of 
factors

• Fit and Prediction are two different things

135

Model Development
• Developing PCR or PLS models

• center and scale the data (as appropriate)

• cross-validate to determine number of factors

• check X-block Q, T2, leverage, and Y-block residuals for 
outliers

• remove / explain outliers

• check RMSEC and RMSECV values for overfit

• repeat as necessary

• PCR or PLS models consist of
• mean and scaling vectors

• X-block loadings P, scores T, and weights W (if PLS)

• Y-block loadings Q, and scores U

• inner coefficients b

• all of this can be reduced to y = xb+a form for prediction with 
new data

136

Model Application
• A PCR or PLS model is applied by

• centering and scaling to the model mean and variance

• multiply measurements by regression vector to get scaled predictions

• rescale the predictions back to original units using model mean and 
variance

• Prediction outliers can be found by
• calculating Q and T2 values for new samples

• All the modeling and application is packaged:
• the model is an object that contains all the parameters

• validation e.g.:
valid = pcr(x,y,model,options); %pred’s with new X- & Y-block

• prediction e.g.:
pred = pcr(x,model,options);  %predictions with a new X-block
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Model Application – Object 
Form

• All the modeling and application is packaged:
• the model is an object that contains all the parameters

• validation e.g.:
valid = model.apply(x,y); % this creates a prediction object

pred = model.apply(x);  % this does too

valid_scores = valid.plotscores(options);

pred_scores = pred.plotscores(options);

This will create dataset objects containing all of the information 
that you’ll see in a scores plot when using the Analysis interface


