Chemometrics I: Principal Components and Exploratory Data Analysis

©Copyright 1996-2017 Eigenvector Research, Inc. No part of this material may be photocopied or reproduced in any form without prior written consent from Eigenvector Research, Inc.

Course Materials

- These slides
- PLS_Toolbox or Solo 6.7 or later
- Data sets
 - From DEMS folder (distributed with software)
 - · wine.mat, arch.mat, nir data.mat
 - From EVRIHW folder (additional data sets)
 - · octene.mat, Rain.mat,

Outline

- Introduction
- · Preprocessing-Scaling and Centering
- PCA
 - · Graphically
 - · Mathematically
 - · Scores and Loadings
- Examples
 - · Wine, Synthetic, Octene, Rain, Arch
- Q and T²
- · Application to new data
- Determining the number of components
- · Exploring PCA Models

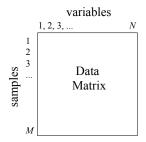
Nomenclature and Conventions

- Data is arranged in matrices where
- rows correspond to samples or observations, and columns correspond to variables
- Notation:
 - · M = number of samples or observations
 - $\cdot N = \text{number of variables}$
 - · K = number of Principal Components (PCs) or factors
 - $\mathbf{T} = \text{scores matrix}, \mathbf{t}_1, \mathbf{t}_2, ..., \mathbf{t}_K \text{ score vectors}$
 - $\mathbf{P} = \text{loadings matrix}, \mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_K \text{ loadings vectors}$

Variables and Samples

- Examples of variables:
 - absorbance at each I
 - ion current at each m/e
 - pressure, temperature, flow
 - chromatographic peak area
- Examples of samples:
 - samples taken to lab
 - data samples at time points
 - data from specific batches
 - etc....

5



Data Transformation

- PCA assumes that relationships between variables are linear
- If possible, non-linear data should be converted to a linear form
- Examples:
 - reaction rates proportional to e^{-1/T}, transform with log
 - pipe flow proportional to $P^{4/7}$ (turbulent flow)

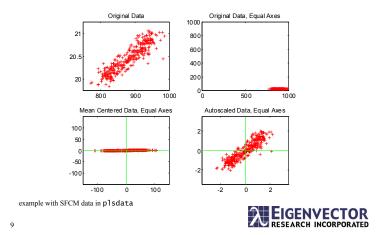
Mean Centering

- PCA is scale dependent, numerically larger variables appear more important
- Often we are most interested in how the data varies around the mean
 - not centering can be considered a force fit through 0
- Mean centering is done by subtracting the mean off each column, thus forming a matrix where each column has mean of zero
 - [mcx, mx] = mncn(x);

Variance Scaling

- PCA is scale dependent, variance is associated with importance
- This may or may not be true
- In spectra, variance proportional to importance (probably)
- If variables have different units, variance doesn't = importance
- Autoscaling divide each (mean centered) variable by its standard deviation, result is variables with unit variance
 - autoscaling implies both mean centering and scaling to unit variance
 - [ax, mx, stdx] = auto(x);
- Other scaling may want to use *a priori* information, such as noise level in variables

Centering & Scaling Example



Block Scaling

- With blocks of different variables, may want each block to have the same variance
 - Example: data set with NIR spectra and GC data and a collection of engineering variables, T, pH, P, Q, etc.
 - gscale
- Variables within blocks may be autoscaled or just mean centered
- Determine factor to multiply each block by so that total sum of squares (variance) is the same for each block

Principle of Projections

- K-space has K dimensions where each variable, or measurement on an object, is a coordinate axis
- A sample (object) is a point in K-space

 **The sample (object) i

Projection in K-Space

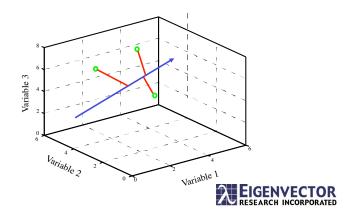
- The projection of an object onto the K-space yields the coordinates of the object in that space

10

12

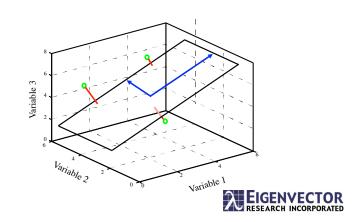
Projection onto a Vector

• Projection lines are perpendicular to the vector

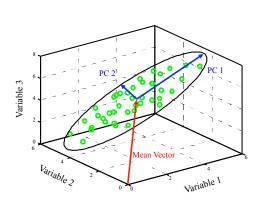


Projection onto a Plane

• Projection lines are perpendicular to the plane



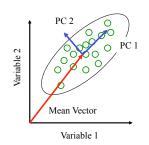
PCA

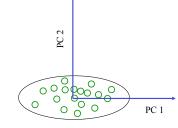


EIGENVECTOR RESEARCH INCORPORATED

PCA

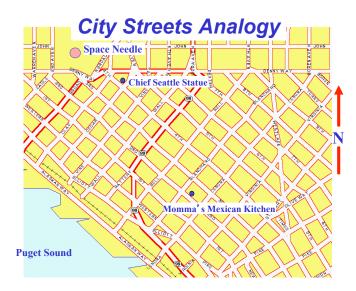
• Geometry for 2 variables





15

13



PCA Math 2 of 3

variables
$$\mathbf{X} = \begin{bmatrix} \mathbf{p}_1^T \\ \mathbf{t}_1 \end{bmatrix} + \begin{bmatrix} \mathbf{p}_2^T \\ \mathbf{t}_2 \end{bmatrix} + \dots + \begin{bmatrix} \mathbf{p}_k^T \\ \mathbf{t}_k \end{bmatrix} + \begin{bmatrix} \mathbf{E} \end{bmatrix}$$

The \mathbf{p}_k are eigenvectors of the covariance matrix of \mathbf{X}

$$cov(\mathbf{X}) = \frac{\mathbf{X}^T \mathbf{X}}{m-1}$$

$$cov(\mathbf{X})\mathbf{p}_{k} = \lambda_{k}\mathbf{p}_{k}$$

and the λ_i are eigenvalues.

Amount of variance captured by $\mathbf{t}_k \mathbf{p}_k^{\mathrm{T}}$ proportional to λ_k .

PCA Math 1 of 3

For a data matrix \mathbf{X} with m samples and n variables (generally assumed to be mean centered and properly scaled), the PCA decomposition is:

$$X = t_1 p_1^T + t_2 p_2^T + ... + t_K p_K^T + ... + t_R p_R^T$$

Where $R \le \min(M, N)$, and the $\mathbf{t}_k \mathbf{p}_k^T$ pairs are ordered by the amount of variance captured.

Generally, the model is truncated, leaving some small amount of variance in a residual matrix:

$$X = t_1 p_1^T + t_2 p_2^T + ... + t_K p_K^T + E = T_K P_K^T + E$$

EIGENVECTOR RESEARCH INCORPORATE

PCA Math 3 of 3

- What is PCA doing mathematically?
- For a data set \mathbf{X} , propose that $\mathbf{t} = \mathbf{X}\mathbf{p}$
 - \cdot *i.e.* **X** projected onto factor **p** yields **t**
 - \cdot X is usually centered and scaled
 - $\cdot \max\{\mathbf{t}^{\mathrm{T}}\mathbf{t} \mid \mathbf{p}^{\mathrm{T}}\mathbf{p}=1\} = \max\{\mathbf{p}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{X}\mathbf{p} \mid \mathbf{p}^{\mathrm{T}}\mathbf{p}=1\}$
 - · $L(\mathbf{p}) = \mathbf{p}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{p} \lambda (\mathbf{p}^{\mathrm{T}} \mathbf{p} 1)$: take d/d**p** and set to 0
 - $\cdot \quad \mathbf{X}^{\mathrm{T}}\mathbf{X}\mathbf{p} = \lambda \mathbf{p}$
- Shows that the solution is an eigenvalue/ eigenvector problem

Properties of PCA

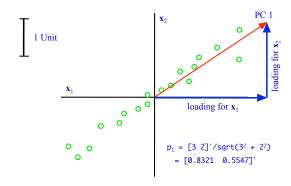
- $\mathbf{t}_k, \mathbf{p}_k$ ordered by amount of *variance captured*
- **t**_k or *scores* form an orthogonal set **T**_K which describe relationship between *samples*
- **p**_k or *loadings* form an orthonormal set **P**_K which describe relationship between *variables*
- $k = 1, \dots, K$ are the number of factors
- scores and loadings plots are interpreted in pairs
 - e.g. plot \mathbf{t}_k vs sample number and \mathbf{p}_i vs variable number
- it is useful to plot \mathbf{t}_{k+1} vs. \mathbf{t}_k and \mathbf{p}_{k+1} vs. \mathbf{p}_k

EIGENVECTOR RESEARCH INCORPORATED

22

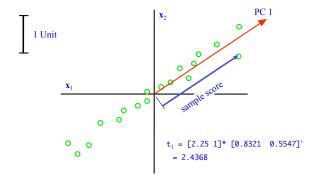
24

Variable Loadings, p



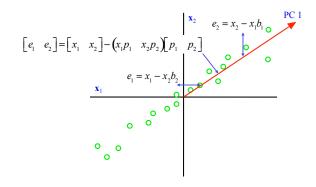
EIGENVECTOR RESEARCH INCORPORATED

Sample Scores, t_i



EIGENVECTOR

Minimization Criterion



23

Some Mathematical Relationships

- •**P** orthonormal, so $\mathbf{PP}^{\mathrm{T}} = \mathbf{I}$, $\mathbf{P}^{\mathrm{T}} = \mathbf{P}^{-1}$, and $\mathbf{P}_{K}^{\mathrm{T}}\mathbf{P}_{K} = \mathbf{I}_{K}$
- •Projection of **X** onto P_K gives the scores: $T_K = XP_K$
- •Projection of **X** into PCA model, $\hat{\mathbf{X}}$, is equal to the scores times the loadings: $\hat{\mathbf{X}} = \mathbf{T}_K \mathbf{P}_K^{\mathrm{T}} = (-\mathbf{T}_K)(-\mathbf{P}_K^{\mathrm{T}})$ •Residual **E** is the difference between **X** and $\hat{\mathbf{X}}$, thus:

$$\mathbf{E} = \mathbf{X} \cdot \hat{\mathbf{X}} = \mathbf{X} \cdot \mathbf{T}_{K} \mathbf{P}_{K}^{\mathrm{T}} = \mathbf{X} \cdot \mathbf{X} \mathbf{P}_{K} \mathbf{P}_{K}^{\mathrm{T}} = \mathbf{X} \left(\mathbf{I} \cdot \mathbf{P}_{K} \mathbf{P}_{K}^{\mathrm{T}} \right)$$

•PCA:
$$\mathbf{X} = \mathbf{T}\mathbf{P}^{\mathsf{T}} = \mathbf{T}_{K}\mathbf{P}_{K}^{\mathsf{T}} + \mathbf{E}$$

•SVD: $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathsf{T}}$

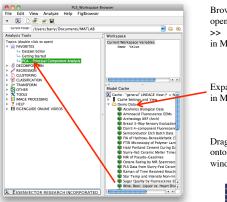
$$\bullet T = US$$

•**P** = **V**
•**S**_{kk} =
$$\sqrt{(M-1)\lambda_k}$$

EIGENVECTOR RESEARCH INCORPORATED

25

Start from Workspace Browser in PLS_Toolbox or Solo



Browser window always open in Solo or execute >> browse in MATLAB/PLS_Toolbox

Expand "Demo Data" folder in Model Cache window

Drag "Wine, Beer..." data onto PCA in Analysis Tools

Example: Wine Data

- Examine the relationship between (variables)
 - annual consumption of wine, beer, and liquor (gal/yr),
 - life expectancy (years), and
 - heart disease rate (cases/100,000)
- For 10 different countries (samples)
 - France, Italy, Switzerland, Australia, Britain, USA, Russia, Czech Republic, Japan, and Mexico
- Data from: Newsweek, 127(4), 52, 1/22/1996

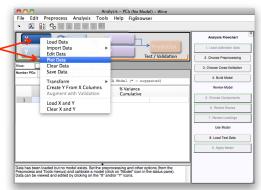
EIGENVECTOR RESEARCH INCORPORATED

Data: loaded but not analyzed

Mouse over X to display data info Status window after load

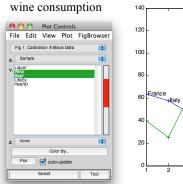
Plot Your Data!

Right-click or shiftclick X to bring up menu, select "Plot Data"

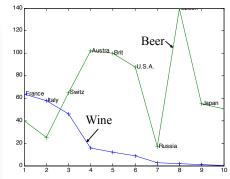


30

Plot Your Data



samples ordered by

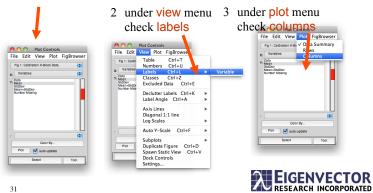


use shift key to select multiple columns

EIGENVECTOR RESEARCH INCORPORATED

Plot Your Data

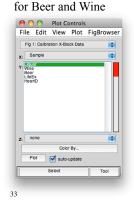
1 Plot control default can look at summary stats The Plot control generates plots in MATLAB figure windows

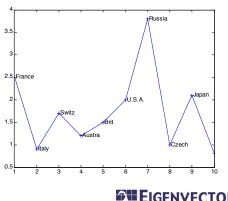


31

Plot Your Data

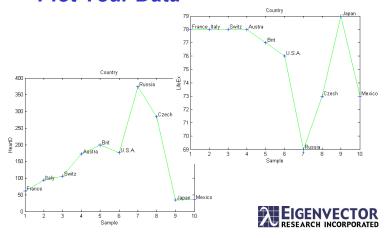
scale is ~1-2 orders of magnitude smaller than





EIGENVECTOR RESEARCH INCORPORATED

Plot Your Data



Plot Your Data Summary

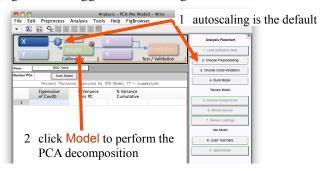
- Wine consumption
 - France, Italy, Switz high
 - Rus, Czech, Jap, Mex low
- Beer consumption
 - Czech high
 - Italy, Russia low
- Liquor consumption
 - Russia high
 - Italy, Czech, Mex low

- Life Expectancy
 - Japan high
 - Russia low
- Heart Disease Rate
 - Russia high
 - Japan, Mexico low
- Some trends are apparent

EIGENVECTOR RESEARCH INCORPORATED

How should we scale the data?

- Variables are in different units (apples and oranges): suggests autoscaling
- Variable standard deviations are of different magnitudes: suggests autoscaling



Can Change Preprocessing...

or click P icon for all preprocessing options

Access FA No Medic Nove

FR Ed Process Analysis Tests Help Expresses

2 D Process Analysis Tests Help Expresses

3 D Process Analysis Tests Help Expresses

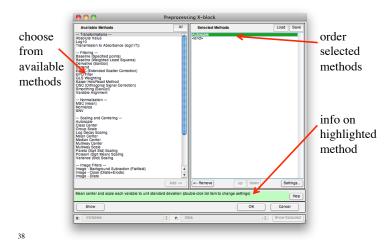
4 D Process Analysis Tests Help Expresses

4 D Process Analysis Tests Help Expresses

5 D Process Analysis Tests Help Expre

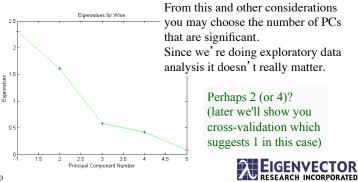
36

Preprocessing Window



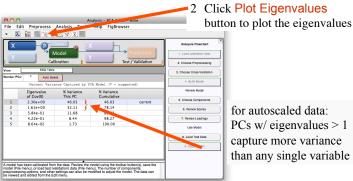
Eigenvalue Plot

Plot the eigenvalues vs. PC.



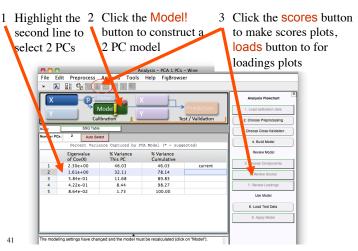
Do the PCA Decomposition

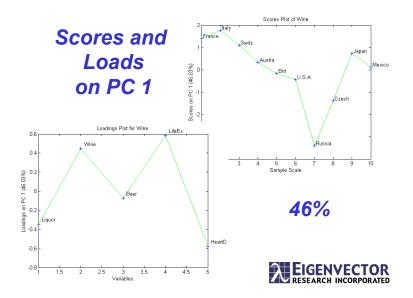
- 1 After the Model button:
 - variance captured table: eigenvalues and % variance explained for each PC.

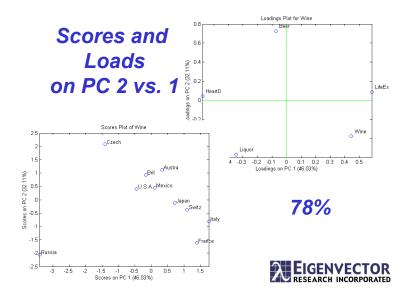


for autoscaled data: PCs w/ eigenvalues > 1 capture more variance

Choose Number of PCs







PC 1

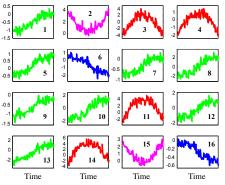
- Wine and Life Expectancy are correlated
- Heart Disease Rate and Liquor Consumption are correlated
- Heart Disease Rate and Liquor Consumption are anti-correlated with Wine and Life Expectancy
- Russia is Low on PC 1
 - but this is only 46% of the story!
- So let's look at PC 2 vs 1 ...

PC 2 vs. 1

- HeartD and Beer: Orthogonal
- Russia is the most unusual, why?
 - tends to be high in Liquor and HeartD and low in Beer and LifeEx
- Trend from France to Czech, why?
 - France relatively high in wine and low in Beer, and HeartD
 - Czech relatively high in Beer and HeartD, and low in Wine

45

How many PC's to model this data?



EIGENVECTOR RESEARCH INCORPORATED

Variance Captured

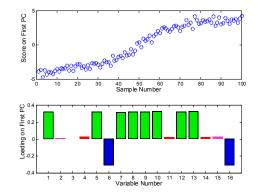
Percent Variance Captured by PCA Model

Principal Component Number	Eigenvalue of Cov(X)	% Variance Captured This PC	<pre>% Variance Captured Total</pre>
1	8.79e+00	54.96	54.96
2	5.29e+00	33.05	88.01
3	2.49e-01	1.56	89.57
4	2.17e-01	1.35	90.92
5	1.80e-01	1.12	92.05
6	1.66e-01	1.04	93.08
7	1.51e-01	0.94	94.03
8	1.41e-01	0.88	94.91
9	1.33e-01	0.83	95.74
10	1.22e-01	0.76	96.51
11	1.19e-01	0.74	97.25
12	1.09e-01	0.68	97.93
13	1.03e-01	0.65	98.58
14	8.52e-02	0.53	99.11
15	7.36e-02	0.46	99.57

Which trend does PC 1 capture?
Which trend does PC 2 capture?

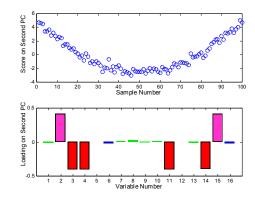
EIGENVECTOR RESEARCH INCORPORATED

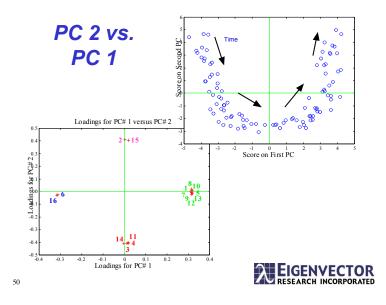
PC 1: Scores and Loadings



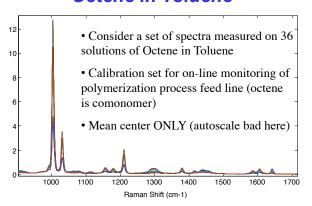
EIGENVECTOR
RESEARCH INCORPORATED

PC 2: Scores and Loadings



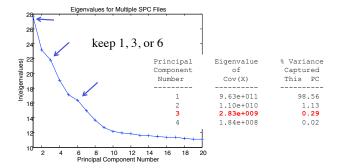


Raman Spectra of Octene in Toluene



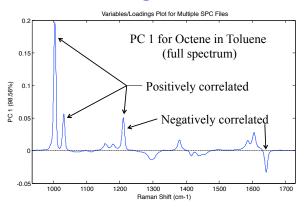
EIGENVECTOR RESEARCH INCORPORATED

Eigenvalues for Octene in Toluene



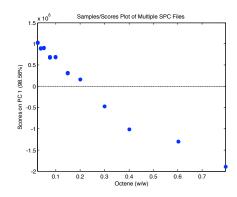
EIGENVECTOR

Loadings on PC1



52

Scores on PC 1 How much of PC1 is observed in each sample?



EIGENVECTOR RESEARCH INCORPORATED

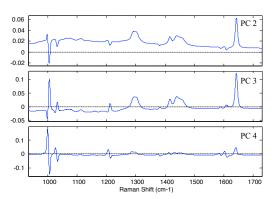
54

Example: ARCH

- 10 Variables: metal concentration (ppm via XRF)
- 75 Samples:
 - 63 obsidian samples from 4 quarries (known origin)
 - 12 artifacts (unknown origin)
- Data Matrix X is 75 by 10
- Load data from arch.mat

EIGENVECTOR RESEARCH INCORPORATED

Loadings for PCs 2-4

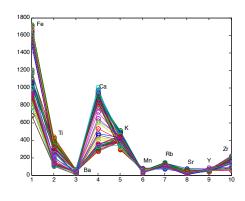


Can be very difficult to interpret.
BE CAREFUL!

EIGENVECTOR RESEARCH INCORPORATED

Raw Data from ARCH

View:Labels checked

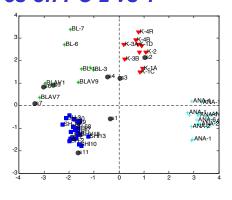


Variance Captured by **PCA Model**

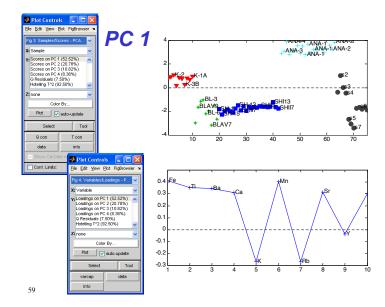


4 PCs selected

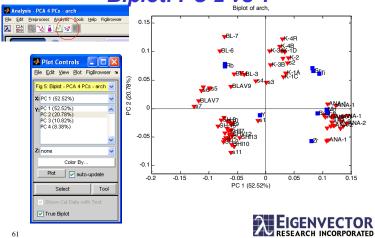
Scores on PC 2 vs 1



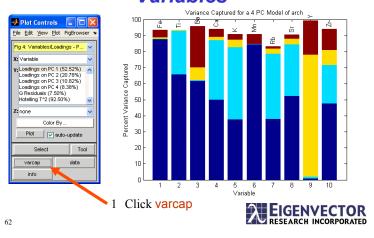
61



Biplot: PC 2 vs 1



Variance Captured by Variables



Important Diagnostics

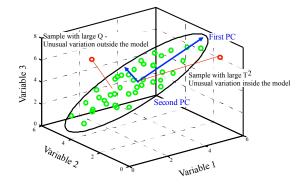
- Q
 - portion of measurement not explained by the model
 - small Q residual => sample well explained by model
 - the converse is also true
 - residuals are orthogonal to the model space

EIGENVECTOR RESEARCH INCORPORATED

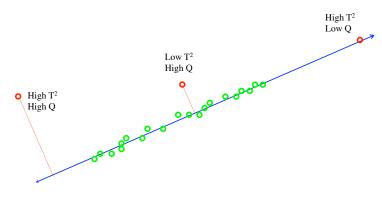
Hotelling's T²

- Measure of distance to center of model to the point defined by the projection of the sample in the space of the model
- A sample having a large value of T² means that
 - the projection into the model space is unusually far away from the center of the model

Geometry of Q and T²



Another Perspective



EIGENVECTOR RESEARCH INCORPORATED

Contributions

- Contributions to Q show how samples are different from the PCA model
 - Contributions to Q are a row of E

$$\mathbf{e}_{i} = \mathbf{x}_{i} (\mathbf{I} - \mathbf{P}_{k} \mathbf{P}_{k}^{T})$$

• Contributions to T² show how the original variables deviate from the mean within the model

$$\mathbf{T}_{i,\text{con}}^{2} = \mathbf{t}_{i} \lambda^{-1} \mathbf{P}_{k}^{T} = \mathbf{x}_{i} \mathbf{P}_{k} \lambda^{-1} \mathbf{P}_{k}^{T}$$

Control Limits for PCA Statistics

- Control limits can be set for
 - lack of fit statistics: for a row of \mathbf{E} , \mathbf{e}_i , and a row of \mathbf{X} , \mathbf{x}_i
 - Q contributions

$$\mathbf{e}_i = \mathbf{x}_i \left(\mathbf{I} - \mathbf{P}_k \mathbf{P}_k^T \right)$$

• Q residual (sum of squares)

$$Q = \mathbf{e}_i \mathbf{e}_i^T = \mathbf{x}_i \left(\mathbf{I} - \mathbf{P}_k \mathbf{P}_k^T \right) \mathbf{x}_i^T$$

- Hotelling's T²: for a row of \mathbf{T}_k , \mathbf{t}_i , and $k\mathbf{x}k$ diagonal matrix λ
 - · T² contributions

$$\mathbf{T}_{i,\text{con}}^{2} = \mathbf{t}_{i} \lambda^{-1} \mathbf{P}_{k}^{T} = \mathbf{x}_{i} \mathbf{P}_{k} \lambda^{-1} \mathbf{P}_{k}^{T}$$

$$\mathbf{T}^{2}$$

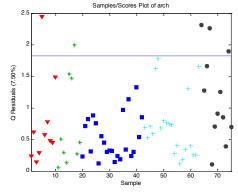
$$\mathbf{T}_{i}^{2} = \mathbf{t}_{i} \lambda^{-1} \mathbf{t}_{i}^{T} = \mathbf{x}_{i} \mathbf{P}_{k} \lambda^{-1} \mathbf{P}_{k}^{T} \mathbf{x}_{i}^{T}$$

$$\mathbf{T}^2 = \mathbf{t} \ \lambda^{-1} \mathbf{t}^T = \mathbf{v} \ \mathbf{P} \ \lambda^{-1} \mathbf{P}^T \mathbf{v}^T$$

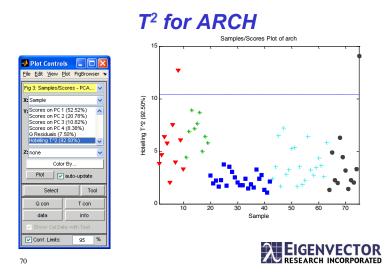
- · also for:
 - scores, tii
 - residuals e;;

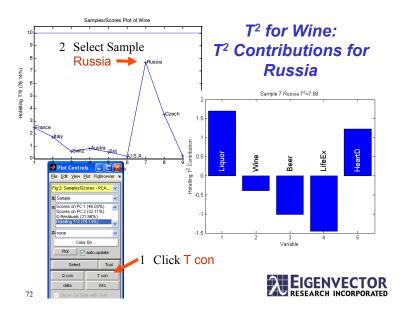
EIGENVECTOR RESEARCH INCORPORATED

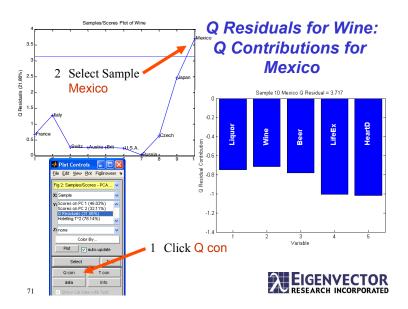
Q Residuals for ARCH data



1 Check Conf. Limits







Outliers

- Outlier samples can have a large influence on a PCA model
- However, they are usually easily found!
- To check for outliers, look for:
 - stray samples on scores plots
 - samples with very high Q, T², or both

PCA Application to New Data

•center new data to the mean of the calibration data

$$X_c = X - 1x_{mean}$$

•scale the centered data using standard deviations of cal data

$$\mathbf{X}_{s} = \mathbf{X}_{c} . / \mathbf{1} \mathbf{x}_{std}$$

•project centered and scaled data onto loadings to get new scores

$$\mathbf{T}_{\text{new}} = \mathbf{X}_{\text{s}} \mathbf{P}_{k}$$

•calculate new residuals

$$\mathbf{E}_{\text{new}} = \mathbf{X}_{\text{s}} - \mathbf{T}_{\text{new}} \mathbf{P}_{k}^{\text{T}} = \mathbf{X}_{\text{s}} (\mathbf{I} - \mathbf{P} \mathbf{P}^{\text{T}})$$

•calculate new Q residuals

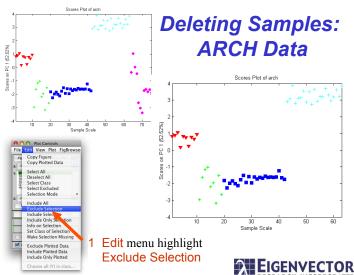
$$\mathbf{Q}_{\text{new}} = \text{diag}(\mathbf{E}_{\text{new}} \mathbf{E}_{\text{new}}^{T})$$

•calculate new T² values

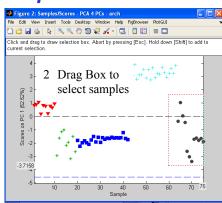
$$\mathbf{T}_{\text{new}}^2 = \mathbf{T}_{new} \lambda^{-1} \mathbf{T}_{new}^T = \mathbf{X}_s \mathbf{P}_k \lambda^{-1} \mathbf{P}_k^T \mathbf{X}_i^T$$

•compare \mathbf{T}_{new} , \mathbf{E}_{new} , \mathbf{Q}_{new} and $\mathbf{T}_{\text{new}}^2$ to previously determined limits

EIGENVECTOR RESEARCH INCORPORATED



Selecting Samples: ARCH Data



1 Click Select

75

Graphically Editing



Centering of Data

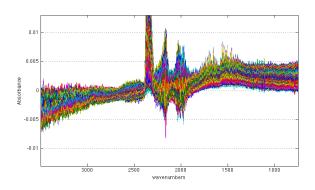
- We've been consistent in stating that data should be centered (remember that autoscaling contains centering)
 - The idea is that we're looking at how data varies from this conceptual center point
 - However, if 0 (multivariate zero, [0 0 0 ... 0] is a realistic or even idealized part of your sample space, consider not centering
- Example

78

• Stability of 100% T lines for real-time spectral acquisition

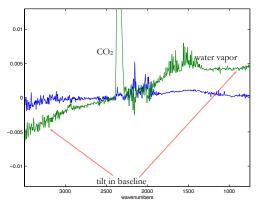
EIGENVECTOR RESEARCH INCORPORATED

Stability Data



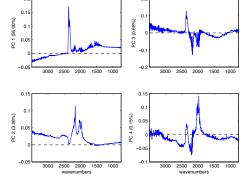
EIGENVECTOR RESEARCH INCORPORATED

First and Last Spectra



EIGENVECTOR

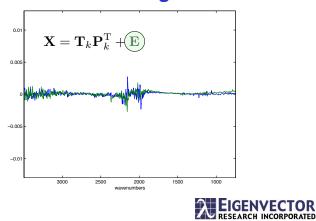
Loadings 1-4 for PCA Model (no centering)



80

81

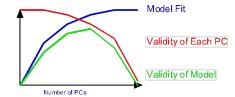
First and Last Spectra After Filtering



How Many Principal Components?

As more PCs are kept in the model, the fit improves, but

The validity of the model, <u>when applied to new</u> <u>data</u>, eventually declines



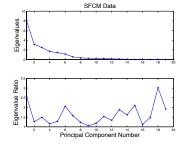
EIGENVECTOR RESEARCH INCORPORATED

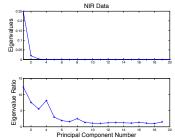
82

Determining the Number of Principal Components

- Determination of the right number of PCs to retain in a model not always simple
- Many methods available:
 - Plot eigenvalues, look for "knee"
 - Ratios of successive eigenvalues
 - For autoscaled data, retain PCs with $I > \sim 1-2$
 - Retain PCs with %variance > noise level
 - Omit PCs that don't make sense!
 - Use cross-validation or jack-knifing

Knees and Ratios



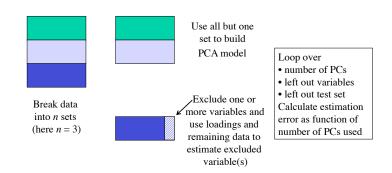


Cross-Validation

- Divide data set into *j* subsets
- Build PCA model on *j*-1 subsets
- Calculate PRESS (Predictive Residual Sum of Squares) for the subset left out
 - (PCA method uses estimates of "missing")
- Repeat *j* times (until all subsets have been left out once)
- Look for minimum or knee in PRESS curve

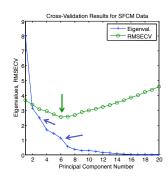
87

PCA Cross-validation

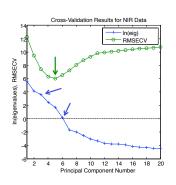


EIGENVECTOR RESEARCH INCORPORATED

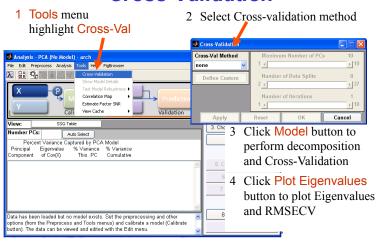
Cross-Validation Examples



RMSECV: Look for minimum Eigenvalues: Look for knee



Cross-Validation



Example: Olive Oil Data Set

- Use FT-IR spectra and pattern recognition to distinguish authentic olive oil from counterfeit or adulterated olive oil.
- Obtain FT-IR spectra (3600 600 cm⁻¹) of these oils using a fixed pathlength NaCl cell
- Have a calibration set (36 samples) and a distinct test set (44 samples)
- Reference:
 D.B. Dahlberg, S.M. Lee, S.J. Wenger, J.A. Vargo
 "Classification of Vegetable Oils by FT-IR," Appl. Spectrosc., 51(8), 1118-1124 (1997)

EIGENVECTOR RESEARCH INCORPORATED

90

PCA: Entire Spectrum

- Drag xcal in the Browse window onto PCA
- Change the preprocessing for the x-block to mean centering
- Open the x-block in the dataset editor and include all of the variables

EIGENVECTOR
RESEARCH INCORPORATED

Calibration Set: Details

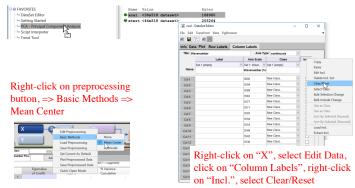
Corn Oil	9 samples	(#1-9)
Olive Oil	15 samples	(#10-24)
Safflower Oil	8 samples	(#25-32)
Corn Margarine	4 samples	(#33-36)

EIGENVECTOR RESEARCH INCORPORATED

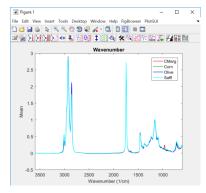
Steps

Drag xcal onto PCA

91



Plot: Summary with Classes



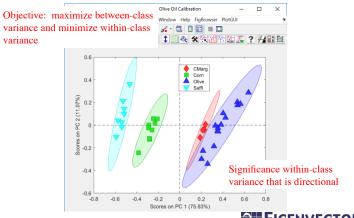
EIGENVECTOR RESEARCH INCORPORATED

Reload the X-Block

- Right-click on the "X"
- Select "Load Data"
- Select "xcal" from workspace
- Plot the data

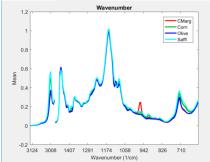
EIGENVECTOR RESEARCH INCORPORATED

PCA: Scores Plot



EIGENVECTOR RESEARCH INCORPORATED

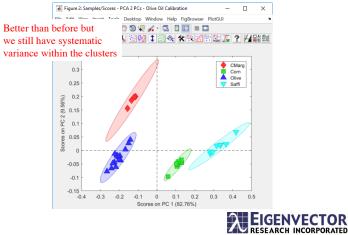
Included Data



96

94

PCA: Scores Plot Revisited



Targeting of Variance Removal

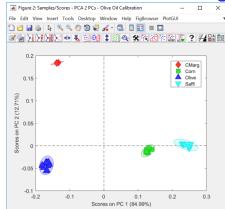
- As it turns out with this data, there is a substantial variation in the effective pathlength
 - Somewhat surprising given that these are transmission
- When spectroscopic data has effective pathlength indetermancy, some type of normalization can frequently help such as
 - 1- norm normalization
 - 2-norm normalization
 - SNV (single normal variate)
 - MSC (multiple scatter correction)

A Brief Word about **Preprocessing**

- To this point, we've focused on just meancentering and autoscaling (which includes meancentering)
- There's a wide variety of preprocessing tools in the toolbox, and others can be created depending upon the nature of the data
- In general, the objective of preprocessing is to remove sources of variance that impede us from our modeling objective
 - In this case, we have significant systematic variance within the classes

EIGENVECTOR RESEARCH INCORPORATED

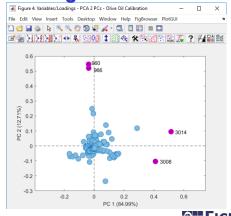
MSC + Mean Centering



100

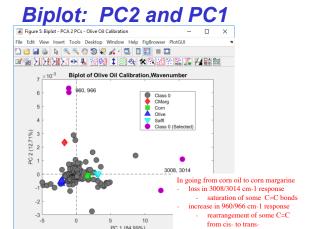
98

Loadings: PC2 and PC1



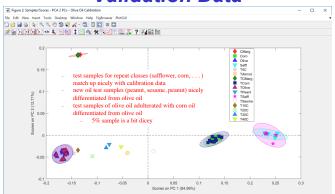
EIGENVECTOR RESEARCH INCORPORATED

103



EIGENVECTOR RESEARCH INCORPORATED

Validation Data



EIGENVECTOR RESEARCH INCORPORATED

Exploring PCA Models

- Much can be learned from considering scores and loadings plots in combination
 - scores plots show how samples are spread out or grouped
 - loadings plots show what variables are correlated, anticorrelated and uncorrelated
 - together they show what variables are responsible for the variations you see in the samples
- Can additional information be brought in?
 - have shown examples with sample classes
 - can also use "color-by" to add information

104

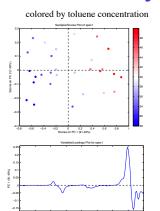
Using "color-by"

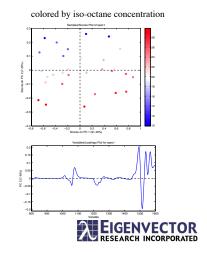
- Color points in scores or loadings plots according to any other available parameter
 - color scores by concentration or quality values, time they were measured, etc.
 - color loadings by wavelength, type of measurement, etc.

Dirty T-Shirt Analogy

PCA attempts to partition the data into deterministic and non-deterministic portions

Color-by on NIR data





107

108