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Outline 
•  Introduction	
•  Preprocessing-Scaling and Centering	
•  PCA	

•  Graphically	
•  Mathematically	
•  Scores and Loadings	

•  Examples	
•  Wine, Synthetic, Octene, Rain, Arch	

•  Q and T2	

•  Application to new data	
•  Determining the number of components	
•  Exploring PCA Models	

2	

Course Materials 

•  These slides	
•  PLS_Toolbox or Solo 6.7 or later	
•  Data sets	

•  From DEMS folder (distributed with software) 		
•  wine.mat, arch.mat, nir_data.mat	

•  From EVRIHW folder (additional data sets)	
•  octene.mat, Rain.mat, 	
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Nomenclature and Conventions 

•  Data is arranged in matrices where 	
•  rows correspond to samples or observations, and 

columns correspond to variables	
•  Notation:	

·  M = number of samples or observations	
·  N = number of variables	
·  K = number of Principal Components (PCs) or factors	
·  T = scores matrix, t1, t2, ..., tK score vectors	
·  P = loadings matrix, p1, p2, ..., pK loadings vectors	
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Variables and Samples 

•  Examples of variables:	
•  absorbance at each l	
•  ion current at each m/e	
•  pressure, temperature, flow	
•  chromatographic peak area	

•  Examples of samples:	
•  samples taken to lab	
•  data samples at time points	
•  data from specific batches	
•  etc....	
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Data Transformation 

•  PCA assumes that relationships between 
variables are linear	

•  If possible, non-linear data should be converted 
to a linear form	

•  Examples:	
•  reaction rates proportional to e-1/T, transform with log	
•  pipe flow proportional to P4/7 (turbulent flow)	
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Mean Centering 

•  PCA is scale dependent, numerically larger 
variables appear more important	

•  Often we are most interested in how the data 
varies around the mean	
•  not centering can be considered a force fit through 0	

•  Mean centering is done by subtracting the mean 
off each column, thus forming a matrix where 
each column has mean of zero	
•  [mcx,mx] = mncn(x); 
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Variance Scaling 
•  PCA is scale dependent, variance is associated with importance 	
•  This may or may not be true	
•  In spectra, variance proportional to importance (probably)	
•  If variables have different units, variance doesn’t = importance	
•  Autoscaling - divide each (mean centered) variable by its 

standard deviation, result is variables with unit variance	
•  autoscaling implies both mean centering and scaling to unit variance	
•  [ax,mx,stdx] = auto(x); 

•  Other scaling - may want to use a priori information, such as 
noise level in variables	
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Centering & Scaling Example 
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Block Scaling 

•  With blocks of different variables, may want each 
block to have the same variance	
•  Example: data set with NIR spectra and GC data and a 

collection of engineering variables, T, pH, P, Q, etc.	
•  gscale 

•  Variables within blocks may be autoscaled or just 
mean centered	

•  Determine factor to multiply each block by so that 
total sum of squares (variance) is the same for 
each block	
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Principle of Projections 
•  K-space has K dimensions where each variable, or measurement on an 

object, is a coordinate axis	
•  A sample (object) is a point in K-space	
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Projection in K-Space 
•  The projection of an object onto the K-space yields the coordinates of 

the object in that space	
•  e.g. in 3-space this is (x1, x2, x3)	

x1      x2       x3	
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Projection onto a Vector 
•  Projection lines are perpendicular to the vector 	
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Projection onto a Plane 
•  Projection lines are perpendicular to the plane 	
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PCA 

•  Geometry for 2 variables	
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Where R ≤ min(M,N), and the tkpk
T pairs are ordered by the 	

amount of variance captured.	
	
Generally, the model is truncated, leaving some small amount 	
of variance in a residual matrix:	

For a data matrix X with m samples and n variables (generally	
assumed to be mean centered and properly scaled), the PCA	
decomposition is:	

X = t1p1
T + t2p2

T + ... + tKpK
T + ... + tRpR

T	

X = t1p1
T + t2p2

T + ... + tKpK
T + E = TKPK

T + E	

PCA Math 1 of 3 
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PCA Math 2 of 3 

The pk are eigenvectors of the covariance matrix of X 

cov( )  
-1

T

m
= X XX

   cov(X)pk  =  λkpk

and the λi are eigenvalues. 

Amount of variance captured by tkpk
T proportional to 

λk. 

t1
p1

t2
p2

tk
pk

= +
+...+ +

variables

sa
m
pl
es

X E
p1

T	 p2
T	 pk

T	

20	

PCA Math 3 of 3 

•  What is PCA doing mathematically?	
•  For a data set X, propose that t = Xp	

·  i.e. X projected onto factor p yields t	
·  X is usually centered and scaled	
·  max{tTt | pTp=1} = max {pTXTXp | pTp=1}	
·  L(p) = pTXTXp - λ(pTp-1) : take d/dp and set to 0	
·  XTXp = λp	

•  Shows that the solution is an eigenvalue/
eigenvector problem	



•  tk,pk ordered by amount of variance captured	
•  tk or scores form an orthogonal set TK which 

describe relationship between samples	
•  pk or loadings form an orthonormal set PK which 

describe relationship between variables	
•  k = 1,…,K are the number of factors	
•  scores and loadings plots are interpreted in pairs	

•  e.g. plot tk vs sample number and pi vs variable number	
•  it is useful to plot tk+1 vs. tk and pk+1 vs. pk 	
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Properties of PCA 
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PC 1 

p1 = [3 2]’/sqrt(32 + 22) 
= [0.8321  0.5547]’ 
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Sample Scores, ti 

x1 

x2 PC 1 

sam
ple s

core 

t1 = [2.25 1]* [0.8321  0.5547]’	
                       = 2.4368 

1 Unit 
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Minimization Criterion 

x1 

x2 PC 1 

                       

  
e1 e2⎡⎣ ⎤⎦ = x1 x2⎡⎣ ⎤⎦ − x1p1 x2 p2( ) p1 p2⎡⎣ ⎤⎦

  e2 = x2 − x1b1

  e1 = x1 − x2b2
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Some Mathematical 
Relationships 

• P orthonormal, so PPT = I, PT = P-1 , and PK
TPK = IK	

• Projection of X onto PK gives the scores:  TK = XPK 	
• Projection of X into PCA model,    , is equal to the scores times	

the loadings: 	
• Residual E is the difference between X and    , thus:	

• PCA:	
• SVD:	

• T = US	
• P = V	
•   	

X̂

   
X̂ =  TKPK

T  =  -TK( ) -PK
T( )
X̂

   
E =  X-X̂ =  X-TKPK

T  =  X-XPKPK
T  =  X I-PKPK

T( )
   X =  TPT  =  TKPK

T  +  E
T  USVX =

   
Skk  =  M -1( )λk
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Example: Wine Data 

•  Examine the relationship between (variables)	
•  annual consumption of wine, beer, and liquor (gal/yr),	
•  life expectancy (years), and	
•  heart disease rate (cases/100,000)	

•  For 10 different countries (samples)	
•  France, Italy, Switzerland, Australia, Britain, USA, 

Russia, Czech Republic, Japan, and Mexico	
•  Data from:  

Newsweek, 127(4), 52, 1/22/1996 

Start from Workspace Browser 
in PLS_Toolbox or Solo 

Expand “Demo Data” folder 
in Model Cache window	

Drag “Wine, Beer....” data 
onto PCA in Analysis Tools 
window	

Browser window always 
open in Solo or execute 	
>> browse 	
in MATLAB/PLS_Toolbox	
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Data: loaded but not analyzed 

Status window after load	

Mouse over X to display data info	



Plot Your Data! 

30	

Right-click or shift-
click X to bring up 
menu, select “Plot 
Data”	
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Plot Your Data 
1   Plot control default 

can look at summary stats 

2  under view menu 
check labels 

3  under plot menu 
check columns 

The Plot control generates plots 
in MATLAB figure windows 
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Plot Your Data 
scale is ~1-2 orders of 
magnitude smaller than 
for Beer and Wine 
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Plot Your Data 

35	

Plot Your Data Summary 

•  Wine consumption	
•  France, Italy, Switz high	
•  Rus, Czech, Jap, Mex low	

•  Beer consumption	
•  Czech high	
•  Italy, Russia low	

•  Liquor consumption	
•  Russia high	
•  Italy, Czech, Mex low	

•  Life Expectancy	
•  Japan high	
•  Russia low	

•  Heart Disease Rate	
•  Russia high	
•  Japan, Mexico low	

•  Some trends are apparent	
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How should we scale the data? 
•  Variables are in different units (apples and 

oranges): suggests autoscaling	
•  Variable standard deviations are of different 

magnitudes: suggests autoscaling	

2  click Model to perform the 
PCA decomposition 

1  autoscaling is the default 

Can Change Preprocessing... 
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from Preprocess menu	 or click P icon for all 
preprocessing options	



38	

Preprocessing Window 

choose	
from 
available 
methods	

order 
selected 
methods	

info on 
highlighted 
method	

Do the PCA Decomposition 
1  After the Model button:	

•  variance captured table: eigenvalues and % variance 
explained for each PC.	

for autoscaled data: 
PCs w/ eigenvalues > 1 
capture more variance 
than any single variable 

2  Click Plot Eigenvalues 
button to plot the eigenvalues	

}
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Eigenvalue Plot 

From this and other considerations	
you may choose the number of PCs	
that are significant.	
Since we’re doing exploratory data	
analysis it doesn’t really matter.	

Perhaps 2 (or 4)? 
(later we'll show you  
cross-validation which  
suggests 1 in this case) 

Plot the eigenvalues vs. PC.	
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Choose Number of PCs 
1  Highlight the 

second line to 
select 2 PCs	

2  Click the Model! 
button to construct a 
2 PC model	

3  Click the scores button 
to make scores plots, 
loads button to for 
loadings plots	
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Scores and 
Loads 

on PC 1 

46% 

43	

PC 1 

•  Wine and Life Expectancy are correlated	
•  Heart Disease Rate and Liquor Consumption are 

correlated	
•  Heart Disease Rate and Liquor Consumption are 

anti-correlated with Wine and Life Expectancy	
•  Russia is Low on PC 1	

•  but this is only 46% of the story!	
•  So let’s look at PC 2 vs 1 ...	

44	5.44	

Scores and 
Loads 

on PC 2 vs. 1 

78% 
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•  HeartD and Beer: Orthogonal	
•  Russia is the most unusual, why?	

•  tends to be high in Liquor and HeartD and low in 
Beer and LifeEx	

•  Trend from France to Czech, why?	
•  France relatively high in wine and low in Beer, and 

HeartD	
•  Czech relatively high in Beer and HeartD, and low 

in Wine	

PC 2 vs. 1 
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How many PC’s 
to model this data? 
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        Percent Variance Captured by PCA Model!
  !
Principal     Eigenvalue     % Variance     % Variance!
Component         of          Captured       Captured!
 Number         Cov(X)        This  PC        Total!
---------     ----------     ----------     ----------!
     1         8.79e+00         54.96          54.96!
     2         5.29e+00         33.05          88.01!
     3         2.49e-01          1.56          89.57!
     4         2.17e-01          1.35          90.92!
     5         1.80e-01          1.12          92.05!
     6         1.66e-01          1.04          93.08!
     7         1.51e-01          0.94          94.03!
     8         1.41e-01          0.88          94.91!
     9         1.33e-01          0.83          95.74!
    10         1.22e-01          0.76          96.51!
    11         1.19e-01          0.74          97.25!
    12         1.09e-01          0.68          97.93!
    13         1.03e-01          0.65          98.58!
    14         8.52e-02          0.53          99.11!
    15         7.36e-02          0.46          99.57!

Variance Captured 

Which trend does PC 1 capture? 

Which trend does PC 2 capture? 
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Raman Spectra of  
Octene in Toluene 

•  Consider a set of spectra measured on 36 
solutions of Octene in Toluene	

•  Calibration set for on-line monitoring of 
polymerization process feed line (octene 
is comonomer)	

•  Mean center ONLY (autoscale bad here)	
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Eigenvalues for  
Octene in Toluene 

keep 1, 3, or 6	
Principal     Eigenvalue     % Variance 
Component         of          Captured 
 Number         Cov(X)        This  PC 
---------     ----------     ---------- 
     1         9.63e+011         98.56 
     2         1.10e+010          1.13 
     3         2.83e+009          0.29 
     4         1.84e+008          0.02 
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Loadings on PC1 

PC 1 for Octene in Toluene 
(full spectrum) 

Positively correlated 

Negatively correlated 
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Scores on PC 1 
How much of PC1 is observed in each sample? Loadings for PCs 2-4 
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56	

Example: ARCH 

•  10 Variables: metal concentration (ppm via XRF)	
•  75 Samples:	

•  63 obsidian samples from 4 quarries (known origin)	
•  12 artifacts (unknown origin)	

•  Data Matrix X is 75 by 10	
•  Load data from arch.mat	
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Raw Data from ARCH 
View:Labels 

checked	
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Variance Captured by 
PCA Model 

4 PCs selected	

PC 1 
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Scores on PC 2 vs 1 
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Biplot: PC 2 vs 1 
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Variance Captured by 
Variables 

1  Click varcap 

Important Diagnostics 
•  Q	

•  portion of measurement not explained by the model	
•  small Q residual => sample well explained by model	
•  the converse is also true	

•  residuals are orthogonal to the model space	
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Hotelling’s T2 

•  Measure of distance to center of model to the 
point defined by the projection of the sample in 
the space of the model	

•  A sample having a large value of T2 means that	
•  the projection into the model space is unusually far 

away from the center of the model	
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Control Limits for PCA Statistics 
•  Control limits can be set for	

•  lack of fit statistics: for a row of E, ei, and a row of X, xi	
•  Q contributions	

•  Q residual (sum of squares)	

•  Hotelling’s T2: for a row of Tk, ti, and kxk diagonal matrix λ	
•  T2 contributions	

•  T2	

•  also for:	
•  scores, tij	
•  residuals eij	

ei = xi I - PkPk
T( )

Q = eiei
T = xi I - PkPk

T( )xiT

Ti,con
2 = t iλ

−1Pk
T = xiPkλ

−1Pk
T

Ti
2 = tiλ

−1ti
T = xiPkλ

−1Pk
Txi

T
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Contributions 

•  Contributions to Q show how samples are 
different from the PCA model	
•  Contributions to Q are a row of E	

•  Contributions to T2 show how the original 
variables deviate from the mean within the model	

  ( - )Ti i k k=e x I P P

Ti,con
2 = t iλ

−1Pk
T = xiPkλ

−1Pk
T
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Q Residuals for ARCH data 

1  Check Conf. Limits 
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T2 for ARCH 
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Outliers 
•  Outlier samples can have a large influence 

on a PCA model	
•  However, they are usually easily found!	
•  To check for outliers, look for:	

•  stray samples on scores plots	
•  samples with very high Q, T2, or both	
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• center new data to the mean of the calibration data	
     Xc = X - 1xmean	
• scale the centered data using standard deviations of cal data	
     Xs = Xc . / 1xstd	
• project centered and scaled data onto loadings to get new scores 	
     Tnew = XsPk	
• calculate new residuals	
     Enew = Xs - TnewPk

T = Xs(I - PPT)	
• calculate new Q residuals	
     Qnew = diag(EnewEnew

T)	
• calculate new T2 values	
     	
• compare Tnew, Enew, Qnew and T2

new to previously determined limits	

PCA Application to New Data 

Tnew
2 = Tnewλ

−1Tnew
T =XsPkλ

−1Pk
TXi

T
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Selecting Samples: ARCH Data 

1  Click Select 

2  Drag Box to 
select samples 
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Deleting Samples: 
ARCH Data 

1  Edit menu highlight 
Exclude Selection 
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Graphically Editing 



Centering of Data 

•  We’ve been consistent in stating that data should 
be centered (remember that autoscaling contains 
centering)	
•  The idea is that we’re looking at how data varies from 

this conceptual center point	
•  However, if 0 (multivariate zero, [0 0 0 . . . 0] is a 

realistic or even idealized part of your sample space, 
consider not centering	

•  Example	
•  Stability of 100% T lines for real-time spectral 

acquisition	
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Stability Data 
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First and Last Spectra 
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First and Last Spectra After 
Filtering 
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As more PCs are kept in the model, the fit improves, 
but ....	
The validity of the model, when applied to new 
data, eventually declines	

How Many Principal 
Components? 
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Determining the Number of 
Principal Components 

•  Determination of the right number of PCs to 
retain in a model not always simple	

•  Many methods available:	
•  Plot eigenvalues, look for “knee”	
•  Ratios of successive eigenvalues	
•  For autoscaled data, retain PCs with l > ~1-2	
•  Retain PCs with %variance > noise level	
•  Omit PCs that don’t make sense!	
•  Use cross-validation or jack-knifing	
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Knees and Ratios 
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Cross-Validation 
•  Divide data set into j subsets	
•  Build PCA model on j-1 subsets	
•  Calculate PRESS (Predictive Residual Sum 

of Squares) for the subset left out	
•  (PCA method uses estimates of “missing”)	

•  Repeat j times (until all subsets have been 
left out once)	

•  Look for minimum or knee in PRESS curve	
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PCA Cross-validation 

Break data 
into n sets 
(here n = 3)	

Use all but one 
set to build 
PCA model 	

Exclude one or 
more variables and 
use loadings and 
remaining data to 
estimate excluded 

variable(s)	

Loop over	
• number of PCs 	
• left out variables 	
• left out test set	
Calculate estimation 
error as function of 
number of PCs used	
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Cross-Validation Examples 

RMSECV: Look for minimum	
Eigenvalues: Look for knee	
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Cross-Validation Results for NIR Data	
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Cross-Validation 
1  Tools menu 

highlight Cross-Val 
2  Select Cross-validation method 

3  Click Model button to 
perform decomposition 
and Cross-Validation 

4  Click Plot Eigenvalues 
button to plot Eigenvalues 
and RMSECV 



Example:  Olive Oil Data Set 
•  Use FT-IR spectra and pattern recognition to 

distinguish authentic olive oil from counterfeit or 
adulterated olive oil. 

•  Obtain FT-IR spectra (3600 - 600 cm-1) of these 
oils using a fixed pathlength NaCl cell 

•  Have a calibration set (36 samples) and a distinct 
test set (44 samples) 

•  Reference: 
D.B. Dahlberg, S.M. Lee, S.J. Wenger, J.A. Vargo                                      
"Classification of Vegetable Oils by FT-IR," Appl. 
Spectrosc., 51(8), 1118-1124 (1997) 
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Calibration Set:  Details 
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Corn Oil   9 samples   (#1-9) 
Olive Oil   15 samples   (#10-24) 
Safflower Oil   8 samples   (#25-32) 
Corn Margarine  4 samples    (#33-36) 

PCA:  Entire Spectrum 

•  Drag xcal in the Browse window onto PCA	
•  Change the preprocessing for the x-block to mean 

centering	
•  Open the x-block in the dataset editor and include 

all of the variables	
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Steps 
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Drag xcal onto PCA	

Right-click on preprocessing	
button, => Basic Methods =>�
Mean Center	

Right-click on “X”, select Edit Data, 	
click on “Column Labels”, right-click�
on “Incl.”, select Clear/Reset	



Plot: Summary with Classes 
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PCA:  Scores Plot 
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Objective:  maximize between-class �
variance and minimize within-class �
variance	

Significance within-class �
variance that is directional	

Reload the X-Block 

•  Right-click on the “X”	
•  Select “Load Data”	
•  Select “xcal” from workspace	
•  Plot the data	
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Included Data 
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Compress x-axis gaps	

Exclude spectral regions 	
-  where the response may be nonlinear	
-  where the responses are mainly similar	



PCA:  Scores Plot Revisited 
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Better than before but�
we still have systematic�
variance within the clusters	

A Brief Word about 
Preprocessing 

•  To this point, we’ve focused on just mean-
centering and autoscaling (which includes mean-
centering)	

•  There’s a wide variety of preprocessing tools in 
the toolbox, and others can be created depending 
upon the nature of the data	

•  In general, the objective of preprocessing is to 
remove sources of variance that impede us from 
our modeling objective	
•  In this case, we have significant systematic variance 

within the classes	
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Targeting of Variance Removal 

•  As it turns out with this data, there is a substantial 
variation in the effective pathlength	
•  Somewhat surprising given that these are transmission 

measurements	
•  When spectroscopic data has effective pathlength 

indetermancy, some type of normalization can 
frequently help such as	
•  1- norm normalization	
•  2-norm normalization	
•  SNV (single normal variate)	
•  MSC (multiple scatter correction)	
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MSC + Mean Centering 
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Loadings:  PC2 and PC1 
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Biplot:  PC2 and PC1 
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In going from corn oil to corn margarine	
-  loss in 3008/3014 cm-1 response	

-  saturation of some  C=C bonds	
-  increase in 960/966 cm-1 response	

-  rearrangement of some C=C�
from cis- to trans-	

Validation Data 
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-  test samples for repeat classes (safflower, corn, . . . )�
match up nicely with calibration data	

-  new oil test samples (peanut, sesame, peanut) nicely�
differentiated from olive oil	

-  test samples of olive oil adulterated with corn oil�
differentiated from olive oil	

-  5% sample is a bit dicey	

Exploring PCA Models 
•  Much can be learned from considering scores and 

loadings plots in combination	
•  scores plots show how samples are spread out or 

grouped	
•  loadings plots show what variables are correlated, anti-

correlated and uncorrelated 	
•  together they show what variables are responsible for 

the variations you see in the samples	
•  Can additional information be brought in?	

•  have shown examples with sample classes	
•  can also use “color-by” to add information	
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Using “color-by” 

•  Color points in scores or loadings plots according 
to any other available parameter	
•  color scores by concentration or quality values, time 

they were measured, etc. 	
•  color loadings by wavelength, type of measurement, 

etc. 	
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Color-by on NIR data 
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Dirty T-Shirt Analogy 

Data 

PCA attempts to partition the data into 
deterministic and non-deterministic portions 


