Linear Algebra for Chemometricians

©Copyright 1996-2017 Eigenvector Research, Inc.
No part of this material may be
photocopied or reproduced in any form
without prior written consent from
Eigenvector Research, Inc.

Scalar

- Scalar
- · Zero order tensor
- Single number or variable
 - · Has a magnitude
 - 1 x 1
 - Denoted by lower case, e.g. a or commonly a
 - · Temperature, pH, density at single location

• Scalar in MATLAB

$$a = 5;$$

$$a = 5$$

EIGENVECTOR RESEARCH INCORPORATED

Outline

- Definitions
 - · scalar, vector, matrix
- Linear Algebra Operations
 - · vector and matrix addition
 - · vector and matrix multiplication
 - projection
 - · Gaussian elimination
 - · the concept of rank
 - · matrix inverses
 - · rank deficiency
- Vector Spaces and Subspaces
- Pseudoinverses
- · Singular Value Decomposition

Vector

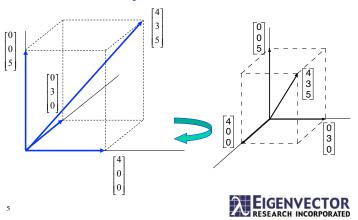
- Vector
- · First order tensor
- Row or column of scalars
 - · Has magnitude and direction
 - Size $m \times 1$ (column) or $1 \times n$ (row)
 - bold lower case, e.g. a
 - · Single spectrum, sensor array response

$$b = [4, 3, 5]$$

$$b = [4; 3; 5];$$

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ \vdots \\ \vdots \end{bmatrix} \qquad \mathbf{a}^T = \begin{bmatrix} a_1 \ a_2 \ \dots \ a_n \end{bmatrix}$$

Vector Graphical Representation



Matrix

- Matrix
- Second order tensor
- Table or array of numbers or variables
 - Size $m \times n$, m rows and n columns
 - Denoted by bold upper case, e.g. A
 - Spectra of multiple samples, multiple process measurements from a batch or continuous process, a single GC-MS sample

Assign vector to another variable

EIGENVECTOR RESEARCH INCORPORATED

Matrix (cont.)

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} & \dots & \mathbf{a}_{2n} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} & \dots & \mathbf{a}_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{m1} & \mathbf{a}_{m2} & \mathbf{a}_{m3} & \dots & \mathbf{a}_{mn} \end{bmatrix} \qquad \qquad \mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{d} & \mathbf{e} & \mathbf{f} \end{bmatrix}$$

- Matrix and vector transpose
 - Denoted by superscript T or apostrophe '
 - Columns of \boldsymbol{A} become rows of \boldsymbol{A}^T

EIGENVECTOR RESEARCH INCORPORATED

EIGENVECTOR RESEARCH INCORPORATED

A Matrix is Just a Table of **Numbers**

	Specific Gravity	App Extr	Alcohol (%w/w)	Real Ext	O.G.	RDF	Calories	рН	Color	IBU	VDK (ppm)
			,,,							1	
Shea's Irish	1.01016	2.60	3.64	4.29	11.37	63.70	150.10	4.01	19.0	16.1	0.02
Iron Range	1.01041	2.66	3.81	4.42	11.82	64.00	156.30	4.33	11.6	21.1	0.04
Bob's 1st Ale	1.01768	4.50	3.17	5.89	12.04	52.70	162,70	3.93	30.7	21.1	0.11
Manns Original	1.00997	2.55	2.11	3.58	7.77	54.90	102.20	4.05	58.9	18.2	0.05
Killarney's Red	1.01915	4.87	3.83	6.64	14.0	54.30	190.20	4.36	12.3	17.9	0.02
Killian's Irish	1.01071	2.74	3.88	4.48	12.0	64.10	158.80	4.28	53.0	14.2	0.03

6 x 11 Matrix

Where is a_{37} ?

Special Matrices

- Vector is a special matrix (1 row or column)
- Diagonal (non-zero elements on diagonal)
- Identity (square with ones on diagonal)

$$\mathbf{A} = \begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ 0 & 0 & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix} \qquad \mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

$$I = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Matrices in MATLAB

$$\mathbf{A} = \begin{bmatrix} 2 & 5 & 3 & 6 \\ 7 & 3 & 2 & 1 \\ 5 & 2 & 0 & 3 \end{bmatrix}$$

$$\mathbf{A}^T = \begin{bmatrix} 2 & 7 & 5 \\ 5 & 3 & 2 \\ 3 & 2 & 0 \\ 6 & 1 & 3 \end{bmatrix}$$

EIGENVECTOR RESEARCH INCORPORATED

2

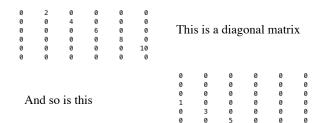
0

Example - Special Matrices

$$\mathbf{I}_{4x4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 7 & 0 \end{bmatrix}$$

Another Word – Diagonal Matrices



First matrix:
$$dm = diag([2 \ 4 \ 6 \ 8 \ 10], 1^4)$$

Second matrix: $dm = diag([1 \ 3 \ 5], -3^4)$

13

Matrix Addition

$$\begin{bmatrix} 1 & 4 & 3 \\ 5 & 4 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 4 & 1 \\ 2 & 6 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 8 & 4 \\ 7 & 10 & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 4 & 3 \\ 5 & 4 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 1 & 2 \\ 6 & 3 \end{bmatrix} = ??$$

dimensions must be the same!

Vector and Matrix Addition

- Must be same size
- Addition is element by element

$$\mathbf{a} + \mathbf{b} = \begin{bmatrix} a_1 & b_1 \\ a_2 + b_2 \\ a_3 + b_3 \\ \vdots \\ a_n + b_n \end{bmatrix}$$

Commutative

14

16

$$a + b = b + a$$

 $a + (b + c) = (a + b) + c$

Multiplication by a Scalar

- Multiply each element by the scalar
- · Similar for matrices and vectors

$$k\mathbf{a}^{\mathsf{T}} = [k\mathbf{a}_1 \ k\mathbf{a}_2 \ k\mathbf{a}_3 \ \dots \ k\mathbf{a}_n]$$

- Commutative
- Associative

$$ka = ak$$

 $(k+e)a = ka + ea$

Scalar Multiplication

$$\mathbf{A} = \begin{bmatrix} 2 & 5 & 3 & 6 \\ 7 & 3 & 2 & 1 \\ 5 & 2 & 0 & 3 \end{bmatrix} \qquad c = 2, \Rightarrow c\mathbf{A} = \begin{bmatrix} 4 & 10 & 6 & 12 \\ 14 & 6 & 4 & 2 \\ 10 & 4 & 0 & 6 \end{bmatrix}$$

$$\overset{\circ}{\sim} c = 2;$$

$$\overset{\circ}{\sim} c^*\mathbf{A}$$

$$ans = \begin{bmatrix} 4 & 10 & 6 & 12 \\ 10 & 4 & 0 & 6 \end{bmatrix}$$

Vector Multiplication: Inner Product

- · Vectors must have same number of elements
- · Result is a scalar
- Dot Product

$$\mathbf{a}^T \mathbf{b} = \begin{bmatrix} a_1 \ a_2 \ \dots \ a_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$\mathbf{a}^T\mathbf{b} = \begin{bmatrix} a_1b_1 \ a_2b_2 \ \dots \ a_nb_n \end{bmatrix}$$

EIGENVECTOR RESEARCH INCORPORATED

Inner Product Example

$$\mathbf{a} = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix} \qquad \text{and} \quad \mathbf{a} = \begin{bmatrix} 2; 5; 1 \end{bmatrix}; \\ \text{and} \quad \mathbf{b} = \begin{bmatrix} 4 \\ 3; 5 \end{bmatrix}; \\ \text{and} \quad \mathbf{a} = \begin{bmatrix} 4 \\ 3; 5 \end{bmatrix}; \\ \text{and} \quad \mathbf{a} = \begin{bmatrix} 2 \cdot 4 + 5 \cdot 3 + 1 \cdot 5 \end{bmatrix} = 28$$

Length or "norm" of a Vector

- Square root of the sum of squared elements
 - 2-norm
- Can be calculated with inner product

$$\|\mathbf{a}\| = (\mathbf{a}^T \mathbf{a})^{1/2} = [a_1 a_1 + a_2 a_2 + \dots + a_n a_n]^{1/2}$$

17

Vector Outer Product

- Vectors can have different length
- Result is a matrix

$$\mathbf{a}_{mx1}\mathbf{b}_{1xn}^T = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} \begin{bmatrix} b_1 \ b_2 \ \dots \ b_n \end{bmatrix} \quad \mathbf{a}\mathbf{b}^T = \begin{bmatrix} a_1b_1 & a_1b_2 & \dots & a_1b_n \\ a_2b_1 & a_2b_2 & \dots & a_2b_n \\ \dots & \dots & \ddots & \dots \\ a_mb_1 & a_mb_2 & \dots & a_mb_n \end{bmatrix}$$

21

Outer Product Example

$$\mathbf{a} = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 4 \\ 3 \\ 5 \\ 7 \\ 9 \end{bmatrix}$$

$$\mathbf{a}\mathbf{b}^{T} = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix} \otimes \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix} \otimes \begin{bmatrix} 2*4 \\ 2*3 \\ 2*5 \\ 2*7 \\ 2*9 \end{bmatrix} = \begin{bmatrix} 2*4 \\ 2*3 \\ 2*5 \\ 2*7 \\ 2*9 \end{bmatrix} \times \begin{bmatrix} 2*9 \\ 5*4 \\ 5*3 \\ 5*5 \\ 5*7 \\ 5*9 \\ 1*4 \\ 1*3 \\ 1*5 \\ 1*7 \\ 1*9 \end{bmatrix}$$

$$\mathbf{a}\mathbf{b}^{T} = \begin{bmatrix} 8 \\ 6 \\ 10 \\ 15 \\ 25 \\ 35 \\ 4 \\ 3 \\ 5 \\ 7 \\ 9 \end{bmatrix}$$

$$\mathbf{a}\mathbf{b}^{T} = \begin{bmatrix} 8 \\ 6 \\ 10 \\ 15 \\ 25 \\ 35 \\ 45 \\ 4 \\ 3 \\ 5 \\ 7 \\ 9 \end{bmatrix}$$

Outer Product in MATLAB

Matrix Multiplication

- Size must be compatible (inner dimensions must be same)
- · Order must be maintained

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}_{3\times 2} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}_{2\times 2} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\ a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} \end{bmatrix}_{3\times 2}$$

Interpretation

- There are a number of ways to interpret/envision matrix multiplication
 - Each element in the resultant matrix is the resultant of the vector/dot product of row and column vectors
 - $AB_{ii} = (row i of A) \cdot (column j of B)$
 - Each row in AB is a linear combination of the rows in
 - Each column in AB is a linear combination of the columns in A

EIGENVECTOR RESEARCH INCORPORATED

25

EIGENVECTOR RESEARCH INCORPORATED

Matrix Multiplication Example

$$A = \begin{bmatrix} 2 & 5 & 1 \\ \hline 4 & 5 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 3 & 5 & 7 \\ 9 & 5 & 3 & 4 \\ 5 & 3 & 6 & 7 \end{bmatrix}$$
$$\begin{bmatrix} 4 & 5 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 3 \end{bmatrix} = 46$$
$$AB = \begin{bmatrix} 58 & 34 & 31 & 41 \\ 76 & 46 & 53 & 69 \end{bmatrix}$$

Matrix Multiplication Example

$$A = \begin{bmatrix} 2 & 5 & 1 \\ 4 & 5 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 4 & 3 & 5 & 7 \\ 9 & 5 & 3 & 4 \\ 5 & 3 & 6 & 7 \end{bmatrix}$$

$$AB = \begin{bmatrix} 58 & 34 & 31 & 41 \\ 76 & 46 & 53 & 69 \end{bmatrix}$$

26

28

Matrix Multiplication Example

$$A = \begin{bmatrix} 2 & 5 & 1 \\ 4 & 5 & 3 \end{bmatrix}_{\text{row 2}} \quad B = \begin{bmatrix} 4 & 3 & 5 & 7 \\ 9 & 5 & 3 & 4 \\ 5 & 3 & 6 & 7 \end{bmatrix}$$

$$4 * \begin{bmatrix} 4 & 3 & 5 & 7 \end{bmatrix} + \\
5 * \begin{bmatrix} 9 & 5 & 3 & 4 \end{bmatrix} + \begin{bmatrix} 76 & 46 & 53 & 69 \end{bmatrix}$$

$$3 * \begin{bmatrix} 5 & 3 & 6 & 7 \end{bmatrix} =$$

$$AB = \begin{bmatrix} 58 & 34 & 31 & 41 \\ 76 & 46 & 53 & 69 \end{bmatrix}_{\text{row 2}}$$

Matrix Multiplication Example

$$A = \begin{bmatrix} 2 & 5 & 1 \\ 4 & 5 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 3 & 5 & 7 \\ 9 & 5 & 3 & 4 \\ 5 & 3 & 6 & 7 \end{bmatrix}$$

$$5 * \begin{bmatrix} 2 \\ 4 \end{bmatrix} + 3 * \begin{bmatrix} 5 \\ 5 \end{bmatrix} + 6 * \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 31 \\ 53 \end{bmatrix}$$

$$AB = \begin{bmatrix} 58 & 34 & \boxed{31} & 41 \\ 76 & 46 & \boxed{53} & 69 \end{bmatrix}$$

Multiplication in MATLAB

EIGENVECTOR

Matrix Algebra Identities

$$(\mathbf{A}\mathbf{B})^{T} = \mathbf{B}^{T}\mathbf{A}^{T}$$

$$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C} \neq \mathbf{C}\mathbf{A} + \mathbf{C}\mathbf{B}$$

$$(\mathbf{A}\mathbf{B})\mathbf{C} = \mathbf{A}(\mathbf{B}\mathbf{C})$$

$$\left(\mathbf{A} + \mathbf{B}\right)^T = \mathbf{A}^T + \mathbf{B}^T$$

$$\left(\mathbf{A}^T\right)^T = \mathbf{A}$$

 $\mathbf{B} = \mathbf{B}^T$ if **B** symmetric and square

$$I_{MxM}A_{MxN} = A_{MxN}I_{NxN} = A_{MxN}$$
 Multiplication by
the identity leaves a matrix unchanged

Solving Systems of Equations

consider the following system of three equations with

three unknowns:

$$2b_1 + b_2 + b_3 = 1$$

$$4b_1 + b_2 = -2$$

$$-2b_1 + 2b_2 + b_3 = 7$$

which could also be written:

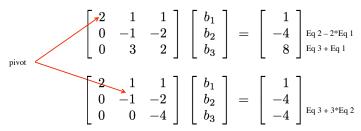
$$\begin{bmatrix} 2 & 1 & 1 \\ 4 & 1 & 0 \\ -2 & 2 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 7 \end{bmatrix}$$

or in matrix notation:

$$Xb = v$$

Gaussian Elimination

Want to find values of b_1 , b_2 , and b_3 which make the system hold. Subtract multiples of equations from each other to eliminate variables:



From this we see $b_3 = 1$ and use back substitution to get $b_2 = 2$ and $b_1 = -1$

EIGENVECTOR RESEARCH INCORPORATED

Inconsistent Systems

Now suppose you have this system:

$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 6 & 9 \\ 3 & 9 & 8 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -4 \\ -4 \end{bmatrix}$$

Elementary row operations would reduce this to:

$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 5 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -6 \\ -7 \end{bmatrix}$$

This system has no solution as Eq 2 requires that $b_3 = -6/5$, while Eq 3 requires that $b_3 = -7/2$.

Gaussian Elimination in MATLAB

EIGENVECTOR RESEARCH INCORPORATED

Underdetermined Systems

Suppose instead that you started with:

$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 6 & 9 \\ 3 & 9 & 8 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -8 \\ -1 \end{bmatrix}$$

Elementary row operations would reduce this to:

$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 5 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -10 \\ -4 \end{bmatrix}$$

This system has infinitely many solutions: $b_3 = -2$, and $b_1 + 3b_2 = 5$.

33

Singular Matrices and Rank

With an additional step the matrix reduces to:

$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 6 & 9 \\ 3 & 9 & 8 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$

This is the *echelon form* of the matrix. It is upper triangular and the number of non-zero rows is the *rank* of the matrix. Row reduction can be performed on any matrix – it need not be square.

$$rank(\mathbf{X}) \leq min(m,n)$$

A matrix with rank = min(m,n) is said to be of full rank. Otherwise, the matrix is *rank deficient* or *singular*.

EIGENVECTOR RESEARCH INCORPORATED

Finding the Rank of a Matrix in MATLAB

- Rank of a matrix is the number of independent rows or columns (same)
- Can think of this as the number of independent variations in the data

EIGENVECTOR RESEARCH INCORPORATED

Singular Matrices in MATLAB

EIGENVECTOR

Matrix Inverse

- Matrix must be square
- Matrix must be non-singular i.e. full rank
 - no row or column the same as another
 - · no row or column a scalar multiple of another
 - · no row or column all zeros

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

• Orthogonal Matrix

40

• In the special case of an orthogonal matrix (columns are orthogonal and of unit length) the transpose is the inverse

$$\mathbf{P}^T \mathbf{P} = \mathbf{I} \qquad \mathbf{P}^{-1} = \mathbf{P}^T$$

Matrix Inverse Identities

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$
$$(\mathbf{A}\mathbf{B}\mathbf{C})^{-1} = \mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1}$$

• Extensible to multiple matrices

$$\left[\mathbf{A} \mid \mathbf{I}\right] \rightarrow \left[\mathbf{I} \mid \mathbf{A}^{-1}\right]$$

• Same set of transformations that transform **A** to **I** transform **I** to **A**⁻¹

Known as the Gauss-Jordan method

$$\left(\mathbf{A}^T\right)^{-1} = \left(\mathbf{A}^{-1}\right)^T$$

41

Example of Gauss-Jordan

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 1 & 0 \\ -2 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 0 & | & -1/2 & 3/4 & 1/4 \\ 0 & -1 & 0 & | & 1/2 & -1/2 & -1/2 \\ 0 & 0 & -4 & | & -5 & 3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 1 & | & 1 & 0 & 0 \\ 4 & 1 & 0 & | & 0 & 1 & 0 \\ -2 & 2 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 0 & | & 1/4 & 1/4 & -1/4 \\ 0 & -1 & 0 & | & 1/2 & -1/2 & -1/2 \\ 0 & 0 & -4 & | & -5 & 3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & -1 & -2 & | & -2 & 1 & 0 \\ 0 & 0 & -4 & | & -5 & 3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & -1 & -2 & | & -2 & 1 & 0 \\ 0 & 0 & -4 & | & -5 & 3 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & | & 1/8 & 1/8 & -1/8 \\ 0 & 1 & 0 & | & -1/2 & 1/2 & 1/2 \\ 0 & 0 & 1 & | & 5/4 & -3/4 & -1/4 \end{bmatrix}$$

EIGENVECTOR RESEARCH INCORPORATED

Gauss-Jordan in MATLAB

Inverse Function in MATLAB

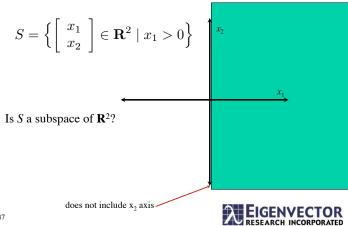
Vector Spaces and Subspaces

- *Vector spaces* denoted $\mathbf{R}^1, \mathbf{R}^2, \mathbf{R}^3, \dots \mathbf{R}^n$
- Dimension of the space is *n*
- \mathbf{R}^3 is the familiar three dimensional space
- \mathbf{R}^2 is a planar space
- A *subspace* is a vector space contained within another
- A subspace of a vector space is a subset of the space where:
 - · the subspace contains the zero vector
 - the sum of any two vectors in the subspace is also in the subspace
 - any scalar multiple of a vector in the subspace is also in the subspace.

EIGENVECTOR RESEARCH INCORPORATED

45

Example: R²

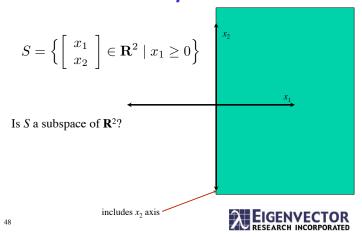


Example: R3

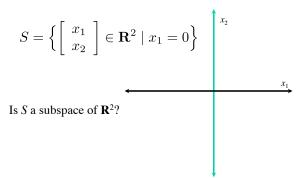
- The list of all possible subspaces of \mathbb{R}^3
 - Any line through [0 0 0]
 - Any plane through [0 0 0]
 - The single vector [0 0 0]
 - The whole space: \mathbf{R}^3

EIGENVECTOR
RESEARCH INCORPORATED

Example: R²



Example: R²



49

Linear Independence

• Given a set of vectors ${\bf v}_1,\,{\bf v}_2,\,\dots\,,\,{\bf v}_k,$ if all non-trivial combinations of the vectors are nonzero

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \neq 0$$
 unless $c_1 = c_2 = \dots = c_k = 0$

then the vectors are *linearly independent*. Otherwise, at least one of the vectors is a linear combination of the other vectors and they are *linearly dependent*.

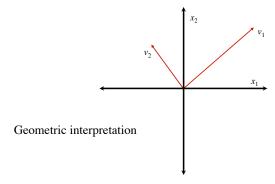
• A set of vectors $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k$, in \mathbf{R}^n is said to *span the space* if every vector \mathbf{v} in \mathbf{R}^n can be expressed as a linear combination of \mathbf{w}' s, *i.e*.

$$\mathbf{v} = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + \dots + c_k \mathbf{w}_k$$
 for some c_i .

Note that for the set of w's to span \mathbb{R}^n then $k \ge n$.

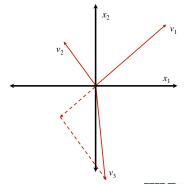
EIGENVECTOR RESEARCH INCORPORATED

Linear Independence



EIGENVECTOR RESEARCH INCORPORATED

Linear Independence



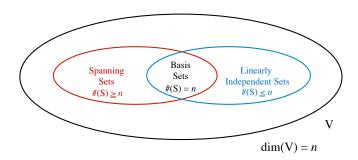
EIGENVECTOR
RESEARCH INCORPORATE

Basis Sets

- A *basis* for a vector space is a set of vectors that are linearly independent and span the space.
 - The number of vectors in the basis must be equal to the dimension of the space.
 - Any vector in the space can be specified as one and only one combination of the basis vectors.
 - Any linearly independent set of vectors can be extended to a basis by adding (linearly independent) vectors so that the set spans the space.
 - Any spanning set of vectors can be reduced to a basis by eliminating linearly dependent vectors.

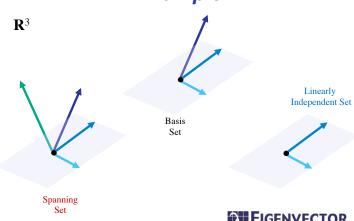
EIGENVECTOR RESEARCH INCORPORATED

Basis, Spanning, and Linearly Independent Sets



EIGENVECTOR RESEARCH INCORPORATED

Example



Orthogonal and Orthonormal Bases

- Orthonormal basis, $\mathbf{v}_1, \mathbf{v}_2 \dots \mathbf{v}_k$ has property
 - Vectors are orthogonal if their inner product is 0
 - Orthonormal if they are both orthogonal and unit length, i.e. inner product with themselves is 1

$$\mathbf{v}_{i}^{T}\mathbf{v}_{j} = \begin{cases} 0 \text{ for } i \neq j \\ 1 \text{ for } i = j \end{cases}$$

• Project y onto X with orthonormal columns, so $X^TX = I$

$$\mathbf{P} = \mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}} = \mathbf{X}\mathbf{X}^{\mathrm{T}}$$

• Square matrix with orthonormal columns is called an orthogonal matrix

EIGENVECTOR RESEARCH INCORPORATED

55

Orthogonal Matrix Properties

• For an orthogonal matrix **Q** (orthonormal columns)

$$\mathbf{Q}^{\mathrm{T}}\mathbf{Q} = \mathbf{I}$$
$$\mathbf{Q}\mathbf{Q}^{\mathrm{T}} = \mathbf{I}$$
$$\mathbf{O}^{\mathrm{T}} = \mathbf{O}^{-1}$$

• **Q** will also have orthonormal rows!

EIGENVECTOR RESEARCH INCORPORATED

Null Spaces

- The *nullspace* of **A**, $\mathcal{N}(\mathbf{A})$, is of dimension n r. $\mathcal{N}(\mathbf{A})$ is the space of \mathbf{R}^n not spanned by the rows of **A**.
- Likewise, the nullspace of A^T, N(A^T), (also known as the left nullspace of A) has dimension m r, and is the space of R^m not spanned by the columns of A.
- The nullspace of A consists of all solutions to
 Ax = 0

Row Spaces and Column Spaces

- For matrix $\mathbf{A}_{m \times n}$ of rank r, reduced echelon form U
 - Row space is the space spanned by rows of A
 - All linear combinations of the rows of A
 - Dimension of the row space, $\mathcal{R}(\mathbf{A}^T)$, equals r
 - Rows of U form basis for row space of A
 - Column space is the space spanned by columns of A
 - All linear combinations of the columns of A
 - Dimension of the column space, $\mathcal{R}(\mathbf{A})$, also equals r
 - Columns of U (with non-zero pivots) form basis for column space of A
- Row rank = column rank!

EIGENVECTOR RESEARCH INCORPORATED

Orthogonality of Subspaces

- Vectors, v, w, orthogonal if inner product zero
- Subspaces V and W are orthogonal if every vector v in V is orthogonal to every vector w in W
- Thus, for $\mathbf{A}_{m\mathbf{y}n}$
 - "right" nullspace $\mathcal{N}(\mathbf{A})$ and the row space $\mathcal{R}(\mathbf{A}^T)$ are orthogonal subspaces of \mathbf{R}^n .
 - left nullspace $\mathcal{N}(\mathbf{A}^T)$ and the column space $\mathcal{R}(\mathbf{A})$ are orthogonal subspaces of \mathbf{R}^m .
- The orthogonal complement of a subspace V of Rⁿ is the space of all vectors orthogonal to V and is denoted V[⊥] (pronounced V perp).

Important Point

- If **V** is a subspace of \mathbf{R}^n , then \mathbf{V}^{\perp} is also a subspace of \mathbf{R}^n
- Given $\vec{x} \in \mathcal{R}^n$

$$\vec{x} = \vec{v} + \vec{w}$$
 where $\vec{v} \in \mathbf{V} \& \vec{w} \in \mathbf{V}^{\perp}$

$$\operatorname{Proj}_{\mathbf{V}}(ec{x}) = ec{v} \quad \operatorname{Proj}_{\mathbf{V}^{\perp}}(ec{x}) = ec{w}$$

EIGENVECTOR RESEARCH INCORPORATED

Derivation of Projection

- Finding **p** is straightforward given that
 - **p** must be a scalar multiple of \mathbf{x} , *i.e.* $\mathbf{p} = b\mathbf{x}$
 - the line connecting \mathbf{y} to \mathbf{p} must be perpendicular to \mathbf{x}

$$\mathbf{x}^{T} (\mathbf{y} - b\mathbf{x}) = 0 \rightarrow \mathbf{x}^{T} \mathbf{y} = b\mathbf{x}^{T} \mathbf{x} \rightarrow b = \frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{x}^{T} \mathbf{x}}$$
$$\mathbf{p} = b\mathbf{x} = \frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{x}^{T} \mathbf{x}} \mathbf{x}$$

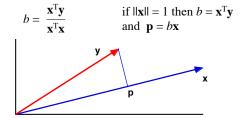
• Also works to project point **y** on subspace **X**, provided that **X** is of rank r = n, i.e. $\mathbf{X}^T\mathbf{X}$ is invertible.

Projections onto Lines

- Projections of points onto lines (also planes and subspaces) very important in chemometrics!
- Projections involve the inner product:

62

64



The projection of the vector **y** onto the vector **x**

Least Squares

- Consider single variable case with more than 1 equation
 - Want to minimize $\mathbf{e}^{\mathrm{T}}\mathbf{e} = ||\mathbf{x}b \mathbf{y}||^2$
 - $e^2 = e^T e = (\mathbf{x}b \mathbf{y})^T (\mathbf{x}b \mathbf{y}) = \mathbf{x}^T \mathbf{x}b^2 2\mathbf{x}^T \mathbf{y}b + \mathbf{y}^T \mathbf{y}$
- Take derivative of e^2 wrt b and set to zero

$$\frac{de^2}{db} = 2\mathbf{x}^T \mathbf{x}b - 2\mathbf{x}^T \mathbf{y} = 0 \Rightarrow b = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{x}^T \mathbf{x}}$$

• Same solution as projection problem

Multivariate Least Squares

- Consider $\mathbf{X}\mathbf{b} = \mathbf{y}$ with $X_{m \times n}, m > n$
- Require Xb y be perpendicular to column space of X
- So, each vector in \mathbf{X} must be perpendicular to $\mathbf{X}\mathbf{b}$ \mathbf{y}
- Each vector in column space **X** expressible as **X**c
- Thus, for all choice of c:
 - $(\mathbf{X}\mathbf{c})^{\mathrm{T}}(\mathbf{X}\mathbf{b} \mathbf{y}) = 0$, or $\mathbf{c}^{\mathrm{T}}[\mathbf{X}^{\mathrm{T}}\mathbf{X}\mathbf{b} \mathbf{X}^{\mathrm{T}}\mathbf{y}] = 0$
 - thus, $\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{b} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$ so $\mathbf{b} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$
- **b** is often called the regression vector

Projection Matrices

 For problem Xb = y, projection of y onto columns of X, p was:

$$\mathbf{p} = \mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}, \, \mathbf{p} = \mathbf{P}\mathbf{y}$$

- **P** is a *projection matrix*, and is
 - *Idempotent*, i.e. $\mathbf{PP} = \mathbf{P}^2 = \mathbf{P}$
 - Symmetric, i.e. $\mathbf{P}^{\mathrm{T}} = \mathbf{P}$

EIGENVECTOR RESEARCH INCORPORATED

EIGENVECTOR RESEARCH INCORPORATED

Least Squares in MATLAB

68

Projection of y onto X; orthogonality of residuals

Least Squares Summary

 When m>n the system of equations Xb = y is overdetermined and the method of least squares can be used to determine b

$$\mathbf{b} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{v}$$

- $\mathbf{X}^T\mathbf{X}$ is square $(n\mathbf{x}n)$ but the inverse won't exist if it's not full rank (i.e. if rank $(\mathbf{X}) < \mathbf{n})$
- What if it's nearly rank deficient?...

EIGENVECTOR

MATLAB - Similar Example

EIGENVECTOR RESEARCH INCORPORATED

III-conditioned Matrices

 Consider two systems of equations with X nearly rank deficient and differing by only a small amount (as might be expected from data with noise)

$$X = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \\ 4 & 8.0001 \end{bmatrix} \qquad y_1 = \begin{bmatrix} 2 \\ 4 \\ 6.0001 \\ 8 \end{bmatrix} \qquad => b_1 = \begin{bmatrix} 3.71 \\ -0.86 \end{bmatrix}$$
$$X = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \\ 4 & 8.0001 \end{bmatrix} \qquad y_2 = \begin{bmatrix} 2 \\ 4 \\ 5.9999 \\ 8 \end{bmatrix} \qquad => b_2 = \begin{bmatrix} 0.29 \\ 0.86 \end{bmatrix}$$

- Small changes in y (and/or X) can have a significant impact on regression results for nearly rank deficient systems
- A problem for some regression approaches and an opportunity for others!

 EIGENVECTOR
 RESEARCH INCORPORATED

Pseudoinverses

- How to solve Xb = y if X^TX singular?
- Introduce pseudoinverse, X+
- Many solutions, which to choose?
- One that minimizes length of \mathbf{b} , $\|\mathbf{b}\|$
- Require that \mathbf{b} lie in the row space of \mathbf{X}
 - Xb equals projection of y into the column space of X
 - **b** lies in the row space of **X**.
- Must find a way to estimate X⁺

Singular Value Decomposition

• Any m by n matrix \mathbf{X} can be factored into

 $X = USV^T$

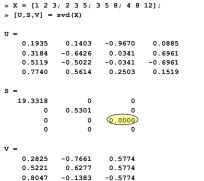
 \mathbf{U} orthogonal and m by m

 \mathbf{V} orthogonal and n by n

 $\bf S$ diagonal and m by n

• Non-zero elements of **S** are singular values and decrease from upper left to lower right

Example SVD



$$X = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 3 & 5 & 8 \\ 4 & 8 & 12 \end{bmatrix}$$

74

Verify SVD

 Note that last singular value (the last diagonal element of S) appears to be zero!

Formation of the Pseudoinverse

• Recall inverse of a product is product of inverses in reverse order, thus

$$X^{\scriptscriptstyle +} = VS^{\scriptscriptstyle +}U^T$$

- Remember, U and V are orthogonal!
 - ... e.g., so that $\mathbf{U}^{-1} = \mathbf{U}^{\mathrm{T}}$
- How to form S^+ ?
 - rank(**X**) = rank(**S**) and is the number of non-zero elements in **S**, rank(**X**) = r
 - Truncate the matrices to *r* columns
 - Same as setting elements in S^+ to zero that correspond to zero elements in S

EIGENVECTOR

Reconstruction with two **Factors**

» U(:,1:2)*S(1:2,1:2)*V(:,1:2)'

ans =

1.0000	2.0000	3.0000
2.0000	3.0000	5.0000
3.0000	5.0000	8.0000
4.0000	8.0000	12.0000

Pseudoinverse Calculation

The Solution is no Longer

Sensitive to Minor Changes

Inverse has been stabilized!

Return to III-Conditioned Example

$$\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \\ 4 & 8.0001 \end{bmatrix} \quad \begin{array}{lll} & \text{``x = [1 2; 2 4; 3 6; 4 8.0001]; y = [2 4 6 8]';} \\ & \text{``x [U,S,V] = svd(X);} \\ & \text{`x inv = V(:,1)*inv(S(1,1))*U(:,1)'} \\ & \text{Xinv = } \\ & 0.0067 & 0.0133 & 0.0200 & 0.0267 \\ & 0.0133 & 0.0267 & 0.0400 & 0.0533} \\ & \text{``x b = Xinv*y} \\ & \text{b = } \\ & 0.4000 \\ & 0.8000 \\ \end{array}$$

0.4000 0.8000 $y = [2 \ 4 \ 6.0001 \ 8]';$ b = Xinv*y

 $y = [2 \ 4 \ 5.9999 \ 8]';$

b = Xinv*y

0.4000 0.8000

80

EIGENVECTOR RESEARCH INCORPORATED

Higher Order Tensors

- Arrays can be extended beyond conventional tables, e.g. to 3-D arrays
- Third, fourth, fifth... order tensors
- Usually denoted by bold upper case with underline, e.g. A
- Collection of samples from GC-MS, or multiple batch runs

EIGENVECTOR RESEARCH INCORPORATED

Summary

- · Basic vector and matrix operations
 - · addition and subtraction
 - · multiplication
 - · vector inner and outer products
- · Matrix rank
 - · number of independent rows or columns (same)
 - rank $\leq \min(m,n)$ [number of rows and columns]
 - · found by reducing to echelon form
- · Matrix inverses
 - · exist only for square matrices
 - · do not exist for rank deficient matrices
- Least squares
 - · used to solve inconsistent systems
 - · solution unstable in nearly collinear systems
- Singular Value Decomposition and Pseudoinverses

Algebra of Higher Order Tensors

- Higher order tensors are a natural way to store multiway data
 - analytical devices that produce a matrix per sample
 - · batch process data
- Addition and scalar multiplication as expected
- Multiplication of tensors

82

- · definitions not universally accepted
- need to be clear about the mathematical objective
 - · kronecker, hadamard, ...

EIGENVECTOR RESEARCH INCORPORATED