Remote Raman technology for in-situ identification of nuclear tank waste

Proudly Operated by Battelle Since 1965

Amanda M. Lines, Tatiana G. Levitskaia, Frances N. Smith, Job M. Bello, Samuel A. Bryan

Introduction

- ➤ Hanford tank waste remediation is a focus of environmental clean-up efforts.
- ➤ Liquid wastes can be identified and removed from tanks, but solid wastes settled at the bottom of tanks (salt cakes) are difficult to identify and therefore difficult to remove.
- ➤ Safe, fast, and effective methods for identifying residual phases are needed.
- ➤ Novel long distance Raman spectroscopy, in which a laser beam is focused on samples at variable distances up to 50 ft away from the Raman probe can provide the remote and effective analysis needed in the tanks
- In conjunction with chemometric analysis this technique can be used to identify and quantify Raman-active compounds in the solid wastes.

http://www.brookings.edu/about/projects/archive/nucweapons/tanl

Telescopic Raman schematic

Library building of candidate tank waste compounds

- The list of possible tank waste species includes a substantial number of Raman active molecules
- Figure shows spectra of the seven salts chosen for testing probe response and modeling capabilities

 Collected at 30'
- ➤Top: full spectra
- ➤ Bottom: zoomed in to show majority of fingerprint region
- ➤ Bands not only show overlap but wide variety in Raman response, e.g. intensities of NO₃⁻ and PO₄³⁻ peaks

Laboratory testing of telescopic probe: variables to consider in building models

- **➤** Variation of component weight fraction
- Samples were prepared to cover a large range of component weight fractions and compositions in pure to two-phase mixtures
- ➤ Right: spectra from several samples containing varying weight fractions of NaNO₃ and Na₂CO₃ at a constant distance
- ➤ Variation of sample distance from telescopic Raman probe
- Samples were measured at three distances from the Raman probe: 15', 30', and 50'
- ➤ Shown here is a 55:45 weight ratio of Na₂CrO₄:Na₂SO₄ collected at all three distances

Chemometric modeling: The plan and points to consider

- ➤ Step 1: build PLS models using data collected at the different distances
- >Step 2: build a model that is independent of distance
- ➤ Data presents a number of interesting factors that are useful to know when building a model:
 - \triangleright Salts demonstrate a variety of Raman sensitivities with NO₃⁻ being the most sensitive while Al(OH)₄²⁻ and PO₄³⁻ are the least sensitive
 - \triangleright Salts also demonstrate variety in number of peaks ranging from one peak in the case of PO_4^{3-} to at least 5 major peaks in the case of CrO_4^{2-}
 - > Fluorescence backgrounds also range for the samples, making background correction necessary

First steps: Using PLS modeling to build distance dependent models

- X block data consisted of 420 rows of Raman spectra (70 samples, 6 collections per sample)
 Spectra were preprocessed using 1st derivative and mean center functions
- ➤Y block data consisted of corresponding weight fraction values of salts in the sample➤ Values were preprocessed using the mean center function
- ➤ Venetian blinds cross validation was used with a split of 10
- ➤ Wavelength range was limited to 200 to 2000 cm⁻¹

First steps: Using PLS modeling to build distance dependent models

- ➤ Even without significant amounts of optimization of preprocessing and modeling parameters, models created from data collected at all three distances are reasonable
- As expected, the best fitting models are obtained at 15'

Next steps: Using PLS modeling to build a distance independent model

- > Determining appropriate normalization methods makes this difficult
- ➤ Current work suggests normalizing to area=1 is not appropriate but there is not a consistent feature that could be normalized to 1as an alternative
- ➤ This is due to the wide variety of peaks present in the many mixtures
 ➤ Shown below is the 15' model for Na₂CrO₄ (shown above) predicting on
 data collected at 30' (left) and the results after adding normalization to the
 preprocessing (right)
- ➤ Modeling options will continue to be explored

