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•  Definitions	

•  scalar, vector, matrix	
•  Linear Algebra Operations	

•  vector and matrix addition	
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•  matrix inverses	
•  rank deficiency	

•  Vector Spaces and Subspaces	
•  Pseudoinverses	
•  Singular Value Decomposition	
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Scalar!
•  Scalar	
•  Zero order tensor	
•  Single number or variable	

•  Has a magnitude	
•  1 x 1	
•  Denoted by lower case, e.g. 

a or commonly a!
•  Temperature, pH, density at 

single location	

•  Scalar in MATLAB	
» a = 5;	
» a = 5	
a =	
      5	
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Vector!
•  Vector	
•  First order tensor	
•  Row or column of scalars	

•  Has magnitude and direction	
•  Size m x 1 (column) or 1 x n 

(row)	
•  bold lower case, e.g. a!
•  Single spectrum, sensor array 

response	

•  Vectors in MATLAB	
» b = [4, 3, 5]	
b =	
      4    3    5      	
	
» b = [4; 3; 5];	
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aT =
⇥
a1 a2 . . . an

⇤



Vector Graphical 
Representation!
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Assign vector to another variable!

» b = [4; 3; 5];	
» c = b'	
c =	
  4        3        5      	
» b = [4; 3; 5]';	
» c = b'	
c =	
  4        3        5	
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Matrix!

•  Matrix 		
•  Second order tensor	
•  Table or array of numbers or variables	

•  Size m x n, m rows and n columns	
•  Denoted by bold upper case, e.g. A!
•  Spectra of multiple samples, multiple process 

measurements from a batch or continuous process, a 
single GC-MS sample	
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Matrix (cont.)!

•  Matrix and vector transpose	
•  Denoted by superscript T or apostrophe '	
•  Columns of A become rows of AT	

A   =   

a 11

a 21

a 31

 
a m 1 

a 12

a 22

a 32

 
a m 2 

a 13

a 23

a 33

 
a m 3 

 
 
 
 
 

a 1 n 

a 2 n 

a 3 n 

 
a mn
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A Matrix is Just a Table of 
Numbers 

Specific
Gravity

App
Extr

Alcohol
(%w/w)

Real
Ext

O.G. RDF Calories pH Color IBU  VDK
(ppm)

Shea's Irish 1.01016 2.60 3.64 4.29 11.37 63.70 150.10 4.01 19.0 16.1 0.02
Iron Range 1.01041 2.66 3.81 4.42 11.82 64.00 156.30 4.33 11.6 21.1 0.04
Bob's 1st Ale 1.01768 4.50 3.17 5.89 12.04 52.70 162.70 3.93 30.7 21.1 0.11
Manns Original 1.00997 2.55 2.11 3.58 7.77 54.90 102.20 4.05 58.9 18.2 0.05
Killarney's Red 1.01915 4.87 3.83 6.64 14.0 54.30 190.20 4.36 12.3 17.9 0.02
Killian's Irish 1.01071 2.74 3.88 4.48 12.0 64.10 158.80 4.28 53.0 14.2 0.03

6 x 11 Matrix 
Where is a37? 
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Matrices in MATLAB!

» A = [2 5 3 6; 7 3 2 1; 5 2 0 3];	
» A(2,4)	
ans =	
      1 	

» A'	
ans =	
      2            7            5      	
      5            3            2      	
      3            2            0      	
      6            1            3	

A =
2 5 3 6
7 3 2 1
5 2 0 3

!

"

#
#
#

$

%

&
&
&    	

AT =

2 7 5
5 3 2
3 2 0
6 1 3

!

"

#
#
#
#

$

%

&
&
&
&
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Special Matrices!
•  Vector is a special matrix (1 row or column)	
•  Diagonal (non-zero elements on diagonal)	
•  Identity (square with ones on diagonal)	
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Example - Special Matrices!

D =

4 0 0 0
0 3 0 0
0 0 7 0

!

"

#
#
#

$

%

&
&
&

I4 x4 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

!

"

#
#
#
#

$

%

&
&
&
&

» id = eye(4)	
id =	
     1     0     0     0	
     0     1     0     0	
     0     0     1     0	
     0     0     0     1	
	

» dm = diag([3 6 9])	
dm =	
     3     0     0	
     0     6     0	
     0     0     9	
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Another Word – Diagonal 
Matrices!
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This is a diagonal matrix	

And so is this	

First matrix:  dm = diag([2 4 6 8 10],1 )	

Second matrix:  dm = diag([1 3 5],-3 ) 
kth diagonal	

Vector and Matrix Addition!
•  Must be same size	
•  Addition is element by element	

•  Commutative	
•  Associative	

a   +   b   =   

a 1 +  b1   

a 2 +  b2 

a 3 +  b3 

 
a n +  bn 

…

a   +   b   =  b  +   a 
a   +   ( b   +   c )   =   ( a   +   b ) +   c 
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Matrix Addition!

» x = [1 4 3; 5 4 0];	
» y = [2 4 1; 2 6 3];	
» x + y	
ans =	
      3            8            4      	
      7           10            3      	

» x = [1 4 3; 5 4 0];	
» y = [2 4; 1 2; 6 3];	
» x + y	
??? Error using ==> +	
Matrix dimensions must agree.	
	

1 4 3
5 4 0
!

"
#

$

%
& +

2 4 1
2 6 3
!

"
#

$

%
& =

3 8 4
7 10 3
!

"
#

$

%
&

1 4 3
5 4 0
!

"
#

$

%
& +

2 4
1 2
6 3

!

"

#
#
#

$

%

&
&
&

= ??

dimensions must be the same!	
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Multiplication by a Scalar!
•  Multiply each element by the scalar	
•  Similar for matrices and vectors	

•  Commutative	
•  Associative	

k a T   =   [ ka1  ka2  ka3  kan ] …

k a   =   a k 
( k + e ) a   =  ka   +  ea 
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Scalar Multiplication!

» c = 2;	
» c*A	
	
ans =	
      4           10            6           12      	
     14            6            4            2      	
     10            4            0            6      	

c = 2,→ cA =

4 10 6 12
14 6 4 2
10 4 0 6

"

#

$
$
$

%

&

'
'
'

A =
2 5 3 6
7 3 2 1
5 2 0 3

!

"

#
#
#

$

%

&
&
&
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Vector Multiplication: 
Inner Product!

•  Vectors must have same number of elements	
•  Result is a scalar	
•  Dot Product	
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aTb =
⇥
a1b1 a2b2 . . . anbn

⇤

Inner Product Example!

a =
2
5
1

!

"

#
#
#

$

%

&
&
&

b =
4
3
5

!

"

#
#
#

$

%

&
&
&

[ ]

[ ]

4
2 5 1 3

5

2 4 5 3 1 5 28

T

! "
# $= # $
# $% &

= ⋅ + ⋅ + ⋅ =

a b

» a = [2; 5; 1]; 	
» b = [4; 3; 5];	
» a'*b	
	
ans =	
     28 	
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Length or “norm” of a Vector!
•  Square root of the sum of squared elements	

•  2-norm	
•  Can be calculated with inner product	

» sqrt(a'*a)	
ans =	
    5.4772	
	
» norm(a)	
ans =	
    5.4772	

( ) [ ]
1/ 2 1/ 2

1 1 2 2
T

n na a a a a a= = + + +a a a …
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Vector Outer Product!
•  Vectors can have different length	
•  Result is a matrix	
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Outer Product Example!

a =
2
5
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[ ]
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! " ! "
# $ # $= ⊗ =# $ # $
# $ # $& ' & '

ab

abT =
8 6 10 14 18
20 15 25 35 45
4 3 5 7 9

!

"

#
#
#

$

%

&
&
&

22	

Outer Product in MATLAB!
» a = [2 5 1]';      b = [4 3 5 7 9]';	
» a*b'	
	
ans =	
      8      6    10    14    18	
     20     15    25    35    45	
      4      3     5     7     9	
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Matrix Multiplication!
•  Size must be compatible (inner dimensions must be same)	
•  Order must be maintained	

A mxn B nxk  =   AB mxk

a 11

a 21

a 31

a 12

a 22

a 32 3 x 2 

b 11

b 21

b 12

b 22 2 x 2 

  =   
a 11b 11 + a 12b 21

a 21b 11 + a 22b 21

a 31b 11 + a 32b 21

a 11b 12 + a 12b 22

a 21b 12 + a 22b 22

a 31b 12 + a 32b 22 3 x 2 
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Interpretation 

•  There are a number of ways to interpret/envision matrix 
multiplication	
•  Each element in the resultant matrix is the resultant of 

the vector/dot product of row and column vectors	
•  ABij = (row i of A) • (column j of B)	

•  Each row in AB is a linear combination of the rows in 
B	

•  Each column in AB is a linear combination of the 
columns in A  	
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Matrix Multiplication Example 

A =

2 5 1
4 5 3

�
B =

2

4
4 3 5 7
9 5 3 4
5 3 6 7

3

5

AB =

58 34 31 41
76 46 53 69

�
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Matrix Multiplication Example 

A =

2 5 1
4 5 3

�
B =

2

4
4 3 5 7
9 5 3 4
5 3 6 7

3

5

AB =

58 34 31 41
76 46 53 69

�

⇥
4 5 3

⇤
2

4
3
5
3

3

5 = 46

27 element 2,2	

row 2	

column 2	

Matrix Multiplication Example 

A =

2 5 1
4 5 3

�
B =

2

4
4 3 5 7
9 5 3 4
5 3 6 7

3

5

AB =

58 34 31 41
76 46 53 69

�

4 ⇤
⇥
4 3 5 7

⇤
+

5 ⇤
⇥
9 5 3 4

⇤
+

3 ⇤
⇥
5 3 6 7

⇤
=

⇥
76 46 53 69

⇤

28 

row 2	

row 2	



Matrix Multiplication Example 

A =

2 5 1
4 5 3

�
B =

2

4
4 3 5 7
9 5 3 4
5 3 6 7

3

5

AB =

58 34 31 41
76 46 53 69

�

5 ⇤

2
4

�
+ 3 ⇤


5
5

�
+ 6 ⇤


1
3

�
=


31
53

�
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column 3	

column 3	

Multiplication in MATLAB!
» A = [2 5 1; 4 5 3]; 	
» B = [4 3 5 7; 9 5 3 4; 5 3 6 7];	
» A*B	
	
ans =	
	
    58    34    31    41	
    76    46    53    69	
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Matrix Algebra Identities!
AB( )

T
= BTAT

A+B( )C = AC+BC ≠CA+CB
AB( )C = A BC( )
A+B( )

T
= AT +BT

AT( )
T
= A

B = BT    if B symmetric and square
IMxMAMxN = AMxNINxN = AMxN    Multiplication by

    the identity leaves a matrix unchanged
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Solving Systems of Equations!
consider the following system of three equations with 
three unknowns:	

1 2 3

1 2

1 2 3

 2         1
 4               -2

2 2      7

b b b
b b
b b b

+ + =

+ =

− + + =

1

2

3

2 1 1 1
 4 1 0 2

2 2 1 7

b
b
b

! " ! " ! "
# $ # $ # $= −# $ # $ # $
# $ # $ # $−& ' & ' & '

 =Xb y

which could also be written:	

or in matrix notation:	
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Gaussian Elimination!
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Want to find values of b1, b2, and b3 which make the system hold.  Subtract 
multiples of equations from each other to eliminate variables:	
	
	
	
	
	
	
	
	
	
	
	
From this we see b3 = 1 and use back substitution to get b2 = 2 and  b1 = -1	

pivot	

Eq 2 – 2*Eq 1	

Eq 3 + Eq 1	

Eq 3 + 3*Eq 2	

Gaussian Elimination 
in MATLAB!

» X = [2 1 1; 4 1 0; -2 2 1]; 	
» y = [1; -2; 7];	
» b = X\y	
	
b =	
	
     -1      	
      2      	
      1      	
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Inconsistent Systems!
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Now suppose you have this system:	
	
	
	
	
	
Elementary row operations would reduce this to:	
	
	
	
	
	
	
This system has no solution as Eq 2 requires that b3 = -6/5, while Eq 3 
requires that b3 = -7/2. 	
	
	
 	

2

4
1 3 2
0 0 5
0 0 2

3

5

2

4
b1
b2
b3

3

5 =

2

4
1

�6
�7

3

5

Underdetermined Systems!
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Suppose instead that you started with:	
	
	
	
	
	
Elementary row operations would reduce this to:	
	
	
	
	
	
	
This system has infinitely many solutions:  b3 = -2, and b1 + 3b2 = 5. 	
	
	
 	

2

4
1 3 2
2 6 9
3 9 8

3

5

2

4
b1
b2
b3

3

5 =

2

4
1

�8
�1

3

5

2

4
1 3 2
0 0 5
0 0 2

3

5

2

4
b1
b2
b3

3

5 =

2

4
1

�10
�4

3
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Singular Matrices and Rank!
With an additional step the matrix reduces to:  

This is the echelon form of the matrix. It is upper triangular and 
the number of non-zero rows is the rank of the matrix.  Row 
reduction can be performed on any matrix – it need not be square.	

  

rank(X) ≤ min(m,n) 

A matrix with rank = min(m,n) is said to be of full rank. 
Otherwise, the matrix is rank deficient or singular. 
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2

4
1 3 2
0 0 5
0 0 0

3

5

2

4
1 3 2
2 6 9
3 9 8

3

5

Singular Matrices in MATLAB!
» X = [1 3 2; 2 6 9; 3 9 8]; 	
» y = [1; -8; -1];	
» b = X\y	
	
Warning:  Matrix  is  singular  to  working 

precision.	
	
b =	
	
   -Inf	
    Inf	
   -2.0000	
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Finding the Rank of a  
Matrix in MATLAB!

•  Rank of a matrix is the number of independent rows 
or columns (same)	

•  Can think of this as the number of independent 
variations in the data	

» X = [1 3 2; 2 6 9; 3 9 8];	
» rank(X)	
ans =	
     2	

39	

Matrix Inverse!
•  Matrix must be square	
•  Matrix must be non-singular i.e. full rank	

•  no row or column the same as another	
•  no row or column a scalar multiple of another	
•  no row or column all zeros	

•  Orthogonal Matrix	
•  In the special case of an orthogonal matrix (columns are 

orthogonal and of unit length) the transpose is the inverse	

1 1− −= =A A AA I

1          T T−= =P P I P P
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Matrix Inverse Identities!

( )

( )

[ ]

( ) ( )

1 1 1

1 1 1 1

1

1 1 TT

− − −

− − − −

−

− −

=

=

" #→ % &

=

AB B A

ABC C B A

A I I A

A A

| |

•  Extensible to multiple matrices	

•  Same set of transformations that 
transform A to I transform I to A-1	
•  Known as the Gauss-Jordan method	
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Example of Gauss-Jordan!

2 1 1 | 1 0 0
4 1 0 | 0 1 0
2 2 1 | 0 0 1

! "
# $
# $
# $−& '

2 1 0 | 1/ 2 3/ 4 1/ 4
0 1 0 | 1/ 2 1/ 2 1/ 2
0 0 4 | 5 3 1

−" #
$ %− − −$ %
$ %− −& '

2 0 0 | 1/ 4 1/ 4 1/ 4
0 1 0 | 1/ 2 1/ 2 1/ 2
0 0 4 | 5 3 1

−" #
$ %− − −$ %
$ %− −& '

1 0 0 | 1/ 8 1/8 1/8
0 1 0 | 1/ 2 1/ 2 1/ 2
0 0 1 | 5 / 4 3/ 4 1/ 4

−" #
$ %−$ %
$ %− −& '

A =

2 1 1
4 1 0
−2 2 1

"

#

$
$
$

%

&

'
'
'

2 1 1 | 1 0 0
0 1 2 | 2 1 0
0 0 4 | 5 3 1

! "
# $− − −# $
# $− −& '

42	

Gauss-Jordan in MATLAB!
» format rational	
» A = [2 1 1; 4 1 0; -2 2 1];	
» B = rref([A eye(3)])	
B =	
      1         0         0        1/8       1/8      -1/8     	
      0         1         0       -1/2       1/2       1/2     	
      0         0         1        5/4      -3/4      -1/4     	
	
» A*B(:,4:6)	
ans =	
      1         0         0      	
      0         1         0      	
      0         0         1      	
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Inverse Function in MATLAB!
» Ainv = inv(A)	
Ainv =	
     1/8       1/8      -1/8     	
    -1/2       1/2       1/2     	
     5/4      -3/4      -1/4     	
	
» inv(A') - inv(A)'	
ans =	
      0            0            0      	
      0            0            0      	
      0            0            0      	
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Vector Spaces and Subspaces!
•  Vector spaces denoted R1, R2, R3, … Rn	
•  Dimension of the space is n	
•  R3 is the familiar three dimensional space	
•  R2 is a planar space	
•  A subspace is a vector space contained within another	
•  A subspace of a vector space is a subset of the space 

where: 	
•  the subspace contains the zero vector	
•  the sum of any two vectors in the subspace is also in the subspace 	
•  any scalar multiple of a vector in the subspace is also in the 

subspace.	
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Example: R3!

•  The list of all possible subspaces of R3	

•  Any line through [0 0 0]	
•  Any plane through [0 0 0]	
•  The single vector [0 0 0]	
•  The whole space:  R3	
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Example: R2!

47	

S =
n



x1

x2

�

2 R2 | x1 > 0
o

does not include x2 axis	

Is S a subspace of R2?	

x1	

x2	

Example: R2!

48	
includes x2 axis	

Is S a subspace of R2?	

x1	

x2	

S =
n



x1

x2

�

2 R2 | x1 � 0
o



Example: R2!

49	

Is S a subspace of R2?	

x1	

x2	

Linear Independence!
•  Given a set of vectors v1, v2, ... , vk, if all non-trivial combinations of 

the vectors are nonzero	

	c1v1 + c2v2 + ... + ckvk ≠ 0   unless   c1 = c2 = ... = ck = 0 	

	then the vectors are linearly independent. Otherwise, at least one of the 
vectors  is  a  linear  combination  of  the  other  vectors  and  they  are 
linearly dependent.	

•  A set of vectors w1, w2, ... , wk, in Rn is said to span the space if every 
vector v in Rn can be expressed as a linear combination of w’s, i.e.	

	v = c1w1 + c2w2 + ... + ckwk for some ci.	

	Note that for the set of w’s to span Rn then k≥n. 	
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Linear Independence!
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v1	

v2	

Geometric interpretation	

x1	

x2	

Linear Independence!
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v1	

v2	

v3	

x1	

x2	



Basis Sets!
•  A basis for a vector space is a set of vectors that 

are linearly independent and span the space. 	
•  The number of vectors in the basis must be equal to the 

dimension of the space. 	
•  Any vector in the space can be specified as one and 

only one combination of the basis vectors. 	
•  Any linearly independent set of vectors can be extended 

to a basis by adding (linearly independent) vectors so 
that the set spans the space. 	

•  Any spanning set of vectors can be reduced to a basis 
by eliminating linearly dependent vectors.	
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Basis, Spanning, and Linearly 
Independent Sets!
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V	

Linearly 	
Independent Sets	

Spanning	
Sets	

dim(V) = n	

#(S) < n	#(S) > n	

Basis	
Sets	

#(S) = n	

Example!
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R3	

Spanning	
Set	

Linearly 	
Independent Set	

Basis	
Set	

Orthogonal and Orthonormal Bases!
•  Orthonormal basis, v1, v2 … vk has property 	

•  Vectors are orthogonal if their inner product is 0	
•  Orthonormal if they are both orthogonal and unit length, i.e. inner 

product with themselves is 1	

•  Project y onto X with orthonormal columns, so XTX = I	
P = X(XTX)-1XT = XXT	

•  Square matrix with orthonormal columns is called an 
orthogonal matrix	

0 for 
1 for 

T
i j

i j
i j
≠"

= #
=$

v v
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Orthogonal Matrix Properties!

•  For an orthogonal matrix Q (orthonormal columns)	

QTQ = I	
QQT = I	
QT = Q-1	

•  Q will also have orthonormal rows!	
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Row Spaces and Column Spaces!
•  For matrix Amxn of rank r, reduced echelon form U	

•  Row space is the space spanned by rows of A	
•  All linear combinations of the rows of A	

•  Dimension of the row space, R(AT), equals r	
•  Rows of U form basis for row space of A	
•  Column space is the space spanned by columns of A	

•  All linear combinations of the columns of A	
•  Dimension of the column space, R(A), also equals r	
•  Columns of U (with non-zero pivots) form basis for 

column space of A	
•  Row rank = column rank!	
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Null Spaces!

•  The nullspace of A, N(A), is of dimension n - r. 
N(A) is the space of Rn not spanned by the rows 
of A. 	

•  Likewise, the nullspace of AT, N(AT), (also 
known as the left nullspace of A) has dimension m 
- r, and is the space of Rm not spanned by the 
columns of A. 	

•  The nullspace of A consists of all solutions to �
Ax = 0	
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Orthogonality of Subspaces!
•  Vectors, v, w, orthogonal if inner product zero	
•  Subspaces V and W are orthogonal if every vector v in V 

is orthogonal to every vector w in W	
•  Thus, for Amxn	

•  “right” nullspace N(A) and the row space R(AT) are orthogonal 
subspaces of Rn. 	

•  left nullspace N(AT) and the column space R(A) are orthogonal 
subspaces of Rm.	

•  The orthogonal complement of a subspace V of Rn is the 
space of all vectors orthogonal to V and is denoted V⟘ 
(pronounced V perp).	
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Important Point!

•  If V is a subspace of Rn, then V⊥ is also a 
subspace of Rn	

•  Given 	~x 2 Rn

~x = ~v + ~w where ~v 2 V & ~w 2 V?

Proj(~x) = ~v

V
Proj(~x) = ~w

V?
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x
p

y

The projection of the vector y onto the vector x

p = xTy
xTx

If ||x|| = 1, then p = xTy

Projections onto Lines!
•  Projections of points onto lines (also planes and subspaces) 

very important in chemometrics!	
•  Projections involve the inner product:	
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if ||x|| = 1 then b = xTy	
and  p = bx	b =	

xTy	
xTx	

Derivation of Projection!
•  Finding p is straightforward given that 	

•  p must be a scalar multiple of x, i.e. p = bx	
•  the line connecting y to p must be perpendicular to x	

•  Also works to project point y on subspace X, provided that 
X is of rank r = n, i.e. XTX is invertible. 	

xT y − bx( ) = 0→ xTy = bxTx→ b = x
Ty
xTx

p = bx = x
Ty
xTx

x
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Least Squares!

•  Consider single variable case with more than 1 
equation	
•  Want to minimize eTe = ||xb - y||2	
•  e2 = eTe = (xb - y)T(xb - y) = xTxb2 - 2xTyb + yTy	

•  Take derivative of e2 wrt b and set to zero	

•  Same solution as projection problem	

2

2 2 0
T

T T
T

de b b
db

= − = → =
x y

x x x y
x x
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Multivariate Least Squares!
•  Consider Xb = y with Xmxn, m>n	
•  Require Xb - y be perpendicular to column space of X	
•  So, each vector in X must be perpendicular to Xb - y	
•  Each vector in column space X expressible as Xc	
•  Thus, for all choice of c:	

•  (Xc)T(Xb - y) = 0,   or   cT[XTXb - XTy] = 0	
•  thus, XTXb = XTy so b = (XTX)-1XTy	

•  b is often called the regression vector	
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Projection Matrices!

•  For problem Xb = y, projection of y onto columns 
of X, p was:	

	p = X(XTX)-1XTy, p = Py	
•  P is a projection matrix, and is	

•  Idempotent, i.e. PP = P2 = P	
•  Symmetric, i.e. PT = P	
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Least Squares in MATLAB!

» X = [1 1; 1 2; 2 1; 
2 2]; 	

» y = [6 6 7 11]';	
» b = inv(X'*X)*X'*y	
	
b =	
    3.0000	
    2.0000     	

X =

1 1
1 2
2 1
2 2

!

"

#
#
#
#

$

%

&
&
&
&

y =

6
6
7
11

!

"

#
#
#
#

$

%

&
&
&
&

» b = X\y	
	
b =	
    3.0000	
    2.0000	
	

67	

Projection of y onto X; 
orthogonality of residuals!

» p = X*b	
p =	
      5      	
      7      	
      8      	
     10      	
	
» d = y-p	
d =	
      1      	
     -1      	
     -1      	
      1      	

» X'*d	
	
ans =	
	
   1.0e-14 *	
	
   -0.9770	
   -0.9770	
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Least Squares Summary!
•  When m>n the system of equations Xb = y is 

overdetermined and the method of least squares can be 
used to determine b	

b = (XTX)-1XTy	
•  XTX is square (nxn) but the inverse won’t exist if it’s not 

full rank (i.e. if rank(X) < n)	
•  What if it’s nearly rank deficient?...	
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Ill-conditioned Matrices!
•  Consider two systems of equations with X nearly rank 

deficient and differing by only a small amount (as might be 
expected from data with noise)	

•  Small changes in y (and/or X) can have a significant impact 
on regression results for nearly rank deficient systems	

•  A problem for some regression approaches and an 
opportunity for others!	
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X =

2

664

1 2
2 4
3 6
4 8.0001

3

775

X =

2

664

1 2
2 4
3 6
4 8.0001

3

775

y1 =

2

664

2
4
6.0001
8

3

775

y2 =

2

664

2
4
5.9999
8

3

775

=> b1 =


3.71

�0.86

�

=> b2 =


0.29
0.86

�

MATLAB - Similar Example!
» X = [1 2; 2 4; 3 6; 4 8.0001]; y = [2 4 6 8]'; b = X\y	
b =	
     2	
     0	
	
» X = [1 2; 2 4; 3 6; 4 8.0001]; y = [2 4 6.0001 8]'; b = X\y	
b =	
    3.7143	
   -0.8571	
	
» X = [1 2; 2 4; 3 6; 4 8.0001]; y = [2 4 5.9999 8]'; b = X\y	
b =	
    0.2857	
    0.8571	
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Pseudoinverses!

•  How to solve Xb = y if XTX singular?	
•  Introduce pseudoinverse, X+	
•  Many solutions, which to choose?	
•  One that minimizes length of b, ||b||	
•  Require that b lie in the row space of X	

•  Xb equals projection of y into the column space of X	
•  b lies in the row space of X.	

•  Must find a way to estimate X+	
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Singular Value Decomposition!

•  Any m by n matrix X can be factored into	
	 	X = USVT	
	 	U orthogonal and m by m	
	 	V orthogonal and n by n	
	 	S diagonal and m by n	

•  Non-zero elements of S are singular values and 
decrease from upper left to lower right	
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Example SVD!
» X = [1 2 3; 2 3 5; 3 5 8; 4 8 12];  
» [U,S,V] = svd(X) 
 
U = 
    0.1935    0.1403   -0.9670    0.0885 
    0.3184   -0.6426    0.0341    0.6961 
    0.5119   -0.5022   -0.0341   -0.6961 
    0.7740    0.5614    0.2503    0.1519 
 
S = 
   19.3318         0         0 
         0    0.5301         0 
         0         0    0.0000 
         0         0         0 
 
V = 
    0.2825   -0.7661    0.5774 
    0.5221    0.6277    0.5774 
    0.8047   -0.1383   -0.5774 
	

X =

1 2 3
2 3 5
3 5 8
4 8 12

!

"

#
#
#
#

$

%

&
&
&
&
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Verify SVD!
» U*S*V'	
ans =	
    1.0000    2.0000    3.0000	
    2.0000    3.0000    5.0000	
    3.0000    5.0000    8.0000	
    4.0000    8.0000   12.0000	
	
•  Note that last singular value (the last diagonal element of 

S) appears to be zero!	
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Formation of the Pseudoinverse!
•  Recall inverse of a product is product of inverses 

in reverse order, thus	
	 	 	 	X+ = VS+UT	

•  Remember, U and V are orthogonal!	
•  ... e.g., so that U-1=UT	

•  How to form S+?	
•  rank(X) =rank(S) and is the number of non-zero 

elements in S, rank(X) = r	
•  Truncate the matrices to r columns	

•  Same as setting elements in S+ to zero that correspond to zero 
elements in S	
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Reconstruction with two 
Factors!

» U(:,1:2)*S(1:2,1:2)*V(:,1:2)'	
	
ans =	
	
    1.0000    2.0000    3.0000	
    2.0000    3.0000    5.0000	
    3.0000    5.0000    8.0000	
    4.0000    8.0000   12.0000	

77	

U = 
    0.1935    0.1403   -0.9670    0.0885 
    0.3184   -0.6426    0.0341    0.6961 
    0.5119   -0.5022   -0.0341   -0.6961 
    0.7740    0.5614    0.2503    0.1519 
 
S = 
   19.3318         0         0 
         0    0.5301         0 
         0         0    0.0000 
         0         0         0 
 
V = 
    0.2825   -0.7661    0.5774 
    0.5221    0.6277    0.5774 
    0.8047   -0.1383   -0.5774 

Pseudoinverse Calculation!
» Xinv = V(:,1:2)*inv(S(1:2,1:2))*U(:,1:2)'	
	
Xinv =	
   -0.2000    0.9333    0.7333   -0.8000	
    0.1714   -0.7524   -0.5810    0.6857	
   -0.0286    0.1810    0.1524   -0.1143	
	
» pinv(X)	
ans =	
   -0.2000    0.9333    0.7333   -0.8000	
    0.1714   -0.7524   -0.5810    0.6857	
   -0.0286    0.1810    0.1524   -0.1143	
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Return to Ill-Conditioned Example!

X =

1 2
2 4
3 6
4 8.0001

!
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#
#
#
#

$
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&
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&
&

y =

2
4
6
8

!

"

#
#
#
#

$

%

&
&
&
&

» X = [1 2; 2 4; 3 6; 4 8.0001]; y = [2 4 6 8]';	
» [U,S,V] = svd(X);	
» Xinv = V(:,1)*inv(S(1,1))*U(:,1)'	
	
Xinv =	
    0.0067    0.0133    0.0200    0.0267	
    0.0133    0.0267    0.0400    0.0533	
	
» b = Xinv*y	
	
b =	
    0.4000	
    0.8000	
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The Solution is no Longer 
Sensitive to Minor Changes!

» y = [2 4 5.9999 8]';	
» b = Xinv*y	
	
b =	
    0.4000	
    0.8000	
	
» y = [2 4 6.0001 8]';	
» b = Xinv*y	
	
b =	
    0.4000	
    0.8000	

Inverse has been stabilized!	
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Higher Order Tensors!

•  Arrays can be extended beyond conventional 
tables, e.g. to 3-D arrays	

•  Third, fourth, fifth… order tensors	
•  Usually denoted by bold upper case with 

underline, e.g. A 	
•  Collection of samples from GC-MS, or multiple 

batch runs	
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Algebra of Higher Order Tensors!
•  Higher order tensors are a natural way to store 

multiway data	
•  analytical devices that produce a matrix per sample	
•  batch process data	

•  Addition and scalar multiplication as expected	
•  Multiplication of tensors	

•  definitions not universally accepted	
•  need to be clear about the mathematical objective	

•  kronecker, hadamard, …	
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Summary!
•  Basic vector and matrix operations	

•  addition and subtraction	
•  multiplication	
•  vector inner and outer products	

•  Matrix rank	
•  number of independent rows or columns (same)	
•  rank ≤ min(m,n) [number of rows and columns]	
•  found by reducing to echelon form	

•  Matrix inverses	
•  exist only for square matrices	
•  do not exist for rank deficient matrices	

•  Least squares	
•  used to solve inconsistent systems	
•  solution unstable in nearly collinear systems	

•  Singular Value Decomposition and Pseudoinverses	
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