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Scalar Vector

) * Vector )
e Scalar e Scalar in MATLAB « First order tensor e Vectors in MATLAB
* Zero order tensor » a = 5; ¢ Row or column of scalars » b =[4, 3, 5]
* Single number or variable » a=05  Has magnitude and direction b =
* Has a magnitude a = * Size m x 1 (column) or 1xn 4 3 5
e Ix1 (row)
¢ Denoted by lower case, e.g. 5 ¢ bold lower case, e.g. a
a or commonly a  Single spectrum, sensor array » b = [4; 3 5 5] 5
¢ Temperature, pH, density at response
single location a
a2
a=|" aT:[alag...an}
[~ T ' [~ T
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Vector Graphical
Representation

]

1/
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Matrix

e Matrix
¢ Second order tensor

e Table or array of numbers or variables
e Size mxn, m rows and n columns
¢ Denoted by bold upper case, e.g. A

¢ Spectra of multiple samples, multiple process
measurements from a batch or continuous process, a
single GC-MS sample

. ?:EI EIGENVECTOR
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Assign vector to another variable

» b =[4; 3; 5];
» C =Db'
C =

4 3 5
» b =1[4; 3; 5]";
» C =Db'
c =

3 5

FMEIGENVECTOR
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Matrix (cont.)

a11 a12 a13 a1n [a b c}
A=

f
8y 8p 8y . By, de
A= 8y 8 8y - 8y, a d
. . L. A= |b e
. . . . - c f
,am1 am2 am3 amn,

e Matrix and vector transpose
* Denoted by superscript T or apostrophe '
¢ Columns of A become rows of AT

ii IGENVECTOR
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A Matrix is Just a Table of

Numbers

Specific | App |Alcohol| Real | 0O.G. | RDF | Calories | pH | Color | IBU | VDK

Gravity | Extr | (%wiw) Ext (PPm)
Shea's Irish 1.01016 | 2.60 3.64 | 429 11.37 | 63.70 | 150.10 |4.01| 19.0 |16.1| 0.02
Iron Range 1.01041 | 2.66 3.81 | 442 11.82 | 64.00 | 156.30 |4.33| 11.6 |21.1) 0.04
Bob's 1st Ale 1.01768 | 4.50 3.17 | 5.89 | 12.04 | 52.70 | [ 162,70| |3.93| 30.7 |21.1] 0.11
Manns Original | 1.00997 | 2.55 | 2.11 | 3.58 | 7.77 | 54.90 | 102.%0 |4.05| 58.9 |18.2] 0.05
Killarney's Red | 1.01915 | 4.87 3.83 | 6.64  14.0 | 54.30 190,2\) 4.36| 12.3 |17.9] 0.02
Killian's Irish 1.01071 | 2.74 3.88 | 448 | 120 | 64.10

6 x 11 Matrix

158.86\4.25 53.0 |14.2] 0.03

Where is a;;?
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A2 RESEARCH INCORPORATED

Special Matrices

* Vector is a special matrix (1 row or column)

* Diagonal (non-zero elements on diagonal)

* Identity (square with ones on diagonal)

la,, 0

0 a,,
A=10 0
0 0

0
0

a33

. 0]
0
0

nnJ

1000
010..0

=lo01..0
0001
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Matrices in MATLAB

2536
A=|7 3 2 1
5203

»A=[2536;7321;5203];

AN W W
— N W
w O N W

» A'
ans =

o wu N
PN W

FHEIGENVECTOR
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Example - Special Matrices

» AC2,4)
ans =
1
10
1 00
010
I4x4=
00 1
00 0
» id = eye(4)
id =
1 0
0 1
0 0
0 0
12

[SEERSES]

- O O O

[ SESES]

4 0 0 O
D=|0 3 0 O
00 70
» dm = diag([3 6 91D
dm =
3 (/] 0
0 6 Q
(4] Q 9

ESEARCH INCORPORATED
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Another Word — Diagonal . .
Vector and Matrix Addition

Matrices
) la,+ b, |
e 2 o o o o * Must be same size
e o o & o o This is a diagonal matrix * Addition is element by element a,+b,
[} 0 ) ) 8 [} =
0 0 ) o o 10 atb-= a + b3
[} [} ) ) o [}
[} [} [} [} [} ) :
[ [ [ [ ) [ a + bn
. . [} [} [} [} [} ) -
And so is this 1 0 0 0 ) 1)
0 3 0 0 0 [}
[} [} 5 [} [} )
. . ¢ Commutative a+b=b+a
First matrix: dm = diag([2 4 6 8 10],1 ..
k" diagonal * Associative a+ (b + c) = (a + b)+ C
Second matrix: dm = diag([1 3 5],-3
rmm romm
; ¥ EIGENVECTOR " ¥ EIGENVECTOR
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Matrix Addition Multiplication by a Scalar

1 4 3 2 4 1 3 8 4 1 4 3 2 4 e Multiply each element by the scalar
[5 4 0] + [2 6 3] = [7 10 3] {5 4 0}+ L 21="7  Similar for matrices and vectors
6 3
= [ka, ka, ka, ... ka ]
dimensions must be the same! .
e Commutative
»x=[143;540]; »x=1[143;540]; e Associative
»y=1[241; 26 3]; »y=1[24;12; 63]; ka = ak
» X + Y » X + Yy
ans = ??? Error using ==> + (k+e)a = ka + ea
3 8 4 Matrix dimensions must agree.
7 10 3

; PHEIGENVECTOR " PMEIGENVECTOR
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Scalar Multiplication

2536 4 10 6 12
A=[7 3 2 1 c=2—cA=|14 6 4 2
520 3 10 4 0 6
» C = 2;
» C*A
ans =
4 10 6 12
14 6 4 2
10 4 0 6
7 ¥ EIGENVECTOR
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Inner Product Example
2 (4]
a=|5 b=|3
» a=[2; 5; 1];
] i » b = [4; 3; 51;
» a'*b
”
ans =
a'b=[2 5 1]3 58
5

=[2-4+5-3+1-_5]_=28

?:i- EIGENVECTOR
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Vector Multiplication:
Inner Product

¢ Vectors must have same number of elements
e Result is a scalar
¢ Dot Product

by

ba
a’b = [a1 as ... an} ’

b
aTb = [a1b1 asby ... anbn]

FMEIGENVECTOR
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Length or “norm” of a Vector

* Square root of the sum of squared elements
e 2-norm
* Can be calculated with inner product

r V2 /2
||a|| = (a a) =[ala1 +a,a, +...+anan]

» sqrt(a'*a)
ans =
5.4772

» norm(a)
ans =
5.4772
.-Lji IGENVECTOR
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Vector Outer Product

* Vectors can have different length
* Result is a matrix

ay a1by a1by aby,
a3 ashy asby asby,
amxlble = [b1 by ... bn} ab’ =
am amby amba Ambn
rmm
" @ EIGENVECTOR
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Outer Product in MATLAB

»a=[251]"; b=1[435709]";
» a*b'
ans =
8 [ 10 14 18
20 15 25 35 45
4 3 5 7 9
» # ¥ EIGENVECTOR
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Outer Product Example
4
2 3
a=|5 b=|5
1 7
9
2 2%4 2%3 2%5 2%7 2%9
ab’ =[5|®[4 3 5 7 9]=|5%4 5*3 5%*5 5*7 5%9
1 1¥4 %3 1*%5 1*7 1%9

8§ 6 10 14 18

ab” =20 15 25 35 45

4 3 5 79 -
PHEIGENVECTOR
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Matrix Multiplication

* Size must be compatible (inner dimensions must be same)
¢ Order must be maintained

Amannxk = ABmxk
L1|—
a4y Ay, b b a; by +a,b,, a,b,+a;,b,,
1 M2 b b b b
Qy 3y b. b Ap1 01+ 85505 85D, +85,0,,
21 M22]50
Qg Qg 3x2 as1b11+a32b21 a31b12+a32b22 3x2

PHEIGENVECTOR
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Interpretation

e There are a number of ways to interpret/envision matrix
multiplication

* Each element in the resultant matrix is the resultant of
the vector/dot product of row and column vectors

* AB;; = (row i of A)  (column j of B)
e Each row in AB is a linear combination of the rows in
B

e Each column in AB is a linear combination of the
columns in A

. BY¥EIGENVECTOR
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Matrix Multiplication Example

4 13 5 7
AZ[ZE;)] B=1l915 3 4
row 2 5 3 6 7
[4 5 3} 5| =46
3
58 34 31 41
AB_[76 53 69]

27 element 2,2

%8 EIGENVECTOR
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Matrix Multiplication Example

58 34 31 41
AB = [76 46 53 69]

Matrix Multiplication Example

4 3 5 7
A:Lzl g 213]2 B=19 5 3 4

5 3 6 7
4x[4 3 5 7] +
5%[9 5 3 4] + [76 46 53 69
3x[6 3 6 7] =

58 34 31 41
AB = {76 46 53 69]row2



Matrix Multiplication Example

4 3 0[5 7
A:[Zg;] B=19 513 4
5 316] 7
2 5 1 31
< 3 +3e 5] vor 3] = Bl
58 34 [31] 41
AB = [76 46 69]
. S¥ EIGENVECTOR

L&\ RESEARCH INCORPORATED

Matrix Algebra Identities

T

(AB) =B’A7
(A+B)c =AC+BC=CA+CB
(AB)C =A(BC)

(A+B)T=AT+BT

B=B’ if B symmetric and square
LAy = Ayl =A,y Multiplication by

MxM ™ MxN MxN™ NxN

the identity leaves a matrix unchanged

N # ¥ EIGENVECTOR
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Multiplication in MATLAB

» A=1[251; 45 3];
»B=[4357;,9534;5367];
» A*B

ans =

58 34 31 41
76 46 53 69

PHEIGENVECTOR
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Solving Systems of Equations

consider the following system of three equations with
three unknowns: 2, + b, + b, =1
4b + b, =-2
-2b+2b, + b, =17
which could also be written:
1
=(-2
7

2 11
4 1 oflb
-2 2 1||b

#% EIGENVECTOR
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or in matrix notation:



Gaussian Elimination

Want to find values of b,, b,, and b; which make the system hold. Subtract

multiples of equations from each other to eliminate variables:

2 1 1 by 1
0 -1 -2 by | = | —4 |Eq2-2:Eq1
0 3 2 b3 8 | Eq3+Eq1
pivot - - - - - -
1 17 [ b ] [ 1]
0 -1 -2 by | = | —4
0 0 —4 by —4 |FBadviEa
From this we see b; = 1 and use back substitution to get b, =2 and b, =-1
N ¥ EIGENVECTOR
L@L7 RESEARCH INCORPORATED
Inconsistent Systems
Now suppose you have this system:
(1 3 27 [ b ] [ 1]
2 6 9 by | = | -4
|3 9 8] | b3 | | —4 |
Elementary row operations would reduce this to:
1 3 270 [ by ] (1]
0 0 5 ba = —6
00 2] [ b -7 ]
This system has no solution as Eq 2 requires that b; = -6/5, while Eq 3
requires that by = -7/2.
s #N EIGENVECTOR
L@L7 RESEARCH INCORPORATED
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Gaussian Elimination
in MATLAB

» X=[211; 410;
»y =[1; -2; 713
» b = X\y
b =

-1

2

1

-2 2 1];

FMEIGENVECTOR
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Underdetermined Systems

Suppose instead that you started with:

(1 3 2 by
2 6 9 by
3 9 8 by

Elementary row operations would reduce this to:

3 2 b1
0 5 bo
0 2 b3

S O =

Il
|
o's

—10
—4

This system has infinitely many solutions: b;=-2,and b, + 3b,=5.

PHEIGENVECTOR
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Singular Matrices and Rank

With an additional step the matrix reduces to:

1 3 2 1 3 2
2 6 9 b 0 0 5
3 9 8 0 00

This is the echelon form of the matrix. It is upper triangular and
the number of non-zero rows is the rank of the matrix. Row
reduction can be performed on any matrix — it need not be square.

rank(X) < min(m,n)

A matrix with rank = min(m,n) is said to be of full rank.
Otherwise, the matrix is rank deficient or singular.

% EIGENVECTOR
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Finding the Rank of a
Matrix in MATLAB

* Rank of a matrix is the number of independent rows
or columns (same)

* Can think of this as the number of independent
variations in the data

»X=[132;269; 39 8];

» rank(X)

ans =
2

@ EIGENVECTOR
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Singular Matrices in MATLAB

»X=1[132;2609; 309 8];
»y = [1; -8; -11;

» b = X\y
Warning: Matrix is singular to working
precision.
b =
-Inf
Inf
-2.0000
¥ EIGENVECTOR
L#\Z RESEARCH INCORPORATED
Matrix Inverse

e Matrix must be square
* Matrix must be non-singular i.e. full rank

* no row or column the same as another
* no row or column a scalar multiple of another
* no row or column all zeros
A'A=AA" =1
* Orthogonal Matrix

* In the special case of an orthogonal matrix (columns are
orthogonal and of unit length) the transpose is the inverse

P'P=1 P'=pP

@S EIGENVECTOR
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Matrix Inverse Identities

(AB)' =B'A"!
(ABC)"

[AlT]—[1]A7]
(@) -(a)

41

—C'B'A™

* Extensible to multiple matrices

Same set of transformations that
transform A to I transform I to A™!

e Known as the Gauss-Jordan method

PMEIGENVECTOR
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Gauss-Jordan in MATLAB

» format rational

»A=[211;410; -221];
» B = rref([A eye(3)D)

B =
1
0
0

» A*B(:,4:6)
ans =

1
0
0

43

]
1

0

oS

RSN S]

1/8 1/8 -1/8
-1/2 1/2 1/2
5/4 -3/4 -1/4

E-‘:i- EIGENVECTOR
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Example of Gauss-Jordan

2 11
A=(4 1 0
2 1

42

10 | -1/2 3/4 1/4
0 -1 0 | 1/2 -1/2 -1/2
0 4| -5 3 1
0 0 | 1/4 1/4 -1/4
-1 0 | 1/2 -1/2 -1/2
0 4| -5 3 1

00| 1/8 1/8 -1/8
1 0| -1/2 1/2 1/2
0 1 | 5/4 -3/4 -1/4

PMEIGENVECTOR
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Inverse Function in MATLAB

» Ainv = inv(A)
Ainv =
1/8
-1/2
5/4 -

» inv(A') - inv(A)'

ans =

0
0
0

1/8
1/2
3/4

[SESES]

-1/8
1/2
-1/4

[SESES]

zi; IGENVECTOR
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Vector Spaces and Subspaces

e Vector spaces denoted R!, R2,R3, ... R"

¢ Dimension of the space is n

e R3is the familiar three dimensional space

* R?is a planar space

* A subspace is a vector space contained within another

* A subspace of a vector space is a subset of the space
where:
» the subspace contains the zero vector
¢ the sum of any two vectors in the subspace is also in the subspace

¢ any scalar multiple of a vector in the subspace is also in the
subspace.

s %EIGENVECTOR

RESEARCH INCORPORATED

Example: R?

S:{[i;]eR2|x1>0}

Is S a subspace of R??

does not include x, axis
@ PMEIGENVECTOR

RESEARCH INCORPORATED

Example: R?

 The list of all possible subspaces of R?
¢ Any line through [0 0 0]
* Any plane through [0 0 0]
¢ The single vector [0 0 0]
¢ The whole space: R3

P EEIGENVECTOR
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Example: R?

S:{[wl]eRﬂmlzo}

T2

Is S a subspace of R??

u includes x, axis ﬁ EIGENVECTOR

RESEARCH INCORPORATED



Example: R?

X2

S:{[il}eRﬂxl:O}

Xy

Is S a subspace of R??

49

Linear Independence

X2

Vi

V2

Xy

Geometric interpretation

51

IGENVECTOR
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Linear Independence

Given a set of vectors vy, v,, ... , v, if all non-trivial combinations of
the vectors are nonzero

Vi + eV + .+ v #0 unless ¢ =c,=..=¢ =0

then the vectors are linearly independent. Otherwise, at least one of the
vectors is a linear combination of the other vectors and they are
linearly dependent.

A set of vectors W, W,, ..., W, in R" is said to span the space if every
vector v in R” can be expressed as a linear combination of w’s, i.e.

V=W, + W, + ... + ¢ W, for some ¢;.

Note that for the set of w’ s to span R” then k=n.

¥ EIGENVECTOR
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Linear Independence

X2

Vi

V2

X

E‘"ﬁ; IGENVECTOR
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Basis Sets

* A basis for a vector space is a set of vectors that
are linearly independent and span the space.

¢ The number of vectors in the basis must be equal to the
dimension of the space.

* Any vector in the space can be specified as one and
only one combination of the basis vectors.

* Any linearly independent set of vectors can be extended
to a basis by adding (linearly independent) vectors so
that the set spans the space.

* Any spanning set of vectors can be reduced to a basis
by eliminating linearly dependent vectors.

5 P ¥ EIGENVECTOR
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Example
R3

Linearly
Independent Set
Spanning

Basis
Set /
Set

s # ¥ EIGENVECTOR
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Basis, Spanning, and Linearly
Independent Sets

Spanning Linearly
Sets Independent Sets

#S)>n #S)<n

dim(V)=n

w P EIGENVECTOR
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Orthogonal and Orthonormal Bases

¢ Orthonormal basis, v,, v, ... v, has property
* Vectors are orthogonal if their inner product is O

¢ Orthonormal if they are both orthogonal and unit length, i.e. inner
product with themselves is 1

r {Ofori;:j

V,V, =
P 1fori=j

¢ Project y onto X with orthonormal columns, so XTX =1
P = X(XTX)'XT = XXT
* Square matrix with orthonormal columns is called an
orthogonal matrix

5 P EIGENVECTOR
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Orthogonal Matrix Properties

* For an orthogonal matrix Q (orthonormal columns)

Q'Q=1
QQ' =1
Q'=Q"

¢ Q will also have orthonormal rows!

- E":!'EIGENVECTOR
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Null Spaces

* The nullspace of A, Q\f(A), is of dimension n - r.
“N(A) is the space of R” not spanned by the rows
of A.

o Likewise, the nullspace of AT, N(AT), (also
known as the left nullspace of A) has dimension m
- r, and is the space of R” not spanned by the
columns of A.

* The nullspace of A consists of all solutions to
Ax=0

59 # % EIGENVECTOR
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Row Spaces and Column Spaces

e For matrix A, of rank r, reduced echelon form U

* Row space is the space spanned by rows of A
¢ All linear combinations of the rows of A

¢ Dimension of the row space, R(AT), equals r
* Rows of U form basis for row space of A
e Column space is the space spanned by columns of A
¢ All linear combinations of the columns of A
¢ Dimension of the column space, R(A), also equals r
* Columns of U (with non-zero pivots) form basis for
column space of A

¢ Row rank = column rank!

mxn

FMEIGENVECTOR
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Orthogonality of Subspaces

* Vectors, v, w, orthogonal if inner product zero

* Subspaces V and W are orthogonal if every vector vin V
is orthogonal to every vector w in W

e Thus, for A

* “right” nullspace N(A) and the row space R(AT) are orthogonal
subspaces of R".

mxn

¢ left nullspace N(AT) and the column space ‘R(A) are orthogonal
subspaces of R™.
* The orthogonal complement of a subspace V of R" is the
space of all vectors orthogonal to V and is denoted V+
(pronounced V perp).

;'ji IGENVECTOR
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Important Point

 If V is a subspace of R”, then V1 is also a
subspace of R”

e GivenZ € R"
=0T+ wWwhereve V&wec VT

Proj(Z¥) = ¢ Proj(¥) = w
A\

6 E":!'EIGENVECTOR

A2 RESEARCH INCORPORATED

Derivation of Projection

* Finding p is straightforward given that
e p must be a scalar multiple of X, i.e. p = bx
« the line connecting y to p must be perpendicular to x
T

X'y
x'x

x (y-bx)=0—>x"y=bx"x—>b=

* Also works to project point y on subspace X, provided that
X is of rank r = n, i.e. XTX is invertible.

#% EIGENVECTOR
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Projections onto Lines

* Projections of points onto lines (also planes and subspaces)
very important in chemometrics!

* Projections involve the inner product:

x'y if lIxll = 1 then b = xTy
b= —"
xTx and p =bx
y
X
p

The projection of the vector y onto the vector x

¥ EIGENVECTOR
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Least Squares

* Consider single variable case with more than 1
equation
* Want to minimize e"e = lIxb - ylI?
e e2=¢Te=(xb-y)T(xb-y) =x"xb?- 2xTyb + yTy
 Take derivative of e? wrt b and set to zero

2 T
di_ Top oyl — _Xy
X' X

* Same solution as projection problem

;'jg IGENVECTOR
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Multivariate Least Squares Projection Matrices

Consider Xb =y with X, m>n * For problem Xb =y, projection of y onto columns
Require Xb - y be perpendicular to column space of X of X, p was:
So, each vector in X must be perpendicular to Xb - y p = X(X™X)'XTy, p =Py

Each vector in column space X expressible as Xc¢ . Lo . .
e Pis a projection matrix, and is

e Idempotent,ie. PP=P2=P

o Symmetric,i.e. PT=P

Thus, for all choice of c:
s (XO)T(Xb-y)=0, or ¢"[X"Xb-XTy]=0
* thus, XTXb = X"y so b = (XTX) !XTy

b is often called the regression vector

FHEIGENVECTOR w FMEIGENVECTOR

II
JRESEARCH INCORPORATED L&\ RESEARCH INCORPORATED

Projection of y onto X;
orthogonality of residuals

1 1 6
12 6 » p = X*b
X= y= p= » X'*d
2 1 7 5
2 2 11 7 ans =
8
» X =[11;12;21; » b= X\y 10 1.0e-14 *
2 21;
', b= - v- -0.9770
»y=1[66711]1"; » d=y-p
2 B ey 5.0000 > ¢ 09770
b - 1
3.0000 -1
2.0000 -1
1
~
#3 EIGENVECTOR 6 # ¥ EIGENVECTOR
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Least Squares Summary

e When m>n the system of equations Xb =y is
overdetermined and the method of least squares can be
used to determine b

b = (XTX) ' XTy
e XTX is square (nxn) but the inverse won’ t exist if it’ s not
full rank (i.e. if rank(X) < n)

e What if it’ s nearly rank deficient?...

6 ?:i' EIGENVECTOR
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MATLAB - Similar Example

» X=1[12; 24; 36; 48.0001]; y

[2468]";b=Xy

b
2
0
» X =[12;24;36; 48.0001]; y - [2 4 6.0001 8]'; b = X\y
b =
3.7143
-0.8571
» X =[12;24;36; 48.0001]; y = [245.9999 8]'; b = X\y
b =
0.2857
0.8571
[~ | ]
7 @ EIGENVECTOR
E#L7 RESEARCH INCORPORATED

70

72

lll-conditioned Matrices

* Consider two systems of equations with X nearly rank
deficient and differing by only a small amount (as might be
expected from data with noise)

12 2
2 4 4 3.71
X=1355% Y= 1 6.0001 => b= [—0.86]
4 8.0001 | 8
12 2
2 4 4 0.29
X=135% Y271 5.9999 => b= [0.86}
| 4 8.0001 | |8

* Small changes in y (and/or X) can have a significant impact
on regression results for nearly rank deficient systems

* A problem for some regression approaches and an

opportunity for others! =;== ElGENVECTOR
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Pseudoinverses

* How to solve Xb =y if XTX singular?
* Introduce pseudoinverse, X+
* Many solutions, which to choose?
* One that minimizes length of b, IIbll
* Require that b lie in the row space of X
* Xb equals projection of y into the column space of X

* b lies in the row space of X.

* Must find a way to estimate X*

;'jg IGENVECTOR
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Singular Value Decomposition

* Any m by n matrix X can be factored into
X =USVT
U orthogonal and m by m
V orthogonal and n by n
S diagonal and m by n

* Non-zero elements of S are singular values and
decrease from upper left to lower right

7 ?:i' EIGENVECTOR
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Verify SVD

» U*S*y!'

ans =
1.0000 2.0000 3.0000
2.0000 3.0000 5.0000
3.0000 5.0000 8.0000
4.0000 8.0000 12.0000

* Note that last singular value (the last diagonal element of
S) appears to be zero!

#% EIGENVECTOR
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Example SVD

»X=1[123;235;358; 48 12];
» [U,S,V] = svd(X)

U=
1935 0.1403 -0.9670 0.0885
3184  -0.6426 0.0341 0.6961
5119 -0.5022 -0.0341 -0.6961
7740 0.5614 0.2503 0.1519

o oo o

19.3318 0 0

0 0.5301 0 1 2 3
0 0
0 0 0 2 3 5
X =
v= 35
0.2825 -0.7661 0.5774
0.5221  0.6277  0.5774 4 8 12
0.8047 -0.1383 -0.5774
(A ]
5 ¥ EIGENVECTOR
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Formation of the Pseudoinverse

* Recall inverse of a product is product of inverses
in reverse order, thus

X+ =VS+UT
* Remember, U and V are orthogonal!
e ..e.g.,so that U-'l=UT
e How to form S*?
¢ rank(X) =rank(S) and is the number of non-zero
elements in S, rank(X) = r

¢ Truncate the matrices to r columns

e Same as setting elements in S* to zero that correspond to zero
elements in S

EIGENVECTOR
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Reconstruction with two Pseudoinverse Calculation

Factors
» Xinv = V(:,1:2)*inv(S(1:2,1:2))*U(:,1:2)"
» UC:,1:2)*S(1:2,1:2)*V(:,1:2)"
Xinv =
ans = -0.2000  ©0.9333  0.7333  -0.8000
0.1714 -0.7524 -0.5810  ©0.6857
10000 2.0000  3.0000 -0.0286  0.1810  0.1524 -0.1143
2.0000 3.0000  5.0000 '
3.0000 5.0000  8.0000 B o.omi  o.ese » pinv(X)
4.0000 8.0000 12.0000 e oor I “”5_;.2900 0.9333  ©0.7333  -0.8000
g o 0.1714 -0.7524 -0.5810  ©0.6857
Z a u.oau§ -0.0286  ©.1810  0.1524 -0.1143

71

0.2825  -0.7661 0.5774
0.5221 0.6277 0.5774
0.8047  -0.1383| -0.5774

PN EIGENVECTOR
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Return to lll-Conditioned Example

2
|2 ¢
36
4 80001
2
4
=16
8

79

» X =1[12;24; 36; 48.0001]; y=1[2468]";
» [U,S,V] = SVd(X)
» Xinv = V(:,D*inv(S(1,1))*U(:,1)"

Xinv =
0.0067 0.0133 0.0200 0.0267
0.0133 0.0267 0.0400 0.0533

» b = Xinv*y
b =
0.4000
0.8000

?-ll

EEIGENVECTOR
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The Solution is no Longer
Sensitive to Minor Changes

»y =[245.999 8]';

» b = Xinv*y
b = Inverse has been stabilized!
0.4000
0.8000
»y=1[246.0001 8]";
» b = Xinv*y
b =
0.4000
0.8000
#% EIGENVECTOR
L&\ RESEARCH INCORPORATED
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Higher Order Tensors

Arrays can be extended beyond conventional
tables, e.g. to 3-D arrays

Third, fourth, fifth... order tensors

Usually denoted by bold upper case with
underline, e.g. A

Collection of samples from GC-MS, or multiple
batch runs

@Y EIGENVECTOR
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Summary

Basic vector and matrix operations
¢ addition and subtraction
¢ multiplication
¢ vector inner and outer products
Matrix rank
* number of independent rows or columns (same)
¢ rank < min(m,n) [number of rows and columns]
¢ found by reducing to echelon form
Matrix inverses
 exist only for square matrices
¢ do not exist for rank deficient matrices
Least squares
* used to solve inconsistent systems
¢ solution unstable in nearly collinear systems

Singular Value Decomposition and Pseudoinverses

@Y EIGENVECTOR
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Algebra of Higher Order Tensors

* Higher order tensors are a natural way to store
multiway data
« analytical devices that produce a matrix per sample
* batch process data

* Addition and scalar multiplication as expected
* Multiplication of tensors

¢ definitions not universally accepted

* need to be clear about the mathematical objective
¢ kronecker, hadamard, ...
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