

#### Introduction to Multivariate Image Analysis (MIA)

©Copyright 1996-2013
Eigenvector Research, Inc.
No part of this material may be
photocopied or reproduced in any form
without prior written consent from
Eigenvector Research, Inc.



#### **Table of Contents**

- Intro to 3-way arrays and simple visualizations and size/shape analyses
- Practical Multivariate Image Analysis (MIA)
  - PCA, SIMCA, PLSDA and clustering
- Variance Filtering for Images:
  - Maximum Autocorrelation Factors, Maximum Difference Factors, Generalized Least Squares Weighting (MAF, MDF, GLSW)
- Multivariate Image Regression and Quantiative Analyses
  - Partial Least Squares, Classical Least Squares and Multivariate Curve Resolution Models (PLS, CLS, MLR)



#### Resources

- Hyperspectral Image Analysis, eds. P. Geladi and H. Grahn, Wiley (2007), ISBN 978-0-470-01086-0
- Chemometrics, M.A. Sharaf, D.L. Illman and B.R. Kowalski, Wiley-Interscience (1986) ISBN 0-471-83106-9
- Multivariate Analysis, K.V. Mardia, J.I. Kent and J.M. Bibby, Academic Press, (1979) ISBN 0-12-471252-2
- Multivariate Calibration, H. Martens and T. Næs, John Wiley & Sons Ltd. (1989) ISBN 0-471-90979-3
- Chemometrics: a textbook, D.L. Massart et al., Elsevier (1988) ISBN 0-444-42660-4
- Chemometrics: A Practical Guide, K.R. Beebe, R.J. Pell, M.B. Seasholtz, Wiley (1998) ISBN 0-471-12451-6
- Multivariate Data Analysis In Practice, Kim H. Esbensen, CAMO ASA (2000), ISBN 82-993330-2-4
- A user-friendly guide to Multivariate Calibration and Classification, T. Næs, T. Isaksson, T. Fearn, T. Davies, NIR Publications(2002), ISBN 0-9528666-2-5
- · Journal of Chemometrics
- IEEE Trans. on Geosci. and Remote Sensing
- Chemometrics and Intelligent Laboratory Systems
- · Analytical Chemistry
- Analytica Chemica Acta
- · Applied Spectroscopy
- · Critical Reviews in Analytical Chemistry
- Journal of Process Control
- Computers in Chemical Engineering
- Technometrics

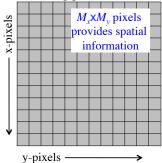
...



3

### Univariate Image

- Grey scale
  - each pixel is an number defining an intensity level e.g.,
    - integer (0 to 255) unsigned 8-bit
    - integer (0 to 4095)
    - double (floating point)

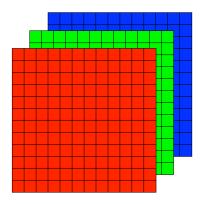






# Multivariate Image (3 Variables)

- Red/Green/Blue (RGB) (e.g. JPEG)
  - each layer defines color intensity level
  - much more information-rich







5

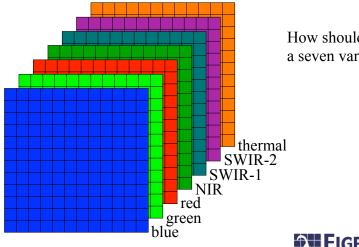
### **Image Analysis**

- Many methods have been developed to examine the spatial structure w/in an image
  - the methods recognize spatial patterns within an image
    - based on the light / dark contrast and continuity of regions
  - edge detection, image sharpening, wavelets
  - particle size distributions, machine vision, medical applications, security, ...
- MIA has been traditionally applied to the spectral dimension first followed by spatial analysis
  - some methods that examine both are appearing



# Multivariate Image (4-10 Variables)

• Measure at several wavelengths (e.g., Landstat)



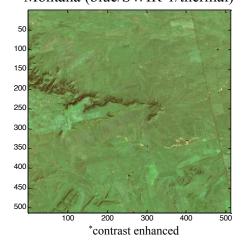
How should we display a seven variable image?

EIGENVECTOR RESEARCH INCORPORATED

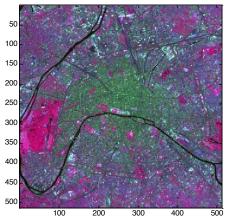
7

# Multivariate Image (4-10 Variables)

• Choose 3 of 7 (Landstat) Montana (blue/SWIR-1/thermal)



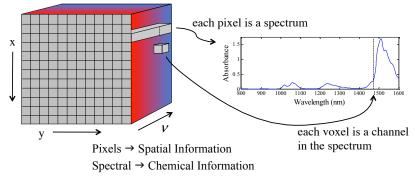
Paris (NIR/blue/SWIR-1)\*



EIGENVECTOR RESEARCH INCORPORATED

# Hyperspectral Image (>10 Variables)

- Spectrum at each pixel
  - could be 100-1000s of variables
  - often floating point double 10-100s Mbytes





### Multivariate Images

- Data array of *dimension three* (or more)
  - where the first two dimensions are *spatial* and
  - the last dimension(s) is a function of another variable (e.g, spectroscopy).
- Chemical system(s) of interest include
  - microscopic, medical, machine vision, process monitoring crystallization, stand-off and remote sensing, ...
  - vapors, liquids, solids (or combination)
  - visible, infra-red, Raman, mass spectroscopy, ...

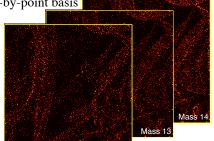


10

9

### **Physics of Measurement**

- Point scanning
  - spectra measured on a point-by-point basis
  - secondary-ion mass spec
  - atomic force microscopy
  - surface Raman
- Line scanning
  - push broom
- Focal plane array
  - images can be acquired very quickly

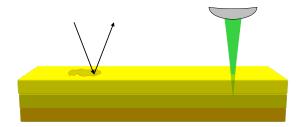




11

#### Volumetric Analysis Techniques

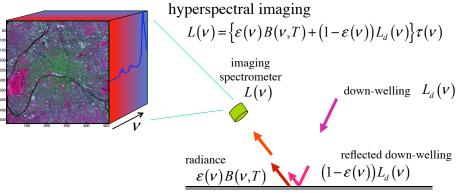
- Confocal Wavelength Resolved Imaging
- Surface Ablation Techniques
- Produces multivariate data in 3-dimensional space





### Standoff and Remote Sensing

 Detection of residues on, and under, surfaces at standoff distances using hyperspectral imaging



EIGENVECTOR RESEARCH INCORPORATED

13

## Simple Image Analysis Tools

- TrendTool Univariate Data Investigation
  - Analyze multivariate data using simple univariate measurements
- Image Manager Data Manipulation and Analysis
  - Concatenating / Manipulating (e.g. rotation) Images
  - Particle Analysis
- Image Exploration Tools
  - Cross-section, Drill, and Magnification
- Preprocessing



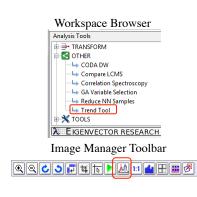
#### **TrendTool**

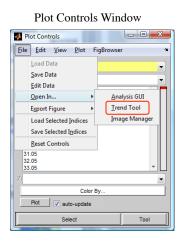
- Display results of univariate calculations on multivariate data
  - Signal at given variable
  - Integrated signal across range of variables
  - · Peak position
  - · Peak width
- With or without baselines
- Ratio of measurements



15

## **Opening TrendTool**







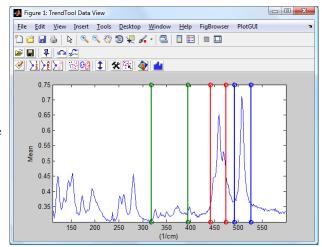
#### TrendTool Windows: Data View

#### Use Data View to:

- Set analysis markers
- Choose analysis mode
- Select references and baseline points

#### Hints:

- Right-click white space to set marker or use toolbar button
- Drag markers to move
- Right-click markers to change types
- Use toolbar to save or load marker sets





17

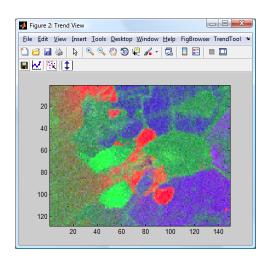
#### TrendTool Windows: Trend View

Results displayed in Trend View

- Single marker displays with false-color
- Multiple markers display in RGB

#### **Toolbar Buttons:**

- 1 autoscale image
- select pixels to display in Data View
- save or spawn plot of results (respectively)





#### TrendTool Analysis Modes

- **Height** gives response at position (single marker)
- **Area** gives integrated response between markers
- **Position** gives position of peak response between markers
- Width gives full width at half height between markers
- "Add Reference" to subtract a single point baseline. Convert reference to baseline (via right-click) to do two-point linear baseline.
- "Normalize to Region" to normalize all regions to the response of the selected region.



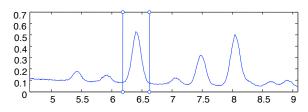
19

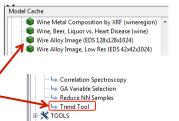
### TrendTool Example

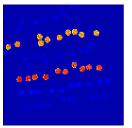
Example: "wires" dataset

Energy Dispersive X-Ray Spectroscopy (EDS) Image of wires composed of different alloys.

- •Workspace Browser: Model Cache > Demo Data
- •Drag "Wire Alloy Image" to TrendTool in Other Analysis Tools
- •Use TrendTool to look at various peaks (right-click peak to change to peak type)







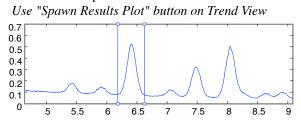
**λ** EIGENVECTOR RESEARCH

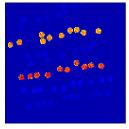


## Image Exploration

- Cross-section Tool Transect of spatial dimension
- Drill Tool Profile through variables of image
- Magnification Tool Enhance spatial visibility

**Example:** "wires" dataset using TrendTool to look at one or more peaks...



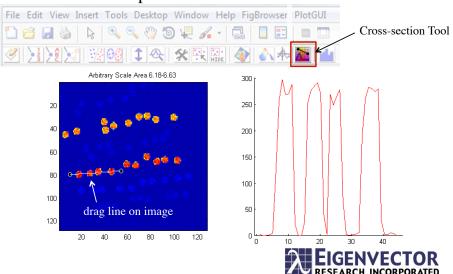


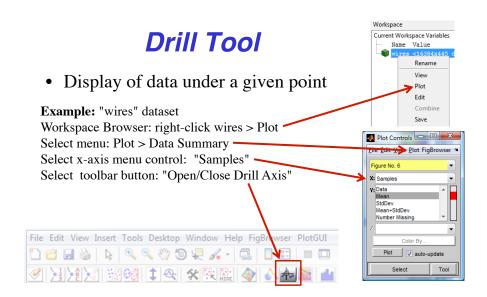
EIGENVECTOR RESEARCH INCORPORATED

21

#### **Cross-Section Tool**

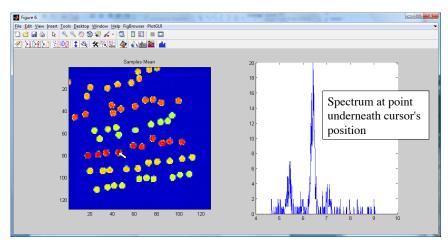
• Transect of spatial dimensions







#### **Drill Tool**

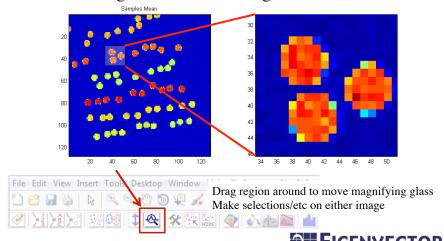


Double-click to view multiple spectra



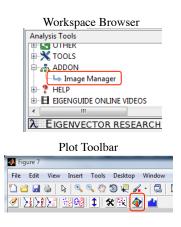
## **Magnification Tool**

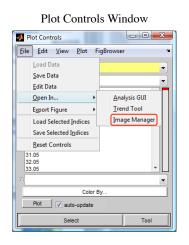
• Show magnified view of image



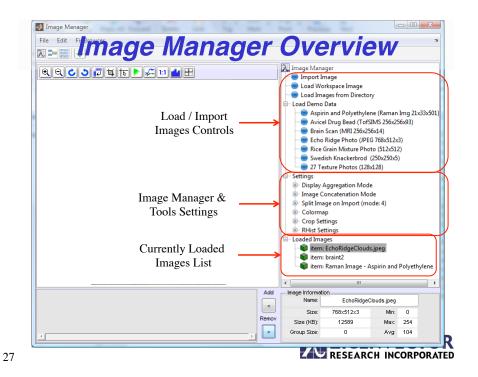
25

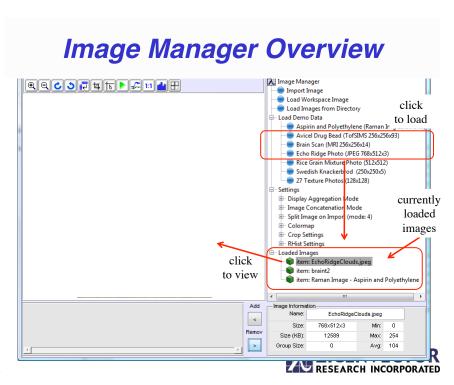
# Opening Image Manager











### Image Groups

Grouping allows you to:

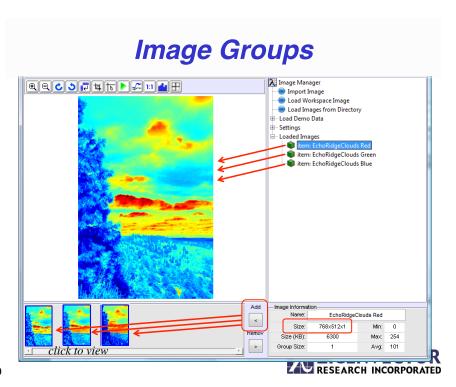
- Combine images into a single DataSet for analysis
- Apply a univariate operation (rotate, crop, etc) to all images



Example: combining three slabs of RGB image

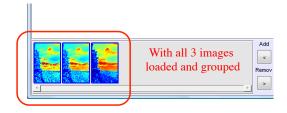


29



## **Concatenating Images**

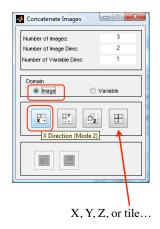


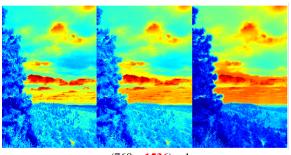




#### 31

# Concatenating Images: Spatial Domain

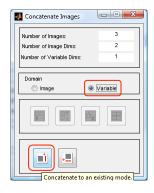




(768 x **1536**) x 1



# Concatenating Images: Variable Domain



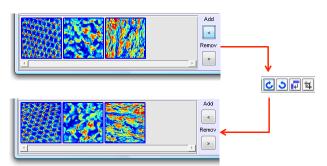


(768 x 512) x 3



#### 33

# Group Manipulation Example: Rotation





Hint: to apply an action to only ONE image, click the "Apply Changes to Image Group" button until only one thumbnail is outlined in the image group pane.



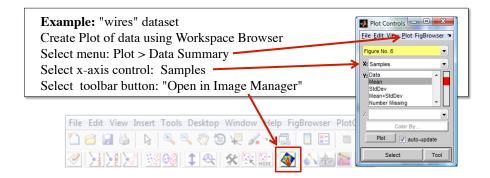
### Particle Analysis

- Identify isolated regions (particles) in an image and give statistics on individual particles.
- Screen out particles and/or background.
- Create models based on particle statistics.
  - Particle outlier models (e.g. identify unusual particles)
  - Inferential models (e.g. drug activity based on particle statistics)
- Based on long-established ImageJ platform.



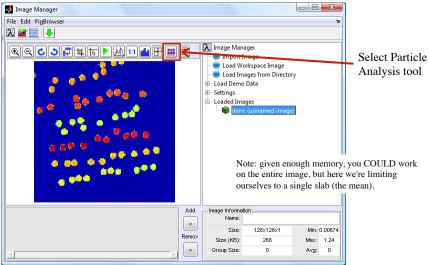
35

### Particle Analysis Example

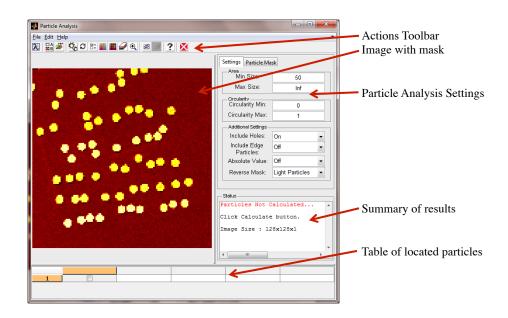




# Particle Analysis Example



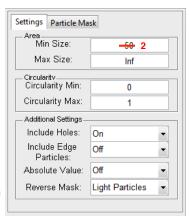






#### Particle Analysis Settings

- Area Min/Max: Ignore particles with area outside this range.
- Circularity Min/Max: Ignore particles outside this range.
- Include Holes: On = Include centers of particles even if below threshold.
- **Include Edge Particles:** On = Include particles which touch the edge of the image.
- **Absolute Value:** On = Consider positive and negative deviation from zero as "on" when making mask.
- Reverse Mask: Light Particles = Low signal is considered "off" (dark = not particle). Dark Particles = Low signal is considered "on" ("dark image" mode).



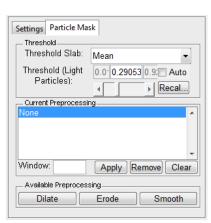


39

#### Particle Mask Settings

Adjusts which pixels are considered particles

- •Threshold Slab: For multi-slab images, which image slab is used to mask.
- •Threshold: Signal level separating particles from background (slider adjusts or "Auto" checkbox does automatic threshold detection.)
- •Preprocessing: Allows various operations on the binary image mask:
  - Dilate: Decrease mask around unmasked regions
  - Erode: Increase mask around unmasked regions.
  - Smooth: Smooth out noise in mask.





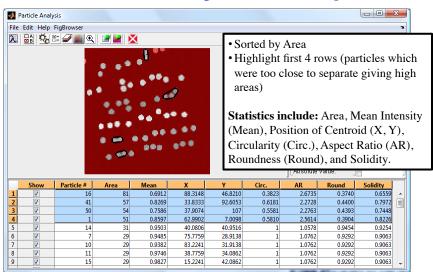
#### Particle Analysis Example

- On "settings" tab, set Min Size to "2"
- On "Particle Mask" tab, set threshold to "0.4"
- Click "Recalc" button (next to threshold)
- Use Background Color and Grayscale settings to adjust display.
- Select row of table to highlight corresponding particle.
- Select particle in image to highlight corresponding row of table.
- Sort by column using right-click menu.
- Use Export toolbar buttons to send table or image to Analysis.



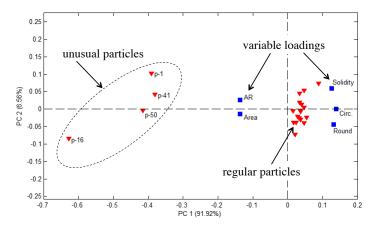
41

#### Particle Analysis Example





# PCA of Particle Statistics Biplot of PCs 1 and 2

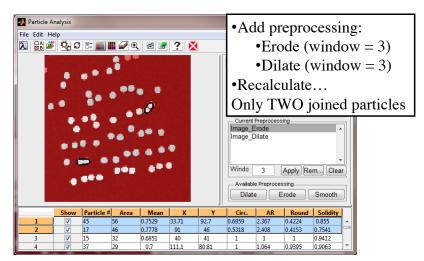


Autoscaled PCA model with mean intensity (Mean) and centroid (X, Y) variables excluded



#### 43

# **Using Preprocessing**





### Image-Oriented Preprocessing

- Image-specific preprocessing operates in pixel-space and are either Intensity or Binary based
- Intensity-Based Image Correction:
  - Background Subtraction (Flatfield): Rolling-ball background subtraction for images.
  - *Min*: Min value over neighboring pixels. (filter out high-value pixels)
  - Max: Max value over neighboring pixels. (filter out low-value pixels)
  - Mean: Mean value over neighboring pixels. (filter out low/high pixels)
  - *Median*: Median value over neighboring pixels. (robust filter of low/high pixels)
  - Trimmed Mean: Trimmed mean value over neighboring pixels.
  - Trimmed Median: Trimmed median value over neighboring pixels.
  - Smooth: Spatial smoothing for images. (a weighted mean)



45

### Image-Oriented Preprocessing

- Binary-Based Image Correction
  - Dilate: Perform dilation on a binary image.
  - Erode: Perform erosion on a binary image.
  - *Close (Dilate+Erode)*: Perform dilation followed by erosion on a binary image.
  - *Open (Erode+Dilate)*: Perform erosion followed by dilation on a binary image.
- NOTE: Image-Oriented methods may break covariance (add multivariate rank) because variable slabs handled separately
- Standard variable-space preprocessing can be used too, but are spatially insensitive



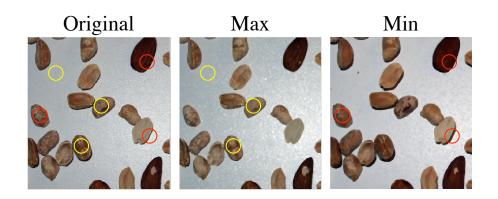
# Background Subtraction (Flat-field)





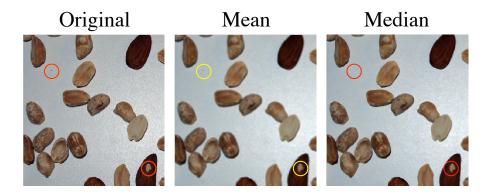
#### 47

# Max & Min Preprocessing





#### Mean & Median Preprocessing





49

# Displaying a Multivariate Image (4-10 Variables)

- How to choose the 3 variables?
  - In which order should they be displayed?
- Doesn't choosing ignore potential information in the remaining variables?
- How could information be extract from the image?
- What happens when we go to more variables? ...
- .... Factor-based techniques
  - use the correlation structure to enhance S/N
  - really good for hyperspectral



#### MIA: PCA-Based Methods

- Many methods are based on the spectroscopic information in an image
  - although spatial information is ignored mathematically
  - images are examined for spatial structure
- PCA (Principal Components Analysis)
  - Exploratory analysis
- SIMCA (Soft Independent Method Class Analogy)
  - Classification



51

#### Image PCA

- Matricizing
- PCA: scores, scores images, loadings
  - ullet unusual samples Q and  $T^2$
  - score-score plots, density plots
  - linking scores and image plane(s)
  - contrast enhancement



#### **PCA Math Summary**

• For a data matrix **X** with *M* samples and *N* variables (generally assumed to be mean centered and properly scaled), the PCA decomposition is

$$\mathbf{X} = \mathbf{t}_1 \mathbf{p}_1^T + \mathbf{t}_2 \mathbf{p}_2^T + \mathbf{K} + \mathbf{t}_K \mathbf{p}_K^T + \mathbf{K} + \mathbf{t}_R \mathbf{p}_R^T$$

Where  $R \boxtimes \min\{M,N\}$ , and the  $t_k p_k^T$  pairs are ordered by the amount of variance captured.

• Generally, the model is truncated to *K* PCs, leaving some small amount of variance in a residual matrix **E**:

$$\mathbf{X} = \mathbf{t}_1 \mathbf{p}_1^T + \mathbf{t}_2 \mathbf{p}_2^T + \mathbf{K} + \mathbf{t}_K \mathbf{p}_K^T + \mathbf{E} = \mathbf{T} \mathbf{P}^T + \mathbf{E}$$

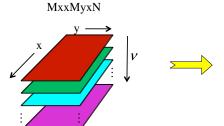
• where **T** is  $M \times K$  and **P** is  $N \times K$ .

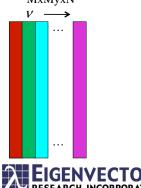


53

## Matricizing (a.k.a. Unfolding)

- PCA works on X (MxN) but the image is MxxMyxN





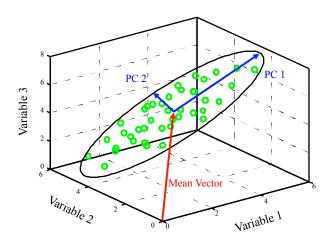
## **Properties of PCA**

- $\mathbf{t}_k, \mathbf{p}_k$  ordered by amount of *variance captured* 
  - $\lambda_k$  are the eigenvalues of  $\mathbf{X}^T\mathbf{X} \to \mathbf{X}^T\mathbf{X}\mathbf{p}_k = \lambda_k \mathbf{p}_k$
  - $\lambda_k$  are  $\propto$  variance captured
- $\mathbf{t}_k$  (scores) form an orthogonal set  $\mathbf{T}_K$  (MxK)
  - describe relationship between samples  $\rightarrow$  pixels  $(M = M_x M_y)$
- $\mathbf{p}_k$  (*loadings*) form an orthonormal set  $\mathbf{P}_K$  (NxK)
  - describe relationship between variables



55

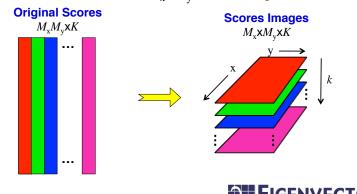
# **PCA Graphically**





#### Reshape Scores To Images

- PCA gives scores T (MxK) which is reshaped to scores images (M<sub>x</sub>xM<sub>v</sub>xK)
  - each score vector is a  $M_x \times M_y$  scores image



57

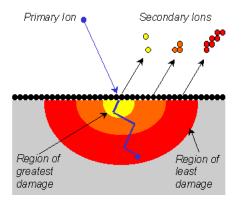
## Plots / Images for PCA

- scores and loadings plots are interpreted in pairs
  - plot  $\mathbf{t}_k$  vs sample number
    - find relationship between *samples* → *pixels*
    - each M<sub>x</sub>M<sub>y</sub>x1 score vector is reshaped to a M<sub>x</sub>xM<sub>y</sub> matrix that can be visualized as a "scores image" showing spatial relationships between pixels
  - $\mathbf{p}_k$  vs variable number
    - relationship between *variables* responsible for observations in samples
- it is useful to plot  $\mathbf{t}_{k+1}$  vs.  $\mathbf{t}_k$  and  $\mathbf{p}_{k+1}$  vs.  $\mathbf{p}_k$ 
  - examine image and score / score plots



# TOF-SIMS of PMMA and Deuterated Polystyrene

- Time of flight secondary ion mass spectroscopy used for surface analysis
- Mass spectrum for each pixel
- Thanks to Physical Electronics for the data





59

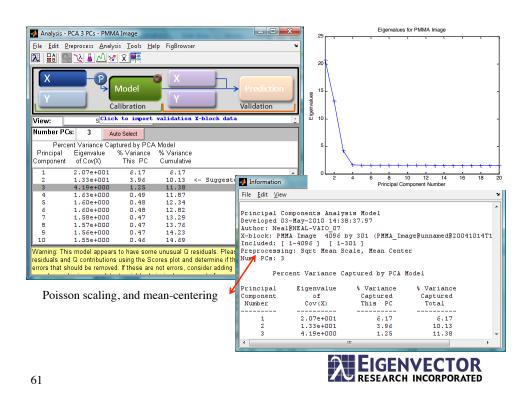
### **Example Data**

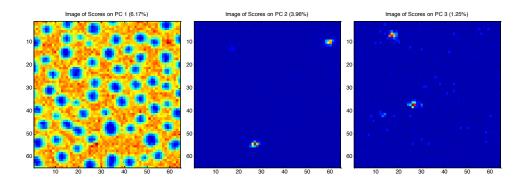
• Data is positive SIMS spectrum at each pixel (point) on a 64x64 grid

Variance is expected to follow a Poisson distribution such that the variance is equal to the mean of the data.

Wariable M.R. Keenan, "Multivariate Analysis of Spectral Images Composed of Count Data," in *Techniques and Applications of Hyperspectral Image Analysis*, H. F. Grahn and P. Geladi, eds. (John Wiley & Sons, West Sussex, England), 89-126, 2007.







Scores images show islands of polystyrene in PMMA and two sources of unusual variance



#### **PCA Statistics**

- Limits can be set for
  - Q residual: lack of fit statistic
    - for a row of  $\mathbf{E}$ ,  $\mathbf{e}_m$ , and a row of  $\mathbf{X}$ ,  $\mathbf{x}_m$ , m = 1, ..., M

$$Q_m = \mathbf{e}_m \mathbf{e}_m^T = \mathbf{x}_m (\mathbf{I} - \mathbf{P}_K \mathbf{P}_K^T) \mathbf{x}_m^T$$

- Hotelling's T<sup>2</sup> statistic
  - for a row of  $\mathbf{T}_K$ ,  $\mathbf{t}_m$ , and  $K \times K$  diagonal matrix  $\blacksquare$

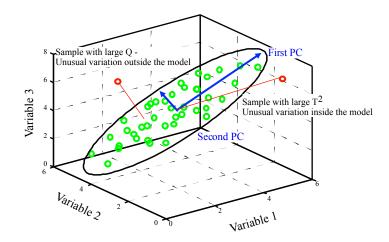
$$\mathbf{T}_{m}^{2} = \mathbf{t}_{m} \boldsymbol{\lambda}^{-1} \mathbf{t}_{m}^{T} = \mathbf{x}_{m} \mathbf{P}_{K} \boldsymbol{\lambda}^{-1} \mathbf{P}_{K}^{T} \mathbf{x}_{m}^{T}$$

- and also for individual columns:
  - scores,  $\mathbf{t}_{mk}$
  - residuals  $\mathbf{e}_{mk}$

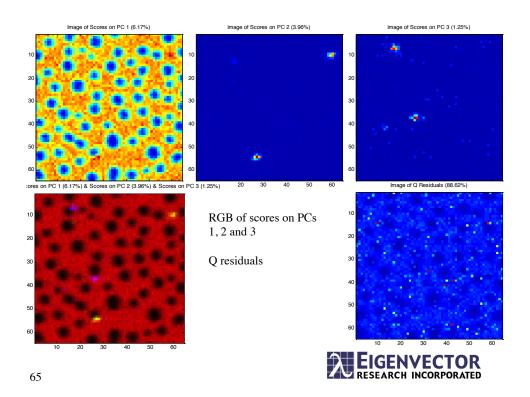


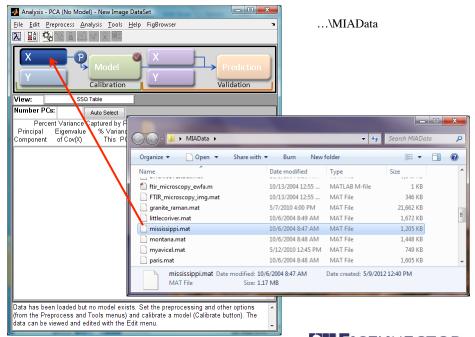
63

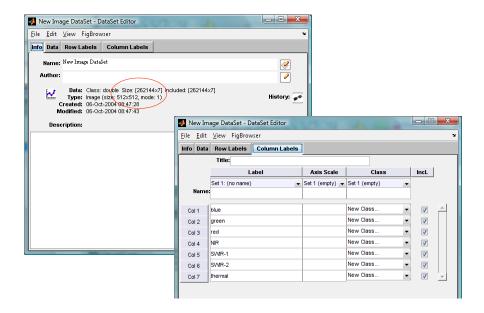
### Geometry of Q and T<sup>2</sup>



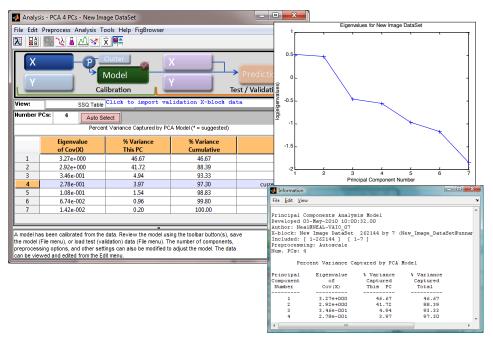


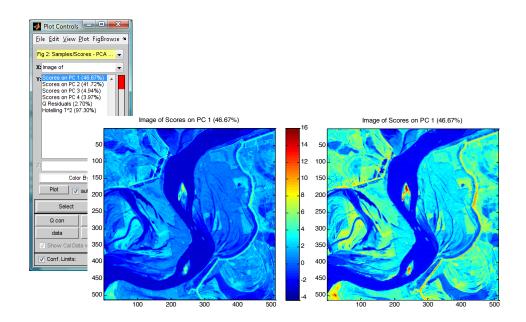








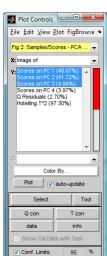




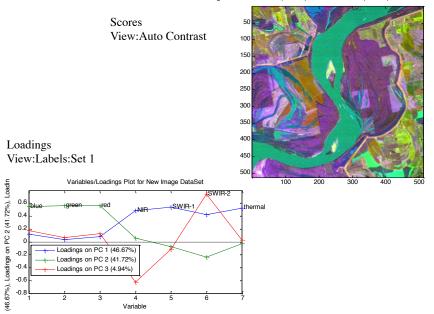


# **Creating Color Images**

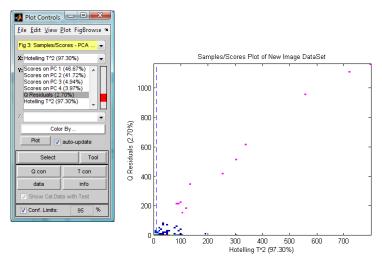
- Images are made of three colors: red, green and blue
  - e.g., scaled to integers 0-255 for 8-bit color
- Scores can be used to define the colors
  - PC 1 = red, PC 2 = green, PC 3 = blue











pixels with high Q and T2 have been selected

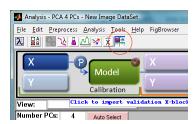


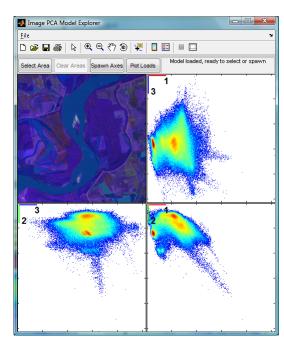
#### **Bivariate Scores Plots**

- Plotting  $\mathbf{t}_{k+1}$  vs.  $\mathbf{t}_k$  (score / score plots)
- Problem: lot's of points
  - 512\*512 = 262144 points with lot's of them falling on top of each other (big blobs)
- Density plots
  - count the number of points that lie on top of each other (have same score / score value)
  - color code according to density
  - use log to allow easy comparison between large and small number densities



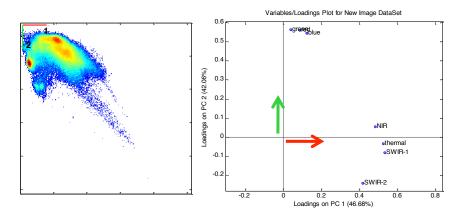
73





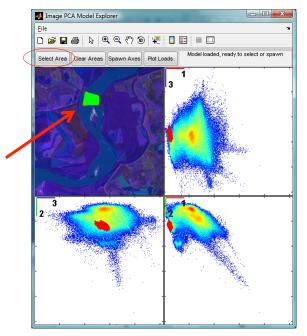


# **Scores and Loadings**



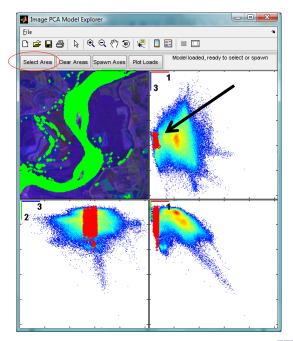


75



selecting an area w/in the image plane shows where it lies in the scores space





selecting an area w/in the scores space shows where it lies in the image plane

images can be explored to find similarities and differences w/in an image



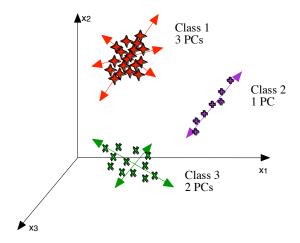
77

#### SIMCA

- Supervised pattern recognition / classification technique
  - the model is a collection of PCA models
  - each "class" is a separate PCA model
  - new samples are compared to all of the PCA models and scores, T<sup>2</sup> and Q are compared to statistical limits on each model
  - samples can belong to one, none or more than one class



#### A SIMCA Model

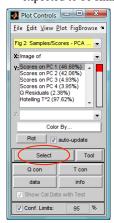


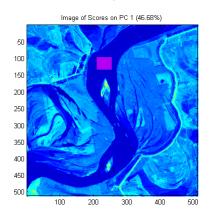


79

## SIMCA Example

For SIMCA, classes need to be defined.
Use the selection tool to select regions in the image that are expected to be similar and to be modeled as a single class.







# SIMCA Example

- Use the Tool to change the selection tool.
- Hold shift to select multiple regions.

Edit > Set Class of Selection Plot Controls Image of Scores on PC 1 (46.68%) <u>File Edit View Plot FigBrowse s</u> Fig 2: Samples/Scores - PCA 100 Y: Scores on PC 1 (46.68%) Scores on PC 2 (42.06%) Scores on PC 3 (4.93%) Scores on PC 4 (3.95%) O Residuals (2.36%) Hotelling T^2 (97.62%) OK Cancel 150 200 250 300 Plot auto-update 350 Tool 450 500 100 300 400 Conf. Limits: 95

81



# SIMCA Example

- Repeat to select different regions.
- Set a new class.
- Note that View:Classes is 'on'

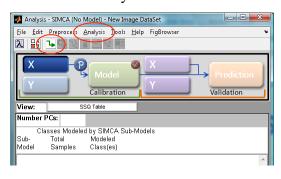


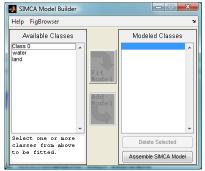
Select Class



#### SIMCA Model Builder

- SIMCA requires a selection of classes to be modeled and then assembles the model
  - Analysis:SIMCA



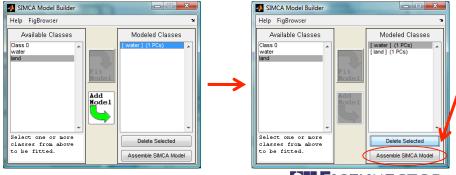


EIGENVECTOR RESEARCH INCORPORATED

83

#### Model of Each Class

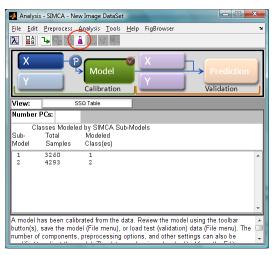
- Each class is modeled using PCA
  - highlight a class and then "fit model"
  - select the number of PCs, etc., then "add model"





### SIMCA Example

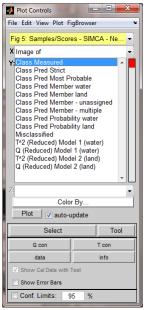
• The SIMCA model consists of two PCA models



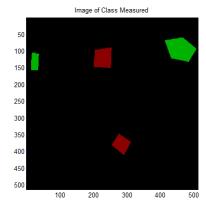
- Data from the entire image will be projected onto each PCA model.
- Scores, Q and T<sup>2</sup> are calculated for each model and it is determined which model the data is closest to.
- Click the scores button to examine the images.



#### SIMCA Model Predictions



- "Class Measured" = where the classes were selected.
- "Reduced" means that the statistic was normalized by the limit of the corresponding statistic (e.g., to the 95% CL).





86

85

#### **Model 1 Predictions**

- Model 1 (w/in set limits for both Q and  $T^2$ )
- Reduced Q on Model 1 (dark is low)

Image of Class Pred Member water

50
100
150
200
300
350
400
400
500

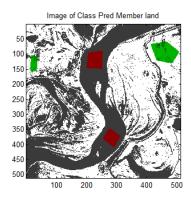
100 200 300 400 500

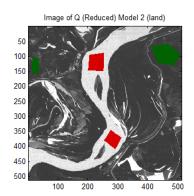


87

#### **Model 2 Predictions**

- Model 2 (w/in set limits for both Q and T<sup>2</sup>)
- Reduced Q on Model 2 (dark is low)

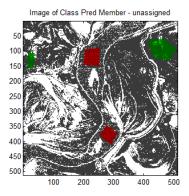






# In Model and Not-In-Any Model

- Outside of both models (left)
- Inside either model (right)



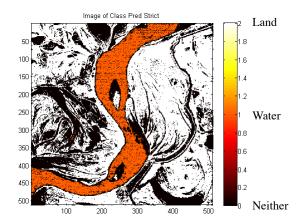
100 150 200 250 300 450 450

EIGENVECTOR RESEARCH INCORPORATED

89

#### "Strict" Class Predictions

- Strict predictions require probability of 50% or greater for one class only
- (Note: turn off classes to view)





#### Image PCA Conclusions

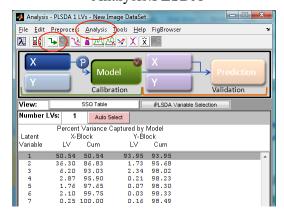
- Image PCA is a useful unsupervised pattern recognition technique for exploring images
  - scores and loadings are useful for determining what original variables are responsible for differences observed in an image
    - score-score plots and linked score plots
    - contrast enhancement might be needed to see small changes
- Image SIMCA is a useful supervised pattern recognition technique
  - find similar / dissimilar portions of an image very quickly



91

#### PLSDA Model Builder

- PLS discriminant analysis requires a selection of classes to be modeled
  - Analysis:PLSDA

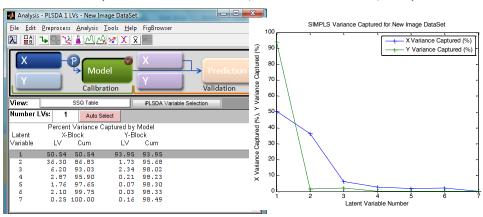




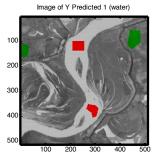


# PLSDA Maximizes Class Separation on a PLS Model

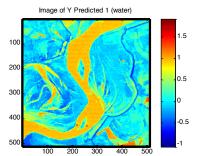
• PLS (selection of factors, cross-validation, etc.)

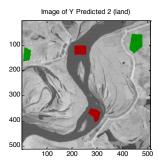


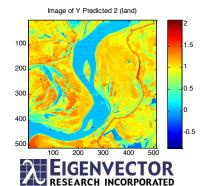




- Data from the entire image are projected onto the PLSDA model.
- Light shows high predictions on each class.
- Click the scores button to examine the images.
- View:Classes (uncheck Set 1)

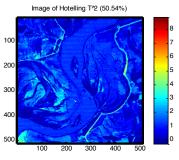


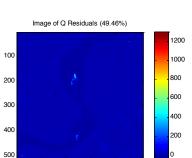




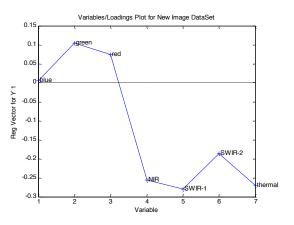
94

93





- Inspect T2 and Q
- Regression vector suggests that green and red increase relative to IR channels for water relative to land

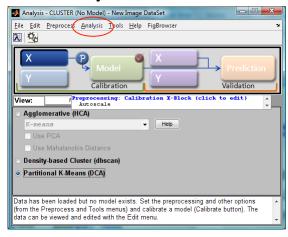


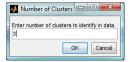


95

# **Cluster Analysis**

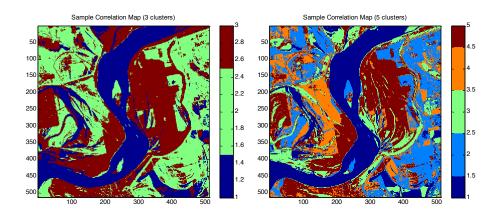
• Analysis:Cluster







#### Results for 3 and 5 Clusters





97

# Image PLSDA and Clustering Conclusions

- If classes (regions) are known, PLSDA is a useful supervised pattern recognition technique for exploring images
  - can often bring out more contrast than PCA
- Image clustering is a useful unsupervised pattern recognition technique (guess number of clusters)
  - find similar / dissimilar portions of an image very quickly
- Results of all analysis methods must be consistent



#### Comments on Presenting Images

- Images are representations of spatial and chemical information, ...
- but they can be mis-used.
  - users can control colors and contrasting and select channels or PCs (or rotations thereof)
  - as a result some things can be highlighted while others can be hidden
- It is important to report how images were constructed
  - the work must be reproducible



99

## Other Ways of Focusing on Variance of Interest

- Maximum Autocorrelation Factors find variance with spatial correlation
- Maximum Difference Factors find variance with spatial transitions (multivariate edge detection)
- Generalized Least Squares Weighting ignore variance from specified regions



# Maximum Autocorrelation Factors for Multivariate Images

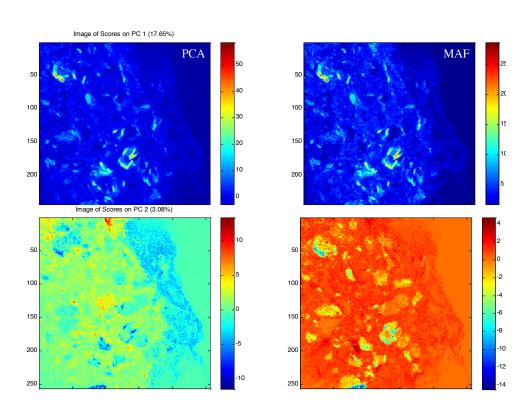
- For MNF, the clutter was intra-class variance
- For MAF, the clutter is the first spatial difference
  - the first difference should be high on edges and just noise w/in clusters
  - the result is the same generalized eigenvector problem as MNF with different clutter Σ<sub>C</sub>

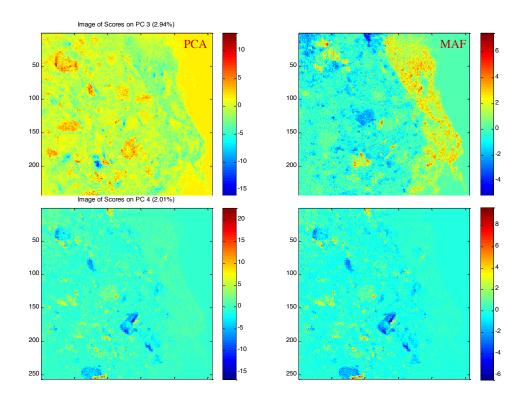
T.A. Blake, J.F. Kelly, N.B. Gallagher, P.L. Gassman and T.J. Johnson, "Passive detection of solid explosives in Mid-IR hyperspectral images," *Anal Bioanal Chem*, **395**, 337-348, 2009.

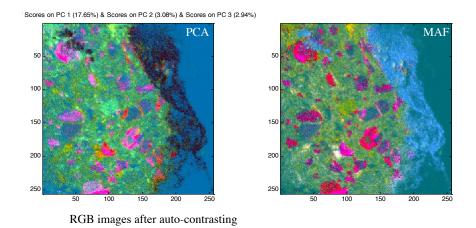
N.B. Gallagher, J.F. Kelly, T.A. Blake, "Passive infrared hyperspectral imaging for standoff detection of tetryl explosive residue on a steel surface," Whispers 2010, June 14-16, Reykjavik, Iceland

EIGENVECTOR RESEARCH INCORPORATED

101









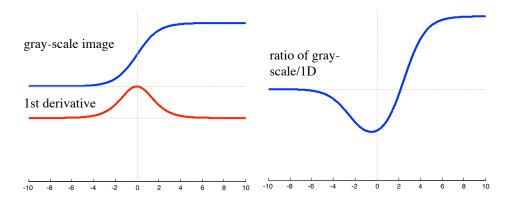
# Maximum Difference Factors MDF

- For MNF and MAF  $\Sigma_X$  was the covariance of the image
- For MAF  $\Sigma_C$  was the covariance of the first spatial difference and in MNF it was estimated from intra-class variance
- For MDF  $\Sigma_X$  is the covariance of the first spatial derivative of image, and  $\Sigma_C$  is the covariance of the second spatial derivative
  - the result is multivariate edge detection
  - often show magnitudes sqrt(dx<sup>2</sup>+dy<sup>2</sup>)

RESEARCH INCORPORATED

#### 105

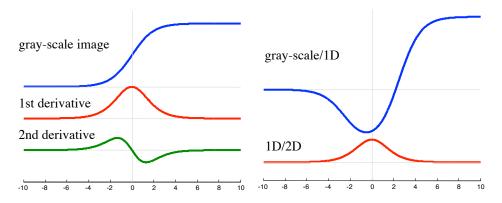
#### MAF



MAF finds locations in the image where the ratio of gray-scale to first derivative is a maximum



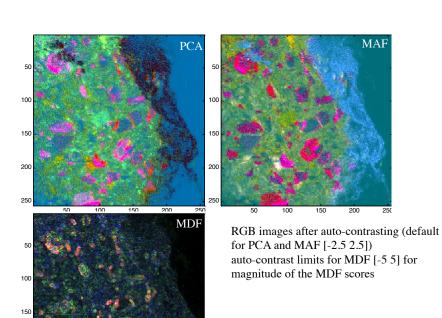
#### **MDF**



MDF finds locations in the image where the ratio of first to second derivative is a maximum



107





#### Measured Signal Includes Clutter

- Clutter is present in all measurements
  - X-block, Y-block



- Use knowledge of physics and chemistry to create a linear relationship
  - non-linearity w/in X-block adds factors in X
  - non-linearity between X- and Y-blocks adds error



109

## Why is Clutter Bad?

- Attempt to maximize S/C via pre-processing or the model e.g., MAF
- Methods that don't remove net analyte signal (NAS) are preferable
  - NAS is the portion of spectrum s<sub>i</sub> unique to analyte i and orthogonal to all other factors in S<sub>-i</sub>, and S/C ~ | NAS|
- Adding clutter tends to add something parallel to s<sub>i</sub> thus lowering NAS
  - Increases estimation error



#### GLS

- GLS can be used for target detection, classification and quantification
  - need a model of the clutter and a spectrum of pure component(s)
  - no need for buckets of calibration samples
    - in some cases these can't be acquired
  - a.k.a. matched filter and Aitken estimator
    - Turin, George L., "An Introduction to Matched Filters." IRE Transactions on Information Theory, 6(3) 1960: 311-329. (this is in a special issue on matched filters) and is used extensively in the remote sensing community [e.g., Burr T, Hengartner N (2006) Sensors 6:1721-1750] and has also been referred to as an "adaptive matched filter" to highlight the fact that the clutter covariance can be easily modified resulting in a new filter.
    - Aitken, A., "On Least Squares and Linear Combinations of Observations", Proceedings of the Royal Society of Edinburgh, 1935, 55, 42-48
    - E.g., T.A. Blake, J.F. Kelly, N.B. Gallagher, P.L. Gassman and T.J. Johnson, "Passive detection of solid explosives in Mid-IR hyperspectral images," *Anal Bioanal Chem*, 395, 337-348, 2009.

111

### GLS Weighting for ILS and PCA

• GLS weighting can be applied to inverse least squares models (e.g., PLS) and PCA

Xb = c inverse least squares model

 $\mathbf{X}_{w} = \mathbf{X}\mathbf{W}_{c}^{-1/2}$  weighting of **X** can be considered a generalization of autoscaling and is a pre-whitening step

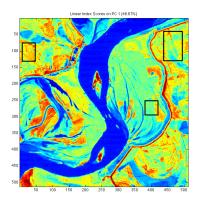
can also be applied to standardization where the clutter covariance is the difference matrix between instruments

H. Martens, M. Høy, B.M. Wise, R. Bro and P.B. Brockhoff, "Pre-whitening of data by covariance-weighted pre-processing," *J. Chemo.*, **17**(3), 153-165 (2003).

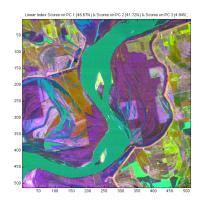


EIGENVECTOR RESEARCH INCORPORATED

# Landsat Image of Mississippi



Scores on PC 1

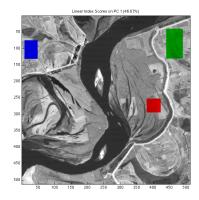


Scores on First 3 PCs

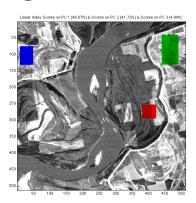


113

# Select Classes with Clutter to Down-weight



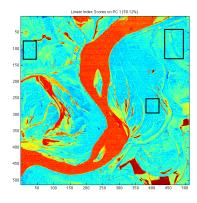
Scores on PC 1



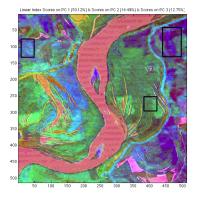
Scores on First 3 PCs



# PCA after GLS-Weighting



Scores on PC 1

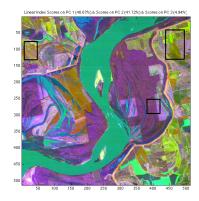


Scores on First 3 PCs

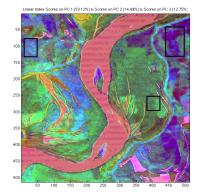


115

# PCA With and Without GLS-Weighting



Without GLS-Weighting



With GLS-Weighting



#### Comments on Filters

- Savitsky-Golay
  - For derivatives OR smoothing (noise reduction)
- Fourier
  - Remove high-frequency (noise) or low-frequency (baseline) components
  - Typically- NOT "windowed"
    - Position (wavelength) information not considered
- Wavelets
  - Extracting information by BOTH frequency and position
    - Allows BOTH feature selection and pre-processing!
  - filters that are based on window-size (scale)
    - · orthogonal and oblique basis functions can be used
- Statistics w/in windows
  - Mean, Median, Max, Min

SPATIAL FILTER, LINE FILTER, BOX FILTER



117

# Multivariate Image Regression and Quantitative Analyses

- Inverse Least Squares models (Partial Least Squares – PLS)
- Classical Least Squares (CLS)
- Multivariate Curve Resolution (MCR)



#### Mulitvariate Image Regression

- Inverse least squares models
  - PCR, PLS
  - Similar to PCA for X-block
    - matricizing, scores, scores images, loadings, unusual samples
      Q and T<sup>2</sup>, score-score plots, density plots, linking scores and
      image plane(s), contrast enhancement
  - Add predictions of a y-block
    - y = Xb
    - · predict a property
    - · used for PLS-descriminant analysis



119

### Inverse Least Squares

Inverse least squares (ILS) models assume that the model is of the form:
 Xb = v + e

where  $\mathbf{y}(MxI)$  is a property to be predicted,

 $\mathbf{X}$  ( $M\mathbf{x}N_{r}$ ) is the measured response,

e (Mx1) is an error vector, and

**b**  $(N_x \times I)$  is a vector of coefficients

• It is possible to estimate **b** from  $\mathbf{b} = \mathbf{X}^+\mathbf{y}$  where  $\mathbf{X}^+$  is the pseudo-inverse of  $\mathbf{X}$ 



#### Advantage of ILS Methods

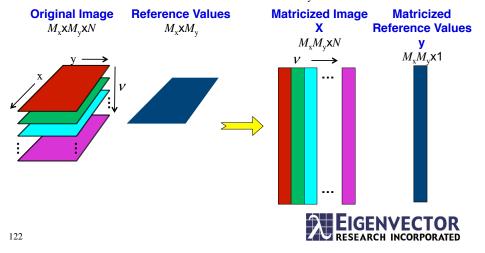
- ILS methods (including MLR, PCR, PLS, CR) don't require the concentration of all analytes, including interferents, be known ...
- ...however, interferents must vary in the calibration data set for the the ILS regression model to be robust against them
  - clutter factors must vary in the calibration data it's best if they vary such that they are orthogonal to the target of interest
- Disadvantage is that reference values must be available in a representative number of pixels



121

#### **Unfolding ILS**

• The image is  $M_x \times M_y \times N$  and it is reshaped by matricizing such that each pixel is a row in a  $M_x M_y \times N$  matrix



#### Estimation of b

- There are many ways to obtain a pseudo-inverse
- Multiple linear regression (MLR)<sup>1</sup>  $\mathbf{X}^+ = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$ 
  - problems with rank deficiency and ill conditioning
- Principal components regression  $(PCR)^2 \mathbf{X}^+ = \mathbf{P}_K (\mathbf{T}_K^T \mathbf{T}_K)^{-1} \mathbf{T}_K^T$
- Partial least squares (PLS)<sup>2,3</sup>  $\mathbf{X}^+ = \mathbf{W}_{\nu} \left( \mathbf{P}_{\nu}^{\mathrm{T}} \mathbf{W}_{\nu} \right)^{1} \left( \mathbf{T}_{\nu}^{\mathrm{T}} \mathbf{T}_{\nu} \right)^{1} \mathbf{T}_{\nu}^{\mathrm{T}}$ 
  - · cross-validation used to select number of factors

<sup>1</sup>Draper, N. and Smith, H., "Applied Regression Analysis, Second Edition", John Wiley & Sons, New York, NY (1981).

<sup>2</sup>Martens, H. and Næs, T., "Multivariate Calibration", John Wiley & Sons, New York, NY (1989). <sup>3</sup>M. Andersson, "A comparison of nine PLS1 algorithms," *J. Chemom.*, **23**(10), 518-529 (2009)



123

#### **Model Performance Measures**

- Average measures
  - Root mean square error of calibration (RMSEC)

• approximate measure of prediction RMSECV<sub>$$K$$</sub> =

$$\text{RMSEP} = \sqrt{\frac{M}{M}}$$

$$\text{RMSEP} = \sqrt{\frac{\sum_{M=1}^{M_p} (y_m - \hat{y}_m)^2}{M_p}}$$

Estimation error includes leverage

Faber, N.M. and Bro, R., Chemomem. and Intell. Syst., 61, 133-149 (2002).



### For PCR and PLS: Number of PCs or LVs

- Choice is not always simple
- A few rules of thumb
  - sqrt(M) a good choice for number of splits
  - useful to do repeated CVs with different data ordering
    - · want subsets to span the data space
  - be conservative, models are more often overfit than underfit
  - best choice is often not the global minimum PRESS
  - look for minimum of PRESS and work backwards if improvement is not at least 2%
  - RMSEC<RMSECV by more than ~20% indicates overfit
  - look at variance captured in **X** and **Y**. Is it significant with respect to what you know about the data?



125

## **Model Diagnostics**

- Diagnostics useful for finding outliers/uniques
- **X**-block Q residual and T<sup>2</sup>
- X-block leverage and studentized Y-block residuals



#### **Unfold ILS Comments**

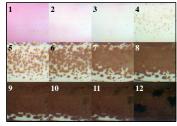
- Easy, can use existing code with rearranged data
- Statistics reasonably well defined
- No second order advantage to be lost!
  - images are multi-mode but the spatial mode is not bi-linear

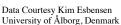


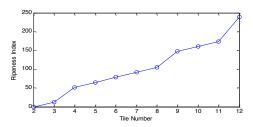
127

# Banana Ripeness by PLS

- Goal: Develop an automated (objective) method to assess banana ripeness
- X-Block RGB Images of Bananas at various stages of ripeness (Tiled)
- Y-Block Ripeness index for each tile

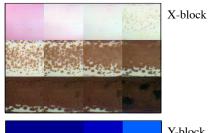








#### Two-Dimensional Calibration Data



Y-block

Image-based calibration takes advantage of high sampling rate of imaging (40 thousand samples for each tile!)

Y-block assumes a constant reference value for each image.

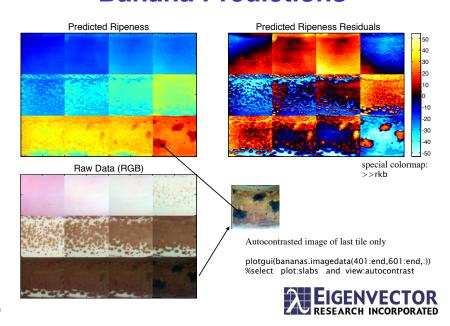
Unfold blocks before PLS

Note: Does not inherently take spatial correlation into account.

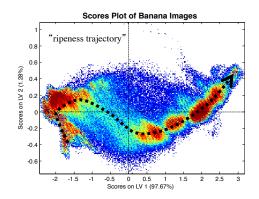


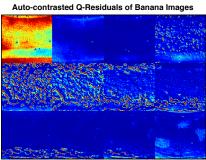
129

#### **Banana Predictions**



#### Banana Scores and Q Residuals







131

## Classical Least Squares Models

- Classical Least Squares (CLS)
  - alternative to ILS models often used in imaging where reference values are unknown but target spectrum is known
  - extended mixture model, generalized least squares
    - accounting for clutter [unknown (but characterizable) interferences] in CLS
  - often used in spectroscopic applications and remote sensing



#### **CLS Models**

- Classical Least Squares (CLS)
  - also uses 'unfolded image'

$$\mathbf{X} = \mathbf{C}\mathbf{S}^T + \mathbf{E} \qquad \hat{\mathbf{C}} = \mathbf{X}\mathbf{S}(\mathbf{S}^T\mathbf{S})^{-1}$$

- requires spectrum of all chromophores
  - · often cited as reason for ILS
- Extended Mixture Model (ELS)

$$\mathbf{X} = \begin{bmatrix} \mathbf{C} & \mathbf{T} \end{bmatrix} \begin{bmatrix} \mathbf{S} & \mathbf{P} \end{bmatrix}^T + \mathbf{E} \begin{bmatrix} \hat{\mathbf{C}} & \hat{\mathbf{T}} \end{bmatrix} = \mathbf{X} \begin{bmatrix} \mathbf{S} & \mathbf{P} \end{bmatrix} (\begin{bmatrix} \mathbf{S} & \mathbf{P} \end{bmatrix}^T \begin{bmatrix} \mathbf{S} & \mathbf{P} \end{bmatrix})^{-1}$$

- ullet where  ${\bf P}$  is a sub-space that spance the systematic clutter variance
- Generalized Least Squares (GLS)

$$\mathbf{X} = \mathbf{C}\mathbf{S}^T + \mathbf{E}$$
  $\hat{\mathbf{C}} = \mathbf{X}\mathbf{W}^{-1}\mathbf{S}(\mathbf{S}^T\mathbf{W}^{-1}\mathbf{S})^{-1}$ 

- where **W** is the clutter covariance (might center also)
- requires characterization of clutter
  - similar to requirement that interferences vary in ILS



133

#### **MCR**

• Based on the classical least squares (CLS) model, attempt to estimate **C** and **S** given **X**:

$$\mathbf{X} = \mathbf{C}\mathbf{S}^T + \mathbf{E}$$

where

**X** is a MxN matrix of measured responses,

C is a MxK matrix of pure analyte contributions,

 $\mathbf{S}$  is a NxK matrix of pure analyte spectra, and

 $\mathbf{E}$  is a  $M \times N$  matrix of residuals.



#### MCR Objective

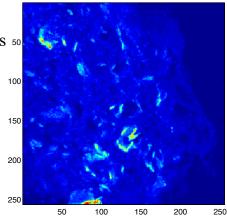
- Decompose a data matrix into chemically meaningful factors
  - pure analyte spectra
  - pure analyte concentrations
- Easy to interpret
  - provides chemically / physically meaningful information
  - · caveats:
    - rotational and multiplicative ambiguity
    - · use of constraints



135

## **Imaging Mass Spec**

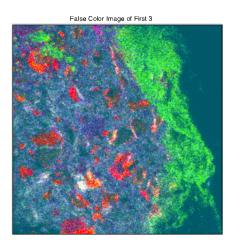
- Image is 256x256x90
- The mass spectrum was 50 41945 mass channels selected and binned 100 into 93 channels
- Image of total ion count
  - false color



EIGENVECTOR RESEARCH INCORPORATED

### PCA Score Image

Pretty picture, but loadings are very difficult to interpret!



137

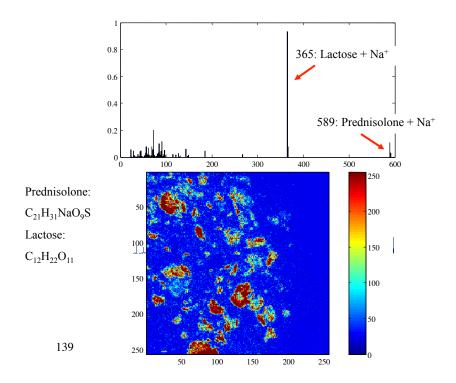


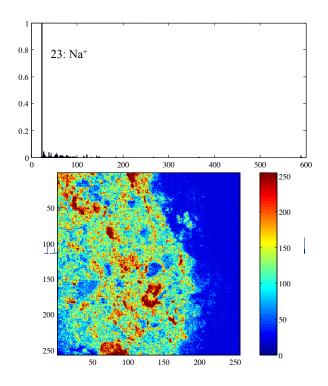
#### MCR (ALS) on TOF-SIMS Image

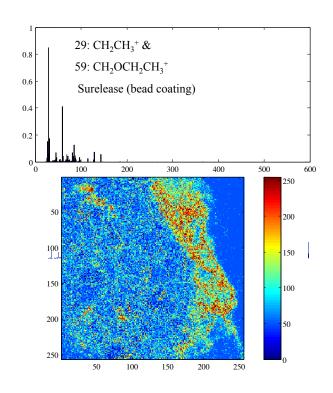
- Non-negative constraints on both C and S
- Initialize with pure/extreme samples (i.e. pixels)
- Recover 6 interpretable spectra and concentration profiles
- Showing Score Images image was unfolded with each pixel as a separate sample then the scores are re-folded to form images

Gallagher, N.B., Shaver, J.M., Martin, E.B., Morris, J., Wise, B.M. and Windig, W., "Curve resolution for images with applications to TOF-SIMS and Raman", *Chemometr. Intell. Lab.*, **73**(1), 105–117 (2003).









# RGB "Chemical" Image

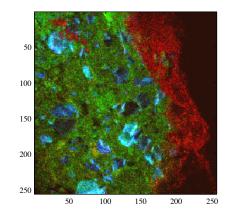
Red: Surelease (bead coating)

Green: Na

141

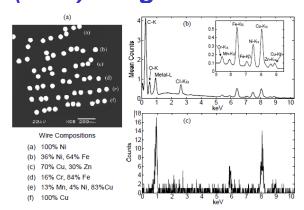
Blue: Prednisolone (drug)

only 3 of 6 factors extracted are shown





# Energy Dispersive Spectrometry (EDS) Image of Wires

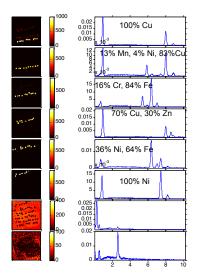


M.R. Keenan, Multivariate Analysis of Spectral Images Composed of Count Data, In: H. F. Grahn, P, Geladi (eds.), Techniques and Applications of Hyperspectral Image Analysis, pp. 89-126, Wiley & Sons, 2007

143



#### **MCR Results on Wires**





### Example of Dealing w/ Clutter

- MIA Example: Multivariate Curve Resolution (MCR)
  - Perform EMSC magnitude and slope correction (more later ...)
    - reference is an estimate of the resin spectrum with robust fitting
    - allow glucose, lysine, CaSO<sub>4</sub> spectra to pass the filter
    - Gallagher, Blake, Gassman, J. Chemometr., 19(5-7), 271-281 (2005).
  - Step 2: Account for scratches using spatial constraints:
    - Scores from a PCA of region 2778 to 1790 cm<sup>-1</sup> w/ 2<sup>nd</sup> derivative preprocessing capture variability due to scratch features
    - Equality constraints on **C**: components 4 to 11→ the scratches
      - Soft equality Constraints on S: components 1 to 3
        - » Factor 1: resin, Factor 2: lysine (w/~ CaSO<sub>4</sub>), Factor 3: glucose
  - Linear mixture model referred to as an extended mixture model

 $\mathbf{X} = \begin{bmatrix} \mathbf{C} & \mathbf{T} \end{bmatrix} \begin{bmatrix} \mathbf{S} & \mathbf{P} \end{bmatrix}^T + \mathbf{E}$ desired factors interferences

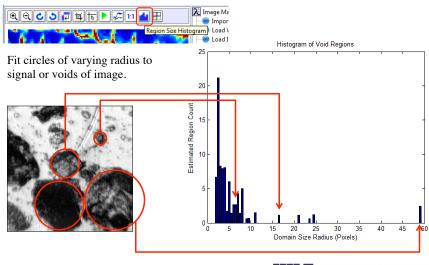
145



#### **OTHER TOOLS**

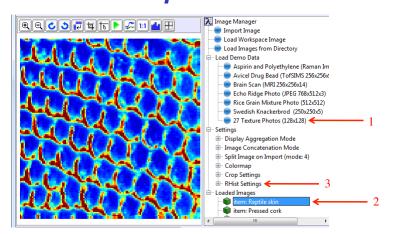


### Radial Region Histograms



EIGENVECTOR RESEARCH INCORPORATED

# Region Histogram Example: Reptile Skin





147

## Region Histogram Settings



#### Plots -

Final (only histogram)
Detailed (includes filling map)

#### Units -

Radius, Diameter, Area

#### Space -

Signal: measure signal

Void: measure lack of signal <

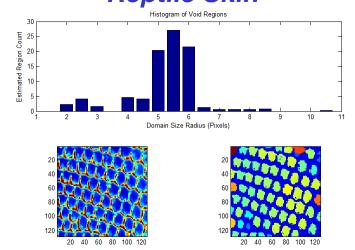
#### Dialatefill -

(On/Off) accommodates non-circular regions by adjusting circle to fill space



#### 149

# Region Histogram Example: Reptile Skin



Hint: Right-click axes to spawn as separate figure.



# Filled Region Map

